
http://www.cambridge.org/9780521519007

This page intentionally left blank

Artificial Intelligence
Foundations of Computational Agents

Artificial Intelligence: Foundations of Computational Agents is about the science of
artificial intelligence (AI). It presents AI as the study of the design of intelligent com-
putational agents. The book is structured as a textbook, but it is accessible to a wide
audience of professionals and researchers.

The past decades have witnessed the emergence of AI as a serious science and
engineering discipline. This book provides the first accessible synthesis of the field
aimed at undergraduate and graduate students. It provides a coherent vision of the
foundations of the field as it is today, in terms of a multidimensional design space
that has been partially explored. As with any science worth its salt, AI has a coherent,
formal theory and a rambunctious experimental wing. The book balances theory and
experiment, showing how to link them intimately together. It develops the science of
AI together with its engineering applications.

David L. Poole is Professor of Computer Science at the University of British Columbia.
He is a coauthor of Computational Intelligence: A Logical Approach (1998), cochair of the
Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), and coeditor
of the Proceedings of the Tenth Conference in Uncertainty in Artificial Intelligence (1994).
Poole is a former associate editor of the Journal of Artificial Intelligence Research. He is
an associate editor of Artificial Intelligence and on the editorial boards of AI Magazine
and AAAI Press. He is the secretary of the Association for Uncertainty in Artificial
Intelligence and is a Fellow of the Association for the Advancement of Artificial
Intelligence.

Alan K. Mackworth is Professor of Computer Science and Canada Research Chair
in Artificial Intelligence at the University of British Columbia. He has authored more
than 100 papers and coauthored the text Computational Intelligence: A Logical Approach.
He was President and Trustee of International Joint Conferences on AI (IJCAI) Inc.
Mackworth was vice president and president of the Canadian Society for Compu-
tational Studies of Intelligence (CSCSI). He has served as president of the AAAI.
He also served as the founding director of the UBC Laboratory for Computational
Intelligence. He is a Fellow of the Canadian Institute for Advanced Research, AAAI,
and the Royal Society of Canada.

Artificial Intelligence

Foundations of Computational Agents

David L. Poole

University of British Columbia

Alan K. Mackworth

University of British Columbia

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-51900-7

ISBN-13 978-0-511-72946-1

© David L. Poole and Alan K. Mackworth 2010

2010

Information on this title: www.cambridge.org/9780521519007

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521519007

To our families for their love, support, and patience

Jennifer, Alexandra, and Shannon

Marian and Bryn

Contents

Preface xiii

I Agents in the World: What Are Agents and How Can They Be
Built? 1

1 Artificial Intelligence and Agents 3
1.1 What Is Artificial Intelligence? 3
1.2 A Brief History of AI . 6
1.3 Agents Situated in Environments 10
1.4 Knowledge Representation . 11
1.5 Dimensions of Complexity . 19
1.6 Prototypical Applications . 29
1.7 Overview of the Book . 39
1.8 Review . 40
1.9 References and Further Reading 40
1.10 Exercises . 42

2 Agent Architectures and Hierarchical Control 43
2.1 Agents . 43
2.2 Agent Systems . 44
2.3 Hierarchical Control . 50
2.4 Embedded and Simulated Agents 59
2.5 Acting with Reasoning . 60
2.6 Review . 65

vii

viii Contents

2.7 References and Further Reading 66
2.8 Exercises . 66

II Representing and Reasoning 69

3 States and Searching 71
3.1 Problem Solving as Search . 71
3.2 State Spaces . 72
3.3 Graph Searching . 74
3.4 A Generic Searching Algorithm 77
3.5 Uninformed Search Strategies 79
3.6 Heuristic Search . 87
3.7 More Sophisticated Search . 92
3.8 Review . 106
3.9 References and Further Reading 106
3.10 Exercises . 107

4 Features and Constraints 111
4.1 Features and States . 111
4.2 Possible Worlds, Variables, and Constraints 113
4.3 Generate-and-Test Algorithms 118
4.4 Solving CSPs Using Search . 119
4.5 Consistency Algorithms . 120
4.6 Domain Splitting . 125
4.7 Variable Elimination . 127
4.8 Local Search . 130
4.9 Population-Based Methods . 141
4.10 Optimization . 144
4.11 Review . 151
4.12 References and Further Reading 151
4.13 Exercises . 152

5 Propositions and Inference 157
5.1 Propositions . 157
5.2 Propositional Definite Clauses 163
5.3 Knowledge Representation Issues 174
5.4 Proving by Contradictions . 185
5.5 Complete Knowledge Assumption 193
5.6 Abduction . 199
5.7 Causal Models . 204
5.8 Review . 206
5.9 References and Further Reading 207
5.10 Exercises . 208

Contents ix

6 Reasoning Under Uncertainty 219
6.1 Probability . 219
6.2 Independence . 232
6.3 Belief Networks . 235
6.4 Probabilistic Inference . 248
6.5 Probability and Time . 266
6.6 Review . 274
6.7 References and Further Reading 274
6.8 Exercises . 275

III Learning and Planning 281

7 Learning: Overview and Supervised Learning 283
7.1 Learning Issues . 284
7.2 Supervised Learning . 288
7.3 Basic Models for Supervised Learning 298
7.4 Composite Models . 313
7.5 Avoiding Overfitting . 320
7.6 Case-Based Reasoning . 324
7.7 Learning as Refining the Hypothesis Space 327
7.8 Bayesian Learning . 334
7.9 Review . 340
7.10 References and Further Reading 341
7.11 Exercises . 342

8 Planning with Certainty 349
8.1 Representing States, Actions, and Goals 350
8.2 Forward Planning . 356
8.3 Regression Planning . 357
8.4 Planning as a CSP . 360
8.5 Partial-Order Planning . 363
8.6 Review . 366
8.7 References and Further Reading 367
8.8 Exercises . 367

9 Planning Under Uncertainty 371
9.1 Preferences and Utility . 373
9.2 One-Off Decisions . 381
9.3 Sequential Decisions . 386
9.4 The Value of Information and Control 396
9.5 Decision Processes . 399
9.6 Review . 412
9.7 References and Further Reading 413
9.8 Exercises . 413

x Contents

10 Multiagent Systems 423
10.1 Multiagent Framework . 423
10.2 Representations of Games . 425
10.3 Computing Strategies with Perfect Information 430
10.4 Partially Observable Multiagent Reasoning 433
10.5 Group Decision Making . 445
10.6 Mechanism Design . 446
10.7 Review . 449
10.8 References and Further Reading 449
10.9 Exercises . 450

11 Beyond Supervised Learning 451
11.1 Clustering . 451
11.2 Learning Belief Networks . 458
11.3 Reinforcement Learning . 463
11.4 Review . 485
11.5 References and Further Reading 486
11.6 Exercises . 486

IV Reasoning About Individuals and Relations 489

12 Individuals and Relations 491
12.1 Exploiting Structure Beyond Features 492
12.2 Symbols and Semantics . 493
12.3 Datalog: A Relational Rule Language 494
12.4 Proofs and Substitutions . 506
12.5 Function Symbols . 512
12.6 Applications in Natural Language Processing 520
12.7 Equality . 532
12.8 Complete Knowledge Assumption 537
12.9 Review . 541
12.10 References and Further Reading 542
12.11 Exercises . 542

13 Ontologies and Knowledge-Based Systems 549
13.1 Knowledge Sharing . 549
13.2 Flexible Representations . 550
13.3 Ontologies and Knowledge Sharing 563
13.4 Querying Users and Other Knowledge Sources 576
13.5 Implementing Knowledge-Based Systems 579
13.6 Review . 591
13.7 References and Further Reading 591
13.8 Exercises . 592

Contents xi

14 Relational Planning, Learning, and Probabilistic Reasoning 597
14.1 Planning with Individuals and Relations 598
14.2 Learning with Individuals and Relations 606
14.3 Probabilistic Relational Models 611
14.4 Review . 618
14.5 References and Further Reading 618
14.6 Exercises . 620

V The Big Picture 623

15 Retrospect and Prospect 625
15.1 Dimensions of Complexity Revisited 625
15.2 Social and Ethical Consequences 629
15.3 References and Further Reading 632

A Mathematical Preliminaries and Notation 633
A.1 Discrete Mathematics . 633
A.2 Functions, Factors, and Arrays 634
A.3 Relations and the Relational Algebra 635

Bibliography 637

Index 653

Preface

Artificial Intelligence: Foundations of Computational Agents is a book about the
science of artificial intelligence (AI). The view we take is that AI is the study
of the design of intelligent computational agents. The book is structured as a
textbook, but it is designed to be accessible to a wide audience.

We wrote this book because we are excited about the emergence of AI as an
integrated science. As with any science worth its salt, AI has a coherent, formal
theory and a rambunctious experimental wing. Here we balance theory and
experiment and show how to link them intimately together. We develop the
science of AI together with its engineering applications. We believe the adage
“There is nothing so practical as a good theory.” The spirit of our approach
is captured by the dictum “Everything should be made as simple as possible,
but not simpler.” We must build the science on solid foundations; we present
the foundations, but only sketch, and give some examples of, the complexity
required to build useful intelligent systems. Although the resulting systems
will be complex, the foundations and the building blocks should be simple.

The book works as an introductory text on AI for advanced undergrad-
uate or graduate students in computer science or related disciplines such as
computer engineering, philosophy, cognitive science, or psychology. It will
appeal more to the technically minded; parts are technically challenging, fo-
cusing on learning by doing: designing, building, and implementing systems.
Any curious scientifically oriented reader will benefit from studying the book.
Previous experience with computational systems is desirable, but prior study
of the foundations on which we build, including logic, probability, calcu-
lus, and control theory, is not necessary, because we develop the concepts as
required.

xiii

xiv Preface

The serious student will gain valuable skills at several levels ranging from
expertise in the specification and design of intelligent agents to skills for imple-
menting, testing, and improving real software systems for several challenging
application domains. The thrill of participating in the emergence of a new sci-
ence of intelligent agents is one of the attractions of this approach. The practical
skills of dealing with a world of ubiquitous, intelligent, embedded agents are
now in great demand in the marketplace.

The focus is on an intelligent agent acting in an environment. We start with
simple agents acting in simple, static environments and gradually increase the
power of the agents to cope with more challenging worlds. We explore nine
dimensions of complexity that allow us to introduce, gradually and with mod-
ularity, what makes building intelligent agents challenging. We have tried to
structure the book so that the reader can understand each of the dimensions
separately, and we make this concrete by repeatedly illustrating the ideas with
four different agent tasks: a delivery robot, a diagnostic assistant, a tutoring
system, and a trading agent.

The agent we want the student to envision is a hierarchically designed
agent that acts intelligently in a stochastic environment that it can only par-
tially observe – one that reasons about individuals and the relationships among
them, has complex preferences, learns while acting, takes into account other
agents, and acts appropriately given its own computational limitations. Of
course, we can’t start with such an agent; it is still a research question to build
such agents. So we introduce the simplest agents and then show how to add
each of these complexities in a modular way.

We have made a number of design choices that distinguish this book from
competing books, including the earlier book by the same authors:

• We have tried to give a coherent framework in which to understand AI.
We have chosen not to present disconnected topics that do not fit to-
gether. For example, we do not present disconnected logical and prob-
abilistic views of AI, but we have presented a multidimensional design
space in which the students can understand the big picture, in which
probabilistic and logical reasoning coexist.

• We decided that it is better to clearly explain the foundations on which
more sophisticated techniques can be built, rather than present these
more sophisticated techniques. This means that a larger gap exists be-
tween what is covered in this book and the frontier of science. It also
means that the student will have a better foundation to understand cur-
rent and future research.

• One of the more difficult decisions we made was how to linearize the
design space. Our previous book (Poole, Mackworth, and Goebel, 1998)
presented a relational language early and built the foundations in terms
of this language. This approach made it difficult for the students to
appreciate work that was not relational, for example, in reinforcement

Preface xv

learning that is developed in terms of states. In this book, we have chosen
a relations-late approach. This approach probably reflects better the re-
search over the past few decades in which there has been much progress
in feature-based representations. It also allows the student to understand
that probabilistic and logical reasoning are complementary. The book,
however, is structured so that an instructor can present relations earlier.

This book uses examples from AIspace.org (http://www.aispace.org), a col-
lection of pedagogical applets that we have been involved in designing. To
gain further experience in building intelligent systems, a student should also
experiment with a high-level symbol-manipulation language, such as LISP or
Prolog. We also provide implementations in AILog, a clean logic programming
language related to Prolog, designed to demonstrate many of the issues in this
book. This connection is not essential to an understanding or use of the ideas
in this book.

Our approach, through the development of the power of the agent’s capa-
bilities and representation language, is both simpler and more powerful than
the traditional approach of surveying and cataloging various applications of
AI. However, as a consequence, some applications, such as the details of com-
putational vision or computational linguistics, are not covered in this book.

We have chosen not to present an encyclopedic view of AI. Not every ma-
jor idea that has been investigated is presented here. We have chosen some
basic ideas on which other, more sophisticated, techniques are based and
have tried to explain the basic ideas in detail, sketching how these can be
expanded.

Figure 1 (page xvi) shows the topics covered in the book. The solid lines
give prerequisites. Often the prerequisite structure does not include all sub-
topics. Given the medium of a book, we have had to linearize the topics. How-
ever, the book is designed so that the topics can be taught in any order satisfy-
ing the prerequisite structure.

The references given at the end of each chapter are not meant to be compre-
hensive: we have referenced works that we have directly used and works that
we think provide good overviews of the literature, by referencing both classic
works and more recent surveys. We hope that no researchers feel slighted by
their omission, and we are happy to have feedback where someone feels that
an idea has been misattributed. Remember that this book is not a survey of AI
research.

We invite you to join us in an intellectual adventure: building a science of
intelligent agents.

David Poole
Alan Mackworth

AIspace.org
http://www.aispace.org

xvi Preface

1: AI &

Agents

2: Architecture

& Control 3: States &

Searching

4: Features &

Constraints

5: Propositions

& Inference

6: Uncertainty

7: Supervised

Learning

8: Planning

9: Planning Under

Uncertainty

10: Multi agent

systems

11: Beyond

Supervised Learning

12: Individuals

& Relations

13: Ontologies

& KBS

14: Relational Planning

Learning & Probability

Figure 1: Overview of chapters and dependencies

Preface xvii

Acknowledgments

Thanks to Randy Goebel for valuable input on this book. We also grate-
fully acknowledge the helpful comments on earlier drafts of this book re-
ceived from Giuseppe Carenini, Cristina Conati, Mark Crowley, Pooyan
Fazli, Holger Hoos, Manfred Jaeger, Mohammad Reza Khojasteh, Jacek
Kisyński, Bob Kowalski, Kevin Leyton-Brown, Marian Mackworth, Gabriel
Murray, Alessandro Provetti, Marco Valtorta, and the anonymous reviewers.
Thanks to the students who pointed out many errors in earlier drafts.

Thanks to Jen Fernquist for the web site design, and to Tom Sgouros for
hyperlatex fixes. We are grateful to James Falen for permission to quote his
poem on constraints. Thanks to our editor Lauren Cowles and the staff at Cam-
bridge University Press for all their support, encouragement, and help. All the
mistakes remaining are ours.

Part I

Agents in the World: What Are
Agents and How Can They Be

Built?

1

Chapter 1

Artificial Intelligence and Agents

The history of AI is a history of fantasies, possibilities, demonstrations,
and promise. Ever since Homer wrote of mechanical “tripods” waiting on
the gods at dinner, imagined mechanical assistants have been a part of our
culture. However, only in the last half century have we, the AI community,
been able to build experimental machines that test hypotheses about the
mechanisms of thought and intelligent behavior and thereby demonstrate
mechanisms that formerly existed only as theoretical possibilities.

– Bruce Buchanan [2005]

This book is about artificial intelligence, a field built on centuries of thought,
which has been a recognized discipline for over 50 years. As Buchanan points
out in the quote above, we now have the tools to test hypotheses about the na-
ture of thought itself, as well as solve practical problems. Deep scientific and
engineering problems have already been solved and many more are waiting to
be solved. Many practical applications are currently deployed and the poten-
tial exists for an almost unlimited number of future applications. In this book,
we present the principles that underlie intelligent computational agents. Those
principles can help you understand current and future work in AI and equip
you to contribute to the discipline yourself.

1.1 What Is Artificial Intelligence?

Artificial intelligence, or AI, is the field that studies the synthesis and analy-
sis of computational agents that act intelligently. Let us examine each part of this
definition.

3

4 1. Artificial Intelligence and Agents

An agent is something that acts in an environment – it does something.
Agents include worms, dogs, thermostats, airplanes, robots, humans, compa-
nies, and countries.

We are interested in what an agent does; that is, how it acts. We judge an
agent by its actions.

An agent acts intelligently when

• what it does is appropriate for its circumstances and its goals,

• it is flexible to changing environments and changing goals,

• it learns from experience, and

• it makes appropriate choices given its perceptual and computational lim-
itations. An agent typically cannot observe the state of the world directly;
it has only a finite memory and it does not have unlimited time to act.

A computational agent is an agent whose decisions about its actions can be
explained in terms of computation. That is, the decision can be broken down
into primitive operation that can be implemented in a physical device. This
computation can take many forms. In humans this computation is carried out
in “wetware”; in computers it is carried out in “hardware.” Although there are
some agents that are arguably not computational, such as the wind and rain
eroding a landscape, it is an open question whether all intelligent agents are
computational.

The central scientific goal of AI is to understand the principles that make
intelligent behavior possible in natural or artificial systems. This is done by

• the analysis of natural and artificial agents;

• formulating and testing hypotheses about what it takes to construct in-
telligent agents; and

• designing, building, and experimenting with computational systems that
perform tasks commonly viewed as requiring intelligence.

As part of science, researchers build empirical systems to test hypotheses or
to explore the space of possibilities. These are quite distinct from applications
that are built to be useful for an application domain.

Note that the definition is not for intelligent thought. We are only interested
in thinking intelligently insofar as it leads to better performance. The role of
thought is to affect action.

The central engineering goal of AI is the design and synthesis of useful,
intelligent artifacts. We actually want to build agents that act intelligently. Such
agents are useful in many applications.

1.1.1 Artificial and Natural Intelligence

Artificial intelligence (AI) is the established name for the field, but the term “ar-
tificial intelligence” is a source of much confusion because artificial intelligence
may be interpreted as the opposite of real intelligence.

1.1. What Is Artificial Intelligence? 5

Interrogator: In the first line of your sonnet which reads “Shall I compare thee
to a summer’s day,” would not ”a spring day” do as well or better?

Witness: It wouldn’t scan.

Interrogator: How about “a winter’s day,” That would scan all right.

Witness: Yes, but nobody wants to be compared to a winter’s day.

Interrogator: Would you say Mr. Pickwick reminded you of Christmas?

Witness: In a way.

Interrogator: Yet Christmas is a winter’s day, and I do not think Mr. Pickwick
would mind the comparison.

Witness: I don’t think you’re serious. By a winter’s day one means a typical
winter’s day, rather than a special one like Christmas.

Figure 1.1: A possible dialog for the Turing test (from Turing [1950])

For any phenomenon, you can distinguish real versus fake, where the fake
is non-real. You can also distinguish natural versus artificial. Natural means
occurring in nature and artificial means made by people.

Example 1.1 A tsunami is a large wave in an ocean caused by an earthquake
or a landslide. Natural tsunamis occur from time to time. You could imagine an
artificial tsunami that was made by people, for example, by exploding a bomb
in the ocean, yet which is still a real tsunami. One could also imagine fake
tsunamis: either artificial, using computer graphics, or natural, for example, a
mirage that looks like a tsunami but is not one.

It is arguable that intelligence is different: you cannot have fake intelligence.
If an agent behaves intelligently, it is intelligent. It is only the external behavior
that defines intelligence; acting intelligently is being intelligent. Thus, artifi-
cial intelligence, if and when it is achieved, will be real intelligence created
artificially.

This idea of intelligence being defined by external behavior was the moti-
vation for a test for intelligence designed by Turing [1950], which has become
known as the Turing test. The Turing test consists of an imitation game where
an interrogator can ask a witness, via a text interface, any question. If the in-
terrogator cannot distinguish the witness from a human, the witness must be
intelligent. Figure 1.1 shows a possible dialog that Turing suggested. An agent
that is not really intelligent could not fake intelligence for arbitrary topics.

There has been much debate about the Turing test. Unfortunately, although
it may provide a test for how to recognize intelligence, it does not provide a
way to get there; trying each year to fake it does not seem like a useful avenue
of research.

6 1. Artificial Intelligence and Agents

The obvious naturally intelligent agent is the human being. Some peo-
ple might say that worms, insects, or bacteria are intelligent, but more peo-
ple would say that dogs, whales, or monkeys are intelligent (see Exercise 1
(page 42)). One class of intelligent agents that may be more intelligent than hu-
mans is the class of organizations. Ant colonies are a prototypical example of or-
ganizations. Each individual ant may not be very intelligent, but an ant colony
can act more intelligently than any individual ant. The colony can discover
food and exploit it very effectively as well as adapt to changing circumstances.
Similarly, companies can develop, manufacture, and distribute products where
the sum of the skills required is much more than any individual could master.
Modern computers, from low-level hardware to high-level software, are more
complicated than any human can understand, yet they are manufactured daily
by organizations of humans. Human society viewed as an agent is arguably the
most intelligent agent known.

It is instructive to consider where human intelligence comes from. There
are three main sources:

biology: Humans have evolved into adaptable animals that can survive in var-
ious habitats.

culture: Culture provides not only language, but also useful tools, useful con-
cepts, and the wisdom that is passed from parents and teachers to chil-
dren.

life-long learning: Humans learn throughout their life and accumulate know-
ledge and skills.

These sources interact in complex ways. Biological evolution has provided
stages of growth that allow for different learning at different stages of life. We
humans and our culture have evolved together so that humans are helpless at
birth, presumably because of our culture of looking after infants. Culture in-
teracts strongly with learning. A major part of lifelong learning is what people
are taught by parents and teachers. Language, which is part of culture, pro-
vides distinctions in the world that should be noticed for learning.

1.2 A Brief History of AI

Throughout human history, people have used technology to model themselves.
There is evidence of this from ancient China, Egypt, and Greece that bears wit-
ness to the universality of this activity. Each new technology has, in its turn,
been exploited to build intelligent agents or models of mind. Clockwork, hy-
draulics, telephone switching systems, holograms, analog computers, and dig-
ital computers have all been proposed both as technological metaphors for in-
telligence and as mechanisms for modeling mind.

About 400 years ago people started to write about the nature of thought
and reason. Hobbes (1588–1679), who has been described by Haugeland [1985,

1.2. A Brief History of AI 7

p. 85] as the “Grandfather of AI,” espoused the position that thinking was
symbolic reasoning like talking out loud or working out an answer with pen
and paper. The idea of symbolic reasoning was further developed by Descartes
(1596–1650), Pascal (1623–1662), Spinoza (1632–1677), Leibniz (1646–1716), and
others who were pioneers in the philosophy of mind.

The idea of symbolic operations became more concrete with the develop-
ment of computers. The first general-purpose computer designed (but not built
until 1991, at the Science Museum of London) was the Analytical Engine by
Babbage (1792–1871). In the early part of the 20th century, there was much
work done on understanding computation. Several models of computation
were proposed, including the Turing machine by Alan Turing (1912–1954), a
theoretical machine that writes symbols on an infinitely long tape, and the
lambda calculus of Church (1903–1995), which is a mathematical formalism
for rewriting formulas. It can be shown that these very different formalisms
are equivalent in that any function computable by one is computable by the
others. This leads to the Church–Turing thesis:

Any effectively computable function can be carried out on a Turing
machine (and so also in the lambda calculus or any of the other
equivalent formalisms).

Here effectively computable means following well-defined operations; “com-
puters” in Turing’s day were people who followed well-defined steps and com-
puters as we know them today did not exist. This thesis says that all compu-
tation can be carried out on a Turing machine or one of the other equivalent
computational machines. The Church–Turing thesis cannot be proved but it is
a hypothesis that has stood the test of time. No one has built a machine that
has carried out computation that cannot be computed by a Turing machine.
There is no evidence that people can compute functions that are not Turing
computable. An agent’s actions are a function of its abilities, its history, and its
goals or preferences. This provides an argument that computation is more than
just a metaphor for intelligence; reasoning is computation and computation can
be carried out by a computer.

Once real computers were built, some of the first applications of computers
were AI programs. For example, Samuel [1959] built a checkers program in
1952 and implemented a program that learns to play checkers in the late 1950s.
Newell and Simon [1956] built a program, Logic Theorist, that discovers proofs
in propositional logic.

In addition to that for high-level symbolic reasoning, there was also much
work on low-level learning inspired by how neurons work. McCulloch and
Pitts [1943] showed how a simple thresholding “formal neuron” could be the
basis for a Turing-complete machine. The first learning for these neural net-
works was described by Minsky [1952]. One of the early significant works was
the Perceptron of Rosenblatt [1958]. The work on neural networks went into
decline for a number of years after the 1968 book by Minsky and Papert [1988],

8 1. Artificial Intelligence and Agents

Does Afghanistan border China?
What is the capital of Upper Volta?
Which country’s capital is London?
Which is the largest african country?
How large is the smallest american country?
What is the ocean that borders African countries and that borders
Asian countries?
What are the capitals of the countries bordering the Baltic?
How many countries does the Danube flow through?
What is the total area of countries south of the Equator and not in
Australasia?
What is the average area of the countries in each continent?
Is there more than one country in each continent?
What are the countries from which a river flows into the Black Sea?
What are the continents no country in which contains more than two
cities whose population exceeds 1 million?
Which country bordering the Mediterranean borders a country that
is bordered by a country whose population exceeds the population
of India?
Which countries with a population exceeding 10 million border the
Atlantic?

Figure 1.2: Some questions CHAT-80 could answer

which argued that the representations learned were inadequate for intelligent
action.

These early programs concentrated on learning and search as the founda-
tions of the field. It became apparent early that one of the main problems was
how to represent the knowledge needed to solve a problem. Before learning,
an agent must have an appropriate target language for the learned knowledge.
There have been many proposals for representations from simple feature-based
representations to complex logical representations of McCarthy and Hayes
[1969] and many in between such as the frames of Minsky [1975].

During the 1960s and 1970s, success was had in building natural language
understanding systems in limited domains. For example, the STUDENT pro-
gram of Daniel Bobrow [1967] could solve high school algebra problems ex-
pressed in natural language. Winograd’s [1972] SHRDLU system could, using
restricted natural language, discuss and carry out tasks in a simulated blocks
world. CHAT-80 [Warren and Pereira, 1982] could answer geographical ques-
tions placed to it in natural language. Figure 1.2 shows some questions that
CHAT-80 answered based on a database of facts about countries, rivers, and
so on. All of these systems could only reason in very limited domains using
restricted vocabulary and sentence structure.

1.2. A Brief History of AI 9

During the 1970s and 1980s, there was a large body of work on expert sys-
tems, where the aim was to capture the knowledge of an expert in some do-
main so that a computer could carry out expert tasks. For example, DENDRAL
[Buchanan and Feigenbaum, 1978], developed from 1965 to 1983 in the field of
organic chemistry, proposed plausible structures for new organic compounds.
MYCIN [Buchanan and Shortliffe, 1984], developed from 1972 to 1980, diag-
nosed infectious diseases of the blood, prescribed antimicrobial therapy, and
explained its reasoning. The 1970s and 1980s were also a period when AI
reasoning became widespread in languages such as Prolog [Colmerauer and
Roussel, 1996; Kowalski, 1988].

During the 1990s and the 2000s there was great growth in the subdisciplines
of AI such as perception, probabilistic and decision-theoretic reasoning, plan-
ning, embodied systems, machine learning, and many other fields. There has
also been much progress on the foundations of the field; these form the foun-
dations of this book.

1.2.1 Relationship to Other Disciplines

AI is a very young discipline. Other disciplines as diverse as philosophy, neu-
robiology, evolutionary biology, psychology, economics, political science, soci-
ology, anthropology, control engineering, and many more have been studying
intelligence much longer.

The science of AI could be described as “synthetic psychology,” “experi-
mental philosophy,” or “computational epistemology”– epistemology is the
study of knowledge. AI can be seen as a way to study the old problem of the
nature of knowledge and intelligence, but with a more powerful experimen-
tal tool than was previously available. Instead of being able to observe only
the external behavior of intelligent systems, as philosophy, psychology, eco-
nomics, and sociology have traditionally been able to do, AI researchers ex-
periment with executable models of intelligent behavior. Most important, such
models are open to inspection, redesign, and experiment in a complete and
rigorous way. Modern computers provide a way to construct the models about
which philosophers have only been able to theorize. AI researchers can experi-
ment with these models as opposed to just discussing their abstract properties.
AI theories can be empirically grounded in implementation. Moreover, we are
often surprised when simple agents exhibit complex behavior. We would not
have known this without implementing the agents.

It is instructive to consider an analogy between the development of fly-
ing machines over the past few centuries and the development of thinking
machines over the past few decades. There are several ways to understand
flying. One is to dissect known flying animals and hypothesize their com-
mon structural features as necessary fundamental characteristics of any flying
agent. With this method, an examination of birds, bats, and insects would sug-
gest that flying involves the flapping of wings made of some structure covered
with feathers or a membrane. Furthermore, the hypothesis could be tested by

10 1. Artificial Intelligence and Agents

strapping feathers to one’s arms, flapping, and jumping into the air, as Icarus
did. An alternate methodology is to try to understand the principles of flying
without restricting oneself to the natural occurrences of flying. This typically
involves the construction of artifacts that embody the hypothesized principles,
even if they do not behave like flying animals in any way except flying. This
second method has provided both useful tools – airplanes – and a better un-
derstanding of the principles underlying flying, namely aerodynamics.

AI takes an approach analogous to that of aerodynamics. AI researchers
are interested in testing general hypotheses about the nature of intelligence by
building machines that are intelligent and that do not necessarily mimic hu-
mans or organizations. This also offers an approach to the question, “Can com-
puters really think?” by considering the analogous question, “Can airplanes
really fly?”

AI is intimately linked with the discipline of computer science. Although
there are many non-computer scientists who are doing AI research, much,
if not most, AI research is done within computer science departments. This
is appropriate because the study of computation is central to AI. It is essen-
tial to understand algorithms, data structures, and combinatorial complexity
to build intelligent machines. It is also surprising how much of computer
science started as a spinoff from AI, from timesharing to computer algebra
systems.

Finally, AI can be seen as coming under the umbrella of cognitive science.
Cognitive science links various disciplines that study cognition and reason-
ing, from psychology to linguistics to anthropology to neuroscience. AI distin-
guishes itself within cognitive science by providing tools to build intelligence
rather than just studying the external behavior of intelligent agents or dissect-
ing the inner workings of intelligent systems.

1.3 Agents Situated in Environments

AI is about practical reasoning: reasoning in order to do something. A cou-
pling of perception, reasoning, and acting comprises an agent. An agent acts in
an environment. An agent’s environment may well include other agents. An
agent together with its environment is called a world.

An agent could be, for example, a coupling of a computational engine with
physical sensors and actuators, called a robot, where the environment is a
physical setting. It could be the coupling of an advice-giving computer – an ex-
pert system – with a human who provides perceptual information and carries
out the task. An agent could be a program that acts in a purely computational
environment – a software agent.

Figure 1.3 shows the inputs and outputs of an agent. At any time, what an
agent does depends on its

• prior knowledge about the agent and the environment;

• history of interaction with the environment, which is composed of

1.4. Knowledge Representation 11

Environment

Observations
Actions

Past Experiences

Goals/Preferences

Prior Knowledge Agent

Abilities

Figure 1.3: An agent interacting with an environment

• observations of the current environment and

• past experiences of previous actions and observations, or other data,
from which it can learn;

• goals that it must try to achieve or preferences over states of the world; and

• abilities, which are the primitive actions it is capable of carrying out.

Two deterministic agents with the same prior knowledge, history, abilities, and
goals should do the same thing. Changing any one of these can result in differ-
ent actions.

Each agent has some internal state that can encode beliefs about its environ-
ment and itself. It may have goals to achieve, ways to act in the environment
to achieve those goals, and various means to modify its beliefs by reasoning,
perception, and learning. This is an all-encompassing view of intelligent agents
varying in complexity from a simple thermostat, to a team of mobile robots, to
a diagnostic advising system whose perceptions and actions are mediated by
human beings, to society itself.

1.4 Knowledge Representation

Typically, a problem to solve or a task to carry out, as well as what constitutes a
solution, is only given informally, such as “deliver parcels promptly when they
arrive” or “fix whatever is wrong with the electrical system of the house.”

The general framework for solving problems by computer is given in
Figure 1.4 (on the next page). To solve a problem, the designer of a system
must

• flesh out the task and determine what constitutes a solution;

• represent the problem in a language with which a computer can reason;

12 1. Artificial Intelligence and Agents

problem

representation

solution

output

solve

compute

informal

formal

represent interpret

Figure 1.4: The role of representations in solving problems

• use the computer to compute an output, which is an answer presented to a
user or a sequence of actions to be carried out in the environment; and

• interpret the output as a solution to the problem.

Knowledge is the information about a domain that can be used to solve
problems in that domain. To solve many problems requires much knowledge,
and this knowledge must be represented in the computer. As part of designing
a program to solve problems, we must define how the knowledge will be rep-
resented. A representation scheme is the form of the knowledge that is used
in an agent. A representation of some piece of knowledge is the internal repre-
sentation of the knowledge. A representation scheme specifies the form of the
knowledge. A knowledge base is the representation of all of the knowledge
that is stored by an agent.

A good representation scheme is a compromise among many competing
objectives. A representation should be

• rich enough to express the knowledge needed to solve the problem.

• as close to the problem as possible; it should be compact, natural, and main-
tainable. It should be easy to see the relationship between the representation
and the domain being represented, so that it is easy to determine whether
the knowledge represented is correct. A small change in the problem should
result in a small change in the representation of the problem.

• amenable to efficient computation, which usually means that it is able to
express features of the problem that can be exploited for computational gain
and able to trade off accuracy and computation time.

• able to be acquired from people, data and past experiences.

Many different representation schemes have been designed. Many of these
start with some of these objectives and are then expanded to include the other
objectives. For example, some are designed for learning and then expanded
to allow richer problem solving and inference abilities. Some representation
schemes are designed with expressiveness in mind, and then inference and
learning are added on. Some schemes start from tractable inference and then
are made more natural, and more able to be acquired.

1.4. Knowledge Representation 13

Some of the questions that must be considered when given a problem or a
task are the following:

• What is a solution to the problem? How good must a solution be?

• How can the problem be represented? What distinctions in the world are
needed to solve the problem? What specific knowledge about the world
is required? How can an agent acquire the knowledge from experts or
from experience? How can the knowledge be debugged, maintained, and
improved?

• How can the agent compute an output that can be interpreted as a solution
to the problem? Is worst-case performance or average-case performance the
critical time to minimize? Is it important for a human to understand how the
answer was derived?

These issues are discussed in the next sections and arise in many of the repre-
sentation schemes presented later in the book.

1.4.1 Defining a Solution

Given an informal description of a problem, before even considering a com-
puter, a knowledge base designer should determine what would constitute
a solution. This question arises not only in AI but in any software de-
sign. Much of software engineering involves refining the specification of the
problem.

Typically, problems are not well specified. Not only is there usually much
left unspecified, but also the unspecified parts cannot be filled in arbitrarily.
For example, if you ask a trading agent to find out all the information about
resorts that may have health issues, you do not want the agent to return the
information about all resorts, even though all of the information you requested
is in the result. However, if the trading agent does not have complete knowl-
edge about the resorts, returning all of the information may be the only way
for it to guarantee that all of the requested information is there. Similarly, you
do not want a delivery robot, when asked to take all of the trash to the garbage
can, to take everything to the garbage can, even though this may be the only
way to guarantee that all of the trash has been taken. Much work in AI is mo-
tivated by commonsense reasoning; we want the computer to be able to make
commonsense conclusions about the unstated assumptions.

Given a well-defined problem, the next issue is whether it matters if the
answer returned is incorrect or incomplete. For example, if the specification
asks for all instances, does it matter if some are missing? Does it matter if there
are some extra instances? Often a person does not want just any solution but
the best solution according to some criteria. There are four common classes of
solutions:

Optimal solution An optimal solution to a problem is one that is the best so-
lution according to some measure of solution quality. This measure is typi-
cally specified as an ordinal, where only the ordermatters. However, in some

14 1. Artificial Intelligence and Agents

situations, such as when combining multiple criteria or when reasoning un-
der uncertainty, you need a cardinal measure, where the relative magnitudes
also matter. An example of an ordinal measure is for the robot to take out as
much trash as possible; the more trash it can take out, the better. As an ex-
ample of a cardinal measure, you may want the delivery robot to take as
much of the trash as possible to the garbage can, minimizing the distance
traveled, and explicitly specify a trade-off between the effort required and
the proportion of the trash taken out. It may be better to miss some trash
than to waste too much time. One general cardinal measure of desirability,
known as utility, is used in decision theory (page 373).

Satisficing solution Often an agent does not need the best solution to a prob-
lem but just needs some solution. A satisficing solution is one that is good
enough according to some description of which solutions are adequate. For
example, a person may tell a robot that it must take all of trash out, or tell it
to take out three items of trash.

Approximately optimal solution One of the advantages of a cardinal measure
of success is that it allows for approximations. An approximately optimal
solution is one whose measure of quality is close to the best that could theo-
retically be obtained. Typically agents do not need optimal solutions to prob-
lems; they only must get close enough. For example, the robot may not need
to travel the optimal distance to take out the trash but may only need to be
within, say, 10% of the optimal distance.

For some problems, it is much easier computationally to get an ap-
proximately optimal solution than to get an optimal solution. However, for
other problems, it is (asymptotically) just as difficult to guarantee finding
an approximately optimal solution as it is to guarantee finding an opti-
mal solution. Some approximation algorithms guarantee that a solution is
within some range of optimal, but for some algorithms no guarantees are
available.

Probable solution A probable solution is one that, even though it may not ac-
tually be a solution to the problem, is likely to be a solution. This is one
way to approximate, in a precise manner, a satisficing solution. For exam-
ple, in the case where the delivery robot could drop the trash or fail to pick
it up when it attempts to, you may need the robot to be 80% sure that it
has picked up three items of trash. Often you want to distinguish the false-
positive error rate (the proportion of the answers given by the computer
that are not correct) from the false-negative error rate (which is the propor-
tion of those answers not given by the computer that are indeed correct).
Some applications are much more tolerant of one of these errors than of the
other.

These categories are not exclusive. A form of learning known as probably ap-
proximately correct (PAC) learning considers probably learning an approxi-
mately correct concept (page 332).

1.4. Knowledge Representation 15

1.4.2 Representations

Once you have some requirements on the nature of a solution, you must repre-
sent the problem so a computer can solve it.

Computers and human minds are examples of physical symbol systems. A
symbol is a meaningful pattern that can be manipulated. Examples of symbols
are written words, sentences, gestures, marks on paper, or sequences of bits. A
symbol system creates, copies, modifies, and destroys symbols. Essentially, a
symbol is one of the patterns manipulated as a unit by a symbol system.

The term physical is used, because symbols in a physical symbol system are
physical objects that are part of the real world, even though they may be inter-
nal to computers and brains. They may also need to physically affect action or
motor control.

Much of AI rests on the physical symbol system hypothesis of Newell and
Simon [1976]:

A physical symbol system has the necessary and sufficient means
for general intelligent action.

This is a strong hypothesis. It means that any intelligent agent is necessarily a
physical symbol system. It also means that a physical symbol system is all that
is needed for intelligent action; there is no magic or an as-yet-to-be-discovered
quantum phenomenon required. It does not imply that a physical symbol sys-
tem does not need a body to sense and act in the world. The physical symbol
system hypothesis is an empirical hypothesis that, like other scientific hypothe-
ses, is to be judged by how well it fits the evidence, and what alternative hy-
potheses exist. Indeed, it could be false.

An intelligent agent can be seen as manipulating symbols to produce ac-
tion. Many of these symbols are used to refer to things in the world. Other
symbols may be useful concepts that may or may not have external meaning.
Yet other symbols may refer to internal states of the agent.

An agent can use physical symbol systems to model the world. A model of
a world is a representation of the specifics of what is true in the world or of the
dynamic of the world. The world does not have to be modeled at the most de-
tailed level to be useful. All models are abstractions; they represent only part of
the world and leave out many of the details. An agent can have a very simplis-
tic model of the world, or it can have a very detailed model of the world. The
level of abstraction provides a partial ordering of abstraction. A lower-level
abstraction includes more details than a higher-level abstraction. An agent can
have multiple, even contradictory, models of the world. The models are judged
not by whether they are correct, but by whether they are useful.

Example 1.2 A delivery robot can model the environment at a high level of
abstraction in terms of rooms, corridors, doors, and obstacles, ignoring dis-
tances, its size, the steering angles needed, the slippage of the wheels, the
weight of parcels, the details of obstacles, the political situation in Canada, and

16 1. Artificial Intelligence and Agents

virtually everything else. The robot could model the environment at lower lev-
els of abstraction by taking some of these details into account. Some of these
details may be irrelevant for the successful implementation of the robot, but
some may be crucial for the robot to succeed. For example, in some situations
the size of the robot and the steering angles may be crucial for not getting stuck
around a particular corner. In other situations, if the robot stays close to the
center of the corridor, it may not need to model its width or the steering angles.

Choosing an appropriate level of abstraction is difficult because

• a high-level description is easier for a human to specify and understand.

• a low-level description can be more accurate and more predictive. Often
high-level descriptions abstract away details that may be important for ac-
tually solving the problem.

• the lower the level, the more difficult it is to reason with. This is because
a solution at a lower level of detail involves more steps and many more
possible courses of action exist from which to choose.

• you may not know the information needed for a low-level description. For
example, the delivery robot may not know what obstacles it will encounter
or how slippery the floor will be at the time that it must decide what to do.

It is often a good idea to model an environment at multiple levels of abstrac-
tion. This issue is further discussed in Section 2.3 (page 50).

Biological systems, and computers, can be described at multiple levels of
abstraction. At successively lower levels are the neural level, the biochemical
level (what chemicals and what electrical potentials are being transmitted), the
chemical level (what chemical reactions are being carried out), and the level of
physics (in terms of forces on atoms and quantum phenomena). What levels
above the neuron level are needed to account for intelligence is still an open
question. Note that these levels of description are echoed in the hierarchical
structure of science itself, where scientists are divided into physicists, chemists,
biologists, psychologists, anthropologists, and so on. Although no level of de-
scription is more important than any other, we conjecture that you do not have
to emulate every level of a human to build an AI agent but rather you can emu-
late the higher levels and build them on the foundation of modern computers.
This conjecture is part of what AI studies.

The following are two levels that seem to be common to both biological and
computational entities:

• The knowledge level is a level of abstraction that considers what an agent
knows and believes and what its goals are. The knowledge level considers
what an agent knows, but not how it reasons. For example, the delivery
agent’s behavior can be described in terms of whether it knows that a parcel
has arrived or not and whether it knows where a particular person is or not.
Both human and robotic agents can be described at the knowledge level. At
this level, you do not specify how the solution will be computed or even
which of the many possible strategies available to the agent will be used.

1.4. Knowledge Representation 17

• The symbol level is a level of description of an agent in terms of the reason-
ing it does. To implement the knowledge level, an agent manipulates sym-
bols to produce answers. Many cognitive science experiments are designed
to determine what symbol manipulation occurs during reasoning. Note that
whereas the knowledge level is about what the agent believes about the ex-
ternal world and what its goals are in terms of the outside world, the sym-
bol level is about what goes on inside an agent to reason about the external
world.

1.4.3 Reasoning and Acting

The manipulation of symbols to produce action is called reasoning.
One way that AI representations differ from computer programs in tradi-

tional languages is that an AI representation typically specifies what needs to
be computed, not how it is to be computed. We might specify that the agent
should find the most likely disease a patient has, or specify that a robot should
get coffee, but not give detailed instructions on how to do these things. Much
AI reasoning involves searching through the space of possibilities to determine
how to complete a task.

In deciding what an agent will do, there are three aspects of computation
that must be distinguished: (1) the computation that goes into the design of the
agent, (2) the computation that the agent can do before it observes the world
and needs to act, and (3) the computation that is done by the agent as it is
acting.

• Design time reasoning is the reasoning that is carried out to design the
agent. It is carried out by the designer of the agent, not the agent itself.

• Offline computation is the computation done by the agent before it has to
act. It can include compilation and learning. Offline, the agent takes back-
ground knowledge and data and compiles them into a usable form called
a knowledge base. Background knowledge can be given either at design
time or offline.

• Online computation is the computation done by the agent between observ-
ing the environment and acting in the environment. A piece of information
obtained online is called an observation. An agent typically must use both
its knowledge base and its observations to determine what to do.

It is important to distinguish between the knowledge in the mind of the
designer and the knowledge in the mind of the agent. Consider the extreme
cases:

• At one extreme is a highly specialized agent that works well in the envi-
ronment for which it was designed, but it is helpless outside of this niche.
The designer may have done considerable work in building the agent, but
the agent may not need to do very much to operate well. An example is a
thermostat. It may be difficult to design a thermostat so that it turns on and
off at exactly the right temperatures, but the thermostat itself does not have
to do much computation. Another example is a painting robot that always

18 1. Artificial Intelligence and Agents

paints the same parts in an automobile factory. There may be much design
time or offline computation to get it to work perfectly, but the painting robot
can paint parts with little online computation; it senses that there is a part
in position, but then it carries out its predefined actions. These very special-
ized agents do not adapt well to different environments or to changing goals.
The painting robot would not notice if a different sort of part were present
and, even if it did, it would not know what to do with it. It would have to
be redesigned or reprogrammed to paint different parts or to change into a
sanding machine or a dog washing machine.

• At the other extreme is a very flexible agent that can survive in arbitrary
environments and accept new tasks at run time. Simple biological agents
such as insects can adapt to complex changing environments, but they can-
not carry out arbitrary tasks. Designing an agent that can adapt to complex
environments and changing goals is a major challenge. The agent will know
much more about the particulars of a situation than the designer. Even bi-
ology has not produced many such agents. Humans may be the only extant
example, but even humans need time to adapt to new environments.

Even if the flexible agent is our ultimate dream, researchers have to reach this
goal via more mundane goals. Rather than building a universal agent, which
can adapt to any environment and solve any task, they have built particular
agents for particular environmental niches. The designer can exploit the struc-
ture of the particular niche and the agent does not have to reason about other
possibilities.

Two broad strategies have been pursued in building agents:

• The first is to simplify environments and build complex reasoning systems
for these simple environments. For example, factory robots can do sophis-
ticated tasks in the engineered environment of a factory, but they may be
hopeless in a natural environment. Much of the complexity of the problem
can be reduced by simplifying the environment. This is also important for
building practical systems because many environments can be engineered
to make them simpler for agents.

• The second strategy is to build simple agents in natural environments. This
is inspired by seeing how insects can survive in complex environments even
though they have very limited reasoning abilities. Researchers then make
the agents have more reasoning abilities as their tasks become more compli-
cated.

One of the advantages of simplifying environments is that it may enable us to
prove properties of agents or to optimize agents for particular situations. Prov-
ing properties or optimization typically requires a model of the agent and its
environment. The agent may do a little or a lot of reasoning, but an observer
or designer of the agent may be able to reason about the agent and the envi-
ronment. For example, the designer may be able to prove whether the agent
can achieve a goal, whether it can avoid getting into situations that may be bad
for the agent (safety goals), whether it will get stuck somewhere (liveness),

1.5. Dimensions of Complexity 19

or whether it will eventually get around to each of the things it should do
(fairness). Of course, the proof is only as good as the model.

The advantage of building agents for complex environments is that these
are the types of environments in which humans live and want our agents to
live.

Fortunately, research along both lines is being carried out. In the first case,
researchers start with simple environments and make the environments more
complex. In the second case, researchers increase the complexity of the behav-
iors that the agents can carry out.

1.5 Dimensions of Complexity

Agents acting in environments range in complexity from thermostats to com-
panies with multiple goals acting in competitive environments. A number of
dimensions of complexity exist in the design of intelligent agents. These dimen-
sions may be be considered separately but must be combined to build an intel-
ligent agent. These dimensions define a design space of AI; different points in
this space can be obtained by varying the values of the dimensions.

Here we present nine dimensions: modularity, representation scheme, plan-
ning horizon, sensing uncertainty, effect uncertainty, preference, number of
agents, learning, and computational limits. These dimensions give a coarse di-
vision of the design space of intelligent agents. There are many other design
choices that must be made to build an intelligent agent.

1.5.1 Modularity

The first dimension is the level of modularity.
Modularity is the extent to which a system can be decomposed into inter-

acting modules that can be understood separately.
Modularity is important for reducing complexity. It is apparent in the struc-

ture of the brain, serves as a foundation of computer science, and is an impor-
tant part of any large organization.

Modularity is typically expressed in terms of a hierarchical decomposition.
For example, a human’s visual cortex and eye constitute a module that takes
in light and perhaps higher-level goals and outputs some simplified descrip-
tion of a scene. Modularity is hierarchical if the modules are organized into
smaller modules, which, in turn, can be organized into even smaller mod-
ules, all the way down to primitive operations. This hierarchical organization
is part of what biologists investigate. Large organizations have a hierarchical
organization so that the top-level decision makers are not overwhelmed by
details and do not have to micromanage all details of the organization. Pro-
cedural abstraction and object-oriented programming in computer science are
designed to enable simplification of a system by exploiting modularity and
abstraction.

20 1. Artificial Intelligence and Agents

In the modularity dimension, an agent’s structure is one of the following:

• flat: there is no organizational structure;

• modular: the system is decomposed into interacting modules that can be
understood on their own; or

• hierarchical: the system is modular, and the modules themselves are decom-
posed into interacting modules, each of which are hierarchical systems, and
this recursion grounds out into simple components.

In a flat or modular structure the agent typically reasons at a single level of
abstraction. In a hierarchical structure the agent reasons at multiple levels of
abstraction. The lower levels of the hierarchy involve reasoning at a lower level
of abstraction.

Example 1.3 In taking a trip from home to a holiday location overseas, an
agent, such as yourself, must get from home to an airport, fly to an airport near
the destination, then get from the airport to the destination. It also must make
a sequence of specific leg or wheel movements to actually move. In a flat repre-
sentation, the agent chooses one level of abstraction and reasons at that level. A
modular representation would divide the task into a number of subtasks that
can be solved separately (e.g., booking tickets, getting to the departure airport,
getting to the destination airport, and getting to the holiday location). In a hi-
erarchical representation, the agent will solve these subtasks in a hierarchical
way, until the problem is reduced to simple problems such a sending an http
request or taking a particular step.

A hierarchical decomposition is important for reducing the complexity of
building an intelligent agent that acts in a complex environment. However,
to explore the other dimensions, we initially ignore the hierarchical struc-
ture and assume a flat representation. Ignoring hierarchical decomposition
is often fine for small or moderately sized problems, as it is for simple ani-
mals, small organizations, or small to moderately sized computer programs.
When problems or systems become complex, some hierarchical organization is
required.

How to build hierarchically organized agents is discussed in Section 2.3
(page 50).

1.5.2 Representation Scheme

The representation scheme dimension concerns how the world is described.
The different ways the world could be to affect what an agent should do

are called states. We can factor the state of the world into the agent’s internal
state (its belief state) and the environment state.

At the simplest level, an agent can reason explicitly in terms of individually
identified states.

1.5. Dimensions of Complexity 21

Example 1.4 A thermostat for a heater may have two belief states: off and
heating. The environment may have three states: cold, comfortable, and hot. There
are thus six states corresponding to the different combinations of belief and
environment states. These states may not fully describe the world, but they
are adequate to describe what a thermostat should do. The thermostat should
move to, or stay in, heating if the environment is cold and move to, or stay in,
off if the environment is hot. If the environment is comfortable, the thermostat
should stay in its current state. The agent heats in the heating state and does not
heat in the off state.

Instead of enumerating states, it is often easier to reason in terms of the
state’s features or propositions that are true or false of the state. A state may
be described in terms of features, where a feature has a value in each state [see
Section 4.1 (page 112)].

Example 1.5 An agent that has to look after a house may have to reason about
whether light bulbs are broken. It may have features for the position of each
switch, the status of each switch (whether it is working okay, whether it is
shorted, or whether it is broken), and whether each light works. The feature
pos s2 may be a feature that has value up when switch s2 is up and has value
down when the switch is down. The state of the house’s lighting may be de-
scribed in terms of values for each of these features.

A proposition is a Boolean feature, which means that its value is either true
or false. Thirty propositions can encode 230 = 1, 073, 741, 824 states. It may be
easier to specify and reason with the thirty propositions than with more than a
billion states. Moreover, having a compact representation of the states indicates
understanding, because it means that an agent has captured some regularities
in the domain.

Example 1.6 Consider an agent that has to recognize letters of the alphabet.
Suppose the agent observes a binary image, a 30× 30 grid of pixels, where each
of the 900 grid points is either on or off (i.e., it is not using any color or gray scale
information). The action is to determine which of the letters {a, . . . , z} is drawn
in the image. There are 2900 different states of the image, and so 262900

different
functions from the image state into the characters {a, . . . , z}. We cannot even
represent such functions in terms of the state space. Instead, we define features
of the image, such as line segments, and define the function from images to
characters in terms of these features.

When describing a complex world, the features can depend on relations
and individuals. A relation on a single individual is a property. There is a fea-
ture for each possible relationship among the individuals.

Example 1.7 The agent that looks after a house in Example 1.5 could have
the lights and switches as individuals, and relations position and connected to.
Instead of the feature position s1 = up, it could use the relation position(s1, up).

22 1. Artificial Intelligence and Agents

This relation enables the agent to reason about all switches or for an agent to
have knowledge about switches that can be used when the agent encounters a
switch.

Example 1.8 If an agent is enrolling students in courses, there could be a fea-
ture that gives the grade of a student in a course, for every student–course pair
where the student took the course. There would be a passed feature for every
student–course pair, which depends on the grade feature for that pair. It may
be easier to reason in terms of individual students, courses and grades, and
the relations grade and passed. By defining how passed depends on grade once,
the agent can apply the definition for each student and course. Moreover, this
can be done before the agent knows of any of the individuals and so before it
knows any of the features.

Thus, instead of dealing with features or propositions, it is often more con-
venient to have relational descriptions in terms of individuals and relations
among them. For example, one binary relation and 100 individuals can rep-
resent 1002 = 10, 000 propositions and 210000 states. By reasoning in terms of
relations and individuals, an agent can specify reason about whole classes of
individuals without ever enumerating the features or propositions, let alone
the states. An agent may have to reason about infinite sets of individuals, such
as the set of all numbers or the set of all sentences. To reason about an un-
bounded or infinite number of individuals, an agent cannot reason in terms of
states or features; it must reason at the relational level.

In the representation scheme dimension, the agent reasons in terms of

• states,

• features, or

• relational descriptions, in terms of individuals and relations.

Some of the frameworks will be developed in terms of states, some in terms
of features and some relationally.

Reasoning in terms of states is introduced in Chapter 3. Reasoning in terms
of features is introduced in Chapter 4. We consider relational reasoning starting
in Chapter 12.

1.5.3 Planning Horizon

The next dimension is how far ahead in time the agent plans. For example,
when a dog is called to come, it should turn around to start running in order
to get a reward in the future. It does not act only to get an immediate reward.
Plausibly, a dog does not act for goals arbitrarily far in the future (e.g., in a
few months), whereas people do (e.g., working hard now to get a holiday next
year).

How far the agent “looks into the future” when deciding what to do is
called the planning horizon. That is, the planning horizon is how far ahead the

1.5. Dimensions of Complexity 23

agent considers the consequences of its actions. For completeness, we include
the non-planning case where the agent is not reasoning in time. The time points
considered by an agent when planning are called stages.

In the planning horizon dimension, an agent is one of the following:

• A non-planning agent is an agent that does not consider the future when it
decides what to do or when time is not involved.

• A finite horizon planner is an agent that looks for a fixed finite number of
time steps ahead. For example, a doctor may have to treat a patient but may
have time for some testing and so there may be two stages: a testing stage
and a treatment stage to plan for. In the degenerate case where an agent only
looks one time step ahead, it is said to be greedy or myopic.

• An indefinite horizon planner is an agent that looks ahead some finite, but
not predetermined, number of steps ahead. For example, an agent that must
get to some location may not know a priori how many steps it will take to
get there.

• An infinite horizon planner is an agent that plans on going on forever. This
is often called a process. For example, the stabilization module of a legged
robot should go on forever; it cannot stop when it has achieved stability,
because the robot has to keep from falling over.

1.5.4 Uncertainty

An agent could assume there is no uncertainty, or it could take uncertainty
in the domain into consideration. Uncertainty is divided into two dimensions:
one for uncertainty from sensing and one for uncertainty about the effect of
actions.

Sensing Uncertainty

In some cases, an agent can observe the state of the world directly. For example,
in some board games or on a factory floor, an agent may know exactly the state
of the world. In many other cases, it may only have some noisy perception of
the state and the best it can do is to have a probability distribution over the
set of possible states based on what it perceives. For example, given a patient’s
symptoms, a medical doctor may not actually know which disease a patient
may have and may have only a probability distribution over the diseases the
patient may have.

The sensing uncertainty dimension concerns whether the agent can deter-
mine the state from the observations:

• Fully observable is when the agent knows the state of the world from the
observations.

• Partially observable is when the agent does not directly observe the state
of the world. This occurs when many possible states can result in the same
observations or when observations are noisy.

24 1. Artificial Intelligence and Agents

Assuming the world is fully observable is often done as a simplifying assump-
tion to keep reasoning tractable.

Effect Uncertainty

In some cases an agent knows the effect of an action. That is, given a state and
an action, it can accurately predict the state resulting from carrying out that
action in that state. For example, an agent interacting with a file system may
be able to predict the effect of deleting a file given the state of the file system.
In many cases, it is difficult to predict the effect of an action, and the best an
agent can do is to have a probability distribution over the effects. For example,
a person may not know the effect of calling his dog, even if he knew the state
of the dog, but, based on experience, he has some idea of what it will do. The
dog owner may even have some idea of what another dog, that he has never
seen before, will do if he calls it.

The effect uncertainty dimension is that the dynamics can be

• deterministic – when the state resulting from an action is determined by an
action and the prior state or

• stochastic – when there is only a probability distribution over the resulting
states.

This dimension only makes sense when the world is fully observable. If
the world is partially observable, a stochastic system can be modeled as a de-
terministic system where the effect of an action depends on some unobserved
feature. It is a separate dimension because many of the frameworks developed
are for the fully observable, stochastic action case.

Planning with deterministic actions is considered in Chapter 8. Planning
with stochastic actions and with partially observable domains is considered in
Chapter 9.

1.5.5 Preference

Agents act to have better outcomes for themselves. The only reason to choose
one action over another is because the preferred action will lead to more desir-
able outcomes.

An agent may have a simple goal, which is a state to be reached or a propo-
sition to be true such as getting its owner a cup of coffee (i.e., end up in a
state where she has coffee). Other agents may have more complex preferences.
For example, a medical doctor may be expected to take into account suffering,
life expectancy, quality of life, monetary costs (for the patient, the doctor, and
society), the ability to justify decisions in case of a lawsuit, and many other
desiderata. The doctor must trade these considerations off when they conflict,
as they invariably do.

1.5. Dimensions of Complexity 25

The preference dimension is whether the agent has

• goals, either achievement goals to be achieved in some final state or main-
tenance goals that must be maintained in all visited states. For example, the
goals for a robot may be to get two cups of coffee and a banana, and not to
make a mess or hurt anyone.

• complex preferences involve trade-offs among the desirability of various
outcomes, perhaps at different times. An ordinal preference is where only
the ordering of the preferences is important. A cardinal preference is where
the magnitude of the values matters. For example, an ordinal preference may
be that Sam prefers cappuccino over black coffee and prefers black coffee
over tea. A cardinal preference may give a trade-off between the wait time
and the type of beverage, and a mess–taste trade-off, where Sam is prepared
to put up with more mess in the preparation of the coffee if the taste of the
coffee is exceptionally good.

Goals are considered in Chapter 8. Complex preferences are considered in
Chapter 9.

1.5.6 Number of Agents

An agent reasoning about what it should do in an environment where it is
the only agent is difficult enough. However, reasoning about what to do when
there are other agents who are also reasoning is much more difficult. An agent
in a multiagent setting should reason strategically about other agents; the other
agents may act to trick or manipulate the agent or may be available to cooperate
with the agent. With multiple agents, is often optimal to act randomly because
other agents can exploit deterministic strategies. Even when the agents are co-
operating and have a common goal, the problem of coordination and commu-
nication makes multiagent reasoning more challenging. However, many do-
mains contain multiple agents and ignoring other agents’ strategic reasoning
is not always the best way for an agent to reason.

Taking the point of view of a single agent, the number of agents dimension
considers whether the agent does

• single agent reasoning, where the agent assumes that any other agents are
just part of the environment. This is a reasonable assumption if there are
no other agents or if the other agents are not going to change what they do
based on the agent’s action.

• multiple agent reasoning, where the agent takes the reasoning of other
agents into account. This happens when there are other intelligent agents
whose goals or preferences depend, in part, on what the agent does or if the
agent must communicate with other agents.

Reasoning in the presence of other agents is much more difficult if the
agents can act simultaneously or if the environment is only partially observ-
able. Multiagent systems are considered in Chapter 10.

26 1. Artificial Intelligence and Agents

1.5.7 Learning

In some cases, a designer of an agent may have a good model of the agent and
its environment. Often a designer does not have a good model, and an agent
should use data from its past experiences and other sources to help it decide
what to do.

The learning dimension determines whether

• knowledge is given or

• knowledge is learned (from data or past experience).

Learning typically means finding the best model that fits the data. Some-
times this is as simple as tuning a fixed set of parameters, but it can also mean
choosing the best representation out of a class of representations. Learning is
a huge field in itself but does not stand in isolation from the rest of AI. There
are many issues beyond fitting data, including how to incorporate background
knowledge, what data to collect, how to represent the data and the resulting
representations, what learning biases are appropriate, and how the learned
knowledge can be used to affect how the agent acts.

Learning is considered in Chapters 7, 11, and 14.

1.5.8 Computational Limits

Sometimes an agent can decide on its best action quickly enough for it to act.
Often there are computational resource limits that prevent an agent from carry-
ing out the best action. That is, the agent may not be able to find the best action
quickly enough within its memory limitations to act while that action is still
the best thing to do. For example, it may not be much use to take 10 minutes
to derive what was the best thing to do 10 minutes ago, when the agent has
to act now. Often, instead, an agent must trade off how long it takes to get a
solution with how good the solution is; it may be better to find a reasonable
solution quickly than to find a better solution later because the world will have
changed during the computation.

The computational limits dimension determines whether an agent has

• perfect rationality, where an agent reasons about the best action without
taking into account its limited computational resources; or

• bounded rationality, where an agent decides on the best action that it can
find given its computational limitations.

Computational resource limits include computation time, memory, and numer-
ical accuracy caused by computers not representing real numbers exactly.

An anytime algorithm is an algorithm whose solution quality improves
with time. In particular, it is one that can produce its current best solution at any
time, but given more time it could produce even better solutions. We can ensure
that the quality doesn’t decrease by allowing the agent to store the best solution
found so far and return that when asked for a solution. However, waiting to act

1.5. Dimensions of Complexity 27

0 1 2 3 4 5

V
al

u
e

of
A

ct
io

n

Time of Action

Figure 1.5: Solution quality as a function of time for an anytime algorithm. The
agent has to choose an action. As time progresses, the agent can determine better
actions. The value to the agent of the best action found so far, if it had been carried
out initially, is given by the dashed line. The reduction in value to the agent by wait-
ing to act is given by the dotted line. The net value to the agent, as a function of
the time it acts, is given by the solid line.

has a cost; it may be better for an agent to act before it has found what would
have been the best solution.

Example 1.9 Figure 1.5 shows how the computation time of an anytime algo-
rithm can affect the solution quality. The agent has to carry out an action but can
do some computation to decide what to do. The absolute solution quality, had
the action been carried out at time zero, shown as the dashed line at the top, is
improving as the agent takes time to reason. However, there is a penalty associ-
ated with taking time to act. In this figure, the penalty, shown as the dotted line
at the bottom, is proportional to the time taken before the agent acts. These two
values can be added to get the discounted quality, the time-dependent value
of computation; this is the solid line in the middle of the graph. For the exam-
ple of Figure 1.5 , an agent should compute for about 2.5 time units, and then
act, at which point the discounted quality achieves its maximum value. If the
computation lasts for longer than 4.3 time units, the resulting discounted solu-
tion quality is worse than if the algorithm just outputs the initial guess it can
produce with virtually no computation. It is typical that the solution quality
improves in jumps; when the current best solution changes, there is a jump in
the quality. However, the penalty associated with waiting is often not as simple
as a straight line.

To take into account bounded rationality, an agent must decide whether it
should act or think more. This is challenging because an agent typically does
not know how much better off it would be if it only spent a little bit more time

28 1. Artificial Intelligence and Agents

Dimension Values
Modularity flat, modular, hierarchical
Representation scheme states, features, relations
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Learning knowledge is given, knowledge is learned
Number of agents single agent, multiple agents
Computational limits perfect rationality, bounded rationality

Figure 1.6: Dimensions of complexity

reasoning. Moreover, the time spent thinking about whether it should reason
may detract from actually reasoning about the domain. However, bounded ra-
tionality can be the basis for approximate reasoning.

1.5.9 Interaction of the Dimensions

Figure 1.6 summarizes the dimensions of complexity. Unfortunately, we cannot
study these dimensions independently because they interact in complex ways.
Here we give some examples of the interactions.

The representation dimension interacts with the modularity dimension in
that some modules in a hierarchy may be simple enough to reason in terms of
a finite set of states, whereas other levels of abstraction may require reasoning
about individuals and relations. For example, in a delivery robot, a module that
maintains balance may only have a few states. A module that must prioritize
the delivery of multiple parcels to multiple people may have to reason about
multiple individuals (e.g., people, packages, and rooms) and the relations be-
tween them. At a higher level, a module that reasons about the activity over
the day may only require a few states to cover the different phases of the day
(e.g., there might be three states: busy time, available for requests, and recharge
time).

The planning horizon interacts with the modularity dimension. For exam-
ple, at a high level, a dog may be getting an immediate reward when it comes
and gets a treat. At the level of deciding where to place its paws, there may be
a long time until it gets the reward, and so at this level it may have to plan for
an indefinite stage.

Sensing uncertainty probably has the greatest impact on the complexity of
reasoning. It is much easier for an agent to reason when it knows the state
of the world than when it doesn’t. Although sensing uncertainty with states

1.6. Prototypical Applications 29

is well understood, sensing uncertainty with individuals and relations is an
active area of current research.

The effect uncertainty dimension interacts with the modularity dimension:
at one level in a hierarchy, an action may be deterministic, whereas at another
level, it may be stochastic. As an example, consider the result of flying to Paris
with a companion you are trying to impress. At one level you may know where
you are (in Paris); at a lower level, you may be quite lost and not know where
you are on a map of the airport. At an even lower level responsible for main-
taining balance, you may know where you are: you are standing on the ground.
At the highest level, you may be very unsure whether you have impressed your
companion.

Preference models interact with uncertainty because an agent must have
a trade-off between satisfying a major goal with some probability or a less
desirable goal with a higher probability. This issue is explored in Section 9.1
(page 373).

Multiple agents can also be used for modularity; one way to design a sin-
gle agent is to build multiple interacting agents that share a common goal
of making the higher-level agent act intelligently. Some researchers, such as
Minsky [1986], argue that intelligence is an emergent feature from a “society”
of unintelligent agents.

Learning is often cast in terms of learning with features – determining
which feature values best predict the value of another feature. However, learn-
ing can also be carried out with individuals and relations. Much work has been
done on learning hierarchies, learning in partially observable domains, and
learning with multiple agents, although each of these is challenging in its own
right without considering interactions with multiple dimensions.

Two of these dimensions, modularity and bounded rationality, promise to
make reasoning more efficient. Although they make the formalism more com-
plicated, breaking the system into smaller components, and making the ap-
proximations needed to act in a timely fashion and within memory limitations,
should help build more complex systems.

1.6 Prototypical Applications

AI applications are widespread and diverse and include medical diagnosis,
scheduling factory processes, robots for hazardous environments, game play-
ing, autonomous vehicles in space, natural language translation systems, and
tutoring systems. Rather than treating each application separately, we abstract
the essential features of such applications to allow us to study the principles
behind intelligent reasoning and action.

This section outlines four application domains that will be developed in ex-
amples throughout the book. Although the particular examples presented are
simple – otherwise they would not fit into the book – the application domains

30 1. Artificial Intelligence and Agents

are representative of the range of domains in which AI techniques can be, and
are being, used.

The four application domains are as follows:

• An autonomous delivery robot roams around a building delivering pack-
ages and coffee to people in the building. This delivery agent should be able
to find paths, allocate resources, receive requests from people, make deci-
sions about priorities, and deliver packages without injuring people or itself.

• A diagnostic assistant helps a human troubleshoot problems and suggests
repairs or treatments to rectify the problems. One example is an electrician’s
assistant that suggests what may be wrong in a house, such as a fuse blown,
a light switch broken, or a light burned out, given some symptoms of electri-
cal problems. Another example is a medical diagnostician that finds poten-
tial diseases, useful tests, and appropriate treatments based on knowledge
of a particular medical domain and a patient’s symptoms and history. This
assistant should be able to explain its reasoning to the person who is car-
rying out the tests and repairs and who is ultimately responsible for their
actions.

• A tutoring system interacts with a student, presenting information about
some domain and giving tests of the student’s knowledge or performance.
This entails more than presenting information to students. Doing what a
good teacher does, namely tailoring the information presented to each stu-
dent based on his or her knowledge, learning preferences, and misunder-
standings, is more challenging. The system must understand both the sub-
ject matter and how students learn.

• A trading agent knows what a person wants and can buy goods and services
on her behalf. It should know her requirements and preferences and how to
trade off competing objectives. For example, for a family holiday a travel
agent must book hotels, airline flights, rental cars, and entertainment, all of
which must fit together. It should determine a customer’s trade-offs. If the
most suitable hotel cannot accommodate the family for all of the days, it
should determine whether they would prefer to stay in the better hotel for
part of the stay or if they prefer not to move hotels. It may even be able to
shop around for specials or to wait until good deals come up.

These four domains will be used for the motivation for the examples in the
book. In the next sections, we discuss each application domain in detail.

1.6.1 An Autonomous Delivery Robot

Imagine a robot that has wheels and can pick up objects and put them down. It
has sensing capabilities so that it can recognize the objects that it must manip-
ulate and can avoid obstacles. It can be given orders in natural language and
obey them, making reasonable choices about what to do when its goals con-
flict. Such a robot could be used in an office environment to deliver packages,
mail, and/or coffee, or it could be embedded in a wheelchair to help disabled
people. It should be useful as well as safe.

1.6. Prototypical Applications 31

In terms of the black box characterization of an agent in Figure 1.3 (page 11),
the autonomous delivery robot has the following as inputs:

• prior knowledge, provided by the agent designer, about its own capabilities,
what objects it may encounter and have to differentiate, what requests mean,
and perhaps about its environment, such as a map;

• past experience obtained while acting, for instance, about the effect of its
actions, what objects are common in the world, and what requests to expect
at different times of the day;

• goals in terms of what it should deliver and when, as well as preferences that
specify trade-offs, such as when it must forgo one goal to pursue another, or
the trade-off between acting quickly and acting safely; and

• observations about its environment from such input devices as cameras,
sonar, touch, sound, laser range finders, or keyboards.

The robot’s outputs are motor controls that specify how its wheels should turn,
where its limbs should move, and what it should do with its grippers. Other
outputs may include speech and a video display.

In terms of the dimensions of complexity, the simplest case for the robot is
a flat system, represented in terms of states, with no uncertainty, with achieve-
ment goals, with no other agents, with given knowledge, and with perfect ra-
tionality. In this case, with an indefinite stage planning horizon, the problem of
deciding what to do is reduced to the problem of finding a path in a graph of
states. This is explored in Chapter 3.

Each dimension can add conceptual complexity to the task of reasoning:

• A hierarchical decomposition can allow the complexity of the overall sys-
tem to be increased while allowing each module to be simple and able to be
understood by itself. This is explored in Chapter 2.

• Modeling in terms of features allows for a much more comprehensible sys-
tem than modeling explicit states. For example, there may be features for the
robot’s location, the amount of fuel it has, what it is carrying, and so forth.
Reasoning in terms of the states, where a state is an assignment of a value
to each feature, loses the structure that is provided by the features. Reason-
ing in terms of the feature representation can be exploited for computational
gain. Planning in terms of features is discussed in Chapter 8. When dealing
with multiple individuals (e.g., multiple people or objects to deliver), it may
be easier to reason in terms of individuals and relations. Planning in terms
of individuals and relations is explored in Section 14.1 (page 598).

• The planning horizon can be finite if the agent only looks ahead a few steps.
The planning horizon can be indefinite if there is a fixed set of goals to
achieve. It can be infinite if the agent has to survive for the long term, with
ongoing requests and actions, such as delivering mail whenever it arrives
and recharging its battery when its battery is low.

• There could be goals, such as “deliver coffee to Chris and make sure you
always have power.” A more complex goal may be to “clean up the lab, and
put everything where it belongs.” There can be complex preferences, such as

32 1. Artificial Intelligence and Agents

stairs

lab A lab B

lab Clab D

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

main
office

Figure 1.7: An environment for the delivery robot, which shows a typical laboratory
environment. This also shows the locations of the doors and which way they open.

“deliver mail when it arrives and service coffee requests as soon as possible,
but it is more important to deliver messages marked as important, and Chris
really needs her coffee quickly when she asks for it.”

• There can be sensing uncertainty because the robot does not know what is
in the world based on its limited sensors.

• There can be uncertainty about the effects of an action, both at the low level,
such as due to slippage of the wheels, or at the high level in that the agent
might not know if putting the coffee on Chris’s desk succeeded in delivering
coffee to her.

• There can be multiple robots, which can coordinate to deliver coffee and
parcels and compete for power outlets. There may also be children out to
trick the robot.

• A robot has lots to learn, such as how slippery floors are as a function of their
shininess, where Chris hangs out at different parts of the day and when she
will ask for coffee, and which actions result in the highest rewards.

Figure 1.7 depicts a typical laboratory environment for a delivery robot.
This environment consists of four laboratories and many offices. The robot can
only push doors, and the directions of the doors in the diagram reflect the
directions in which the robot can travel. Rooms require keys, and those
keys can be obtained from various sources. The robot must deliver parcels,

1.6. Prototypical Applications 33

beverages, and dishes from room to room. The environment also contains a
stairway that is potentially hazardous to the robot.

1.6.2 A Diagnostic Assistant

A diagnostic assistant is intended to advise a human about some particular
system such as a medical patient, the electrical system in a house, or an au-
tomobile. The diagnostic assistant should advise about potential underlying
faults or diseases, what tests to carry out, and what treatment to prescribe.
To give such advice, the assistant requires a model of the system, including
knowledge of potential causes, available tests, and available treatments, and
observations of the system (which are often called symptoms).

To be useful, the diagnostic assistant must provide added value, be easy
for a human to use, and not be more trouble than it is worth. A diagnostic as-
sistant connected to the Internet can draw on expertise from throughout the
world, and its actions can be based on the most up-to-date research. However,
it must be able to justify why the suggested diagnoses or actions are appro-
priate. Humans are, and should be, suspicious of computer systems that are
opaque and impenetrable. When humans are responsible for what they do,
even if it is based on a computer system’s advice, they should have reasonable
justifications for the suggested actions.

In terms of the black box definition of an agent in Figure 1.3 (page 11), the
diagnostic assistant has the following as inputs:

• prior knowledge, such as how switches and lights normally work, how dis-
eases or malfunctions manifest themselves, what information tests provide,
and the effects of repairs or treatments.

• past experience, in terms of data of previous cases that include the effects
of repairs or treatments, the prevalence of faults or diseases, the prevalence
of symptoms for these faults or diseases, and the accuracy of tests. These
data are usually about similar artifacts or patients, rather than the actual one
being diagnosed.

• goals of fixing the device and trade-offs, such as between fixing or replacing
different components, or whether patients prefer to live longer if it means
they will be in pain or be less coherent.

• observations of symptoms of a device or patient.

The output of the diagnostic assistant is in terms of recommendations of treat-
ments and tests, along with a rationale for its recommendations.

Example 1.10 Figure 1.8 (on the next page) shows a depiction of an electri-
cal distribution system in a house. In this house, power comes into the house
through circuit breakers and then it goes to power outlets or to lights through
light switches. For example, light l1 is on if there is power coming into the
house, if circuit breaker cb1 is on, and if switches s1 and s2 are either both up or
both down. This is the sort of model that normal householders may have of the
electrical power in the house, and which they could use to determine what is

34 1. Artificial Intelligence and Agents

light

two-way
switch

switch

off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1
s2 w2

w0

l1

w3

s3

w4

l2

p1

w5

cb2

w6

p2

Figure 1.8: An electrical environment for the diagnostic assistant

wrong given evidence about the position of the switches and which lights are
on and which are off. The diagnostic assistant is there to help a householder or
an electrician troubleshoot electrical problems.

Each dimension is relevant to the diagnostic assistant:

• Hierarchical decomposition allows for very-high-level goals to be main-
tained while treating the lower-level causes and allows for detailed moni-
toring of the system. For example, in a medical domain, one module could
take the output of a heart monitor and give higher-level observations such
as notifying when there has been a change in the heart rate. Another module
could take in this observation and other high-level observations and notice
what other symptoms happen at the same time as a change in heart rate. In
the electrical domain, Figure 1.8 is at one level of abstraction; a lower level
could specify the voltages, how wires are spliced together, and the internals
of switches.

• Most systems are too complicated to reason about in terms of the states,
and so they are usually described in terms of the features or individual
components and relations among them. For example, a human body may
be described in terms of the values for features of its various components.
Designers may want to model the dynamics without knowing the actual in-
dividuals. For example, designers of the electrical diagnosis system would
model how lights and switches work before knowing which lights and
switches exist in an actual house and, thus, before they know the features.

1.6. Prototypical Applications 35

This can be achieved by modeling in terms of relations and their interaction
and by adding the individual components when they become known.

• It is possible to reason about a static system, such as reasoning about what
could be wrong when a light is off given the position of switches. It is also
possible to reason about a sequence of tests and treatments, where the agents
keep testing and treating until the problem is fixed, or where the agent car-
ries out ongoing monitoring of a system, continuously fixing whatever gets
broken.

• Sensing uncertainty is the fundamental problem that faces diagnosis. Di-
agnosis is required if an agent cannot directly observe the internals of the
system.

• Effect uncertainty also exists in that an agent may not know the outcome of
a treatment and, often, treatments have unanticipated outcomes.

• The goal may be as simple as “fix what is wrong,” but often there are com-
plex trade-offs involving costs, pain, life expectancy, the probability that the
diagnosis is correct, and the uncertainty as to efficacy and side effects of the
treatment.

• Although it is often a single-agent problem, diagnosis becomes more com-
plicated when multiple experts are involved who perhaps have competing
experience and models. There may be other patients with whom an agent
must compete for resources (e.g., doctor’s time, surgery rooms).

• Learning is fundamental to diagnosis. It is through learning that we under-
stand the progression of diseases and how well treatments work or do not
work. Diagnosis is a challenging domain for learning, because all patients
are different, and each individual doctor’s experience is only with a few pa-
tients with any particular set of symptoms. Doctors also see a biased sam-
ple of the population; those who come to see them usually have unusual or
painful symptoms.

• Diagnosis often requires a quick response, which may not allow for the time
to carry out exhaustive reasoning or perfect rationality.

1.6.3 An Intelligent Tutoring System

An intelligent tutoring system is a computer system that tutors students in
some domain of study.

For example, in a tutoring system to teach elementary physics, such as me-
chanics, the system may present the theory and worked-out examples. The
system can ask the student questions and it must be able to understand the
student’s answers, as well as determine the student’s knowledge based on
what answers were given. This should then affect what is presented and what
other questions are asked of the student. The student can ask questions of the
system, and so the system should be able to solve problems in the physics
domain.

36 1. Artificial Intelligence and Agents

In terms of the black box definition of an agent in Figure 1.3 (page 11), an
intelligent tutoring system has the following as inputs:

• prior knowledge, provided by the agent designer, about the subject matter
being taught, teaching strategies, possible errors, and misconceptions of the
students.

• past experience, which the tutoring system has acquired by interacting with
students, about what errors students make, how many examples it takes to
learn something, and what students forget. This can be information about
students in general or about a particular student.

• preferences about the importance of each topic, the level of achievement of
the student that is desired, and costs associated with usability. There are
often complex trade-offs among these.

• observations of a student’s test results and observations of the student’s in-
teraction (or non-interaction) with the system. Students can also ask ques-
tions or provide new examples with which they want help.

The output of the tutoring system is the information presented to the student,
tests the students should take, answers to questions, and reports to parents and
teachers.

Each dimension is relevant to the tutoring system:

• There should be both a hierarchical decomposition of the agent and a de-
composition of the task of teaching. Students should be taught the basic
skills before they can be taught higher-level concepts. The tutoring system
has high-level teaching strategies, but, at a much lower level, it must design
the details of concrete examples and specific questions for a test.

• A tutoring system may be able to reason in terms of the state of the student.
However, it is more realistic to have multiple features for the student and
the subject domain. A physics tutor may be able to reason in terms of fea-
tures that are known at design time if the examples are fixed and it is only
reasoning about one student. For more complicated cases, the tutoring sys-
tem should refer to individuals and relations. If the tutoring system or the
student can create examples with multiple individuals, the system may not
know the features at design time and will have to reason in terms of individ-
uals and relations.

• In terms of planning horizon, for the duration of a test, it may be reason-
able to assume that the domain is static and that the student does not learn
while taking a test. For some subtasks, a finite horizon may be appropriate.
For example, there may be a teach, test, reteach sequence. For other cases,
there may be an indefinite horizon where the system may not know at de-
sign time how many steps it will take until the student has mastered some
concept. It may also be possible to model teaching as an ongoing process
of learning and testing with appropriate breaks, with no expectation of the
system finishing.

• Uncertainty will have to play a large role. The system cannot directly ob-
serve the knowledge of the student. All it has is some sensing input, based

1.6. Prototypical Applications 37

on questions the student asks or does not ask, and test results. The system
will not know for certain the effect of a particular teaching episode.

• Although it may be possible to have a simple goal such as to teach some
particular concept, it is more likely that complex preferences must be taken
into account. One reason is that, with uncertainty, there may be no way to
guarantee that the student knows the concept being taught; any method that
tries to maximize the probability that the student knows a concept will be
very annoying, because it will continue to repeatedly teach and test if there
is a slight chance that the student’s errors are due to misunderstanding as
opposed to fatigue or boredom. More complex preferences would enable a
trade-off among fully teaching a concept, boring the student, the time taken,
and the amount of retesting. The user may also have a preference for a teach-
ing style that should be taken into account.

• It may be appropriate to treat this as a single-agent problem. However, the
teacher, the student, and the parent may all have different preferences that
must be taken into account. Each of these agents may act strategically by not
telling the truth.

• We would expect the system to be able to learn about what teaching strate-
gies work, how well some questions work at testing concepts, and what
common mistakes students make. It could learn general knowledge, or
knowledge particular to a topic (e.g., learning about what strategies work
for teaching mechanics) or knowledge about a particular student, such as
learning what works for Sam.

• One could imagine that choosing the most appropriate material to present
would take a lot of computation time. However, the student must be re-
sponded to in a timely fashion. Bounded rationality would play a part in
ensuring that the system does not compute for a long time while the student
is waiting.

1.6.4 A Trading Agent

A trading agent is like a robot, but instead of interacting with a physical en-
vironment, it interacts with an information environment. Its task is to procure
goods and services for a user. It must be able to be told the needs of a user, and
it must interact with sellers (e.g., on the Web). The simplest trading agent in-
volves proxy bidding for a user on an auction site, where the system will keep
bidding until the user’s price limit is reached. A more complicated trading
agent will buy multiple complementary items, like booking a flight, a hotel,
and a rental car that fit together, in addition to trading off competing pref-
erences. Another example of a trading agent is one that monitors how much
food and groceries are in a household, monitors the prices, and orders goods
before they are needed, keeping costs to a minimum.

In terms of the black box definition of an agent in Figure 1.3 (page 11), the
trading agent has the following as inputs:

• prior knowledge about types of goods and services, selling practices, and
how auctions work;

38 1. Artificial Intelligence and Agents

• past experience about where is the best place to look for specials, how prices
vary in time in an auction, and when specials tend to turn up;

• preferences in terms of what the user wants and how to trade off competing
goals; and

• observations about what items are available, their price, and, perhaps, how
long they are available.

The output of the trading agent is either a proposal to the user that they can
accept or reject or an actual purchase.

The trading agent should take all of the dimensions into account:

• Hierarchical decomposition is essential because of the complexity of do-
mains. Consider the problem of making all of the arrangements and pur-
chases for a custom holiday for a traveler. It is simpler to have a module that
can purchase a ticket and optimize connections and timing, rather than to
do this at the same time as determining what doors to go through to get to
the taxi stand.

• The state space of the trading agent is too large to reason in terms of in-
dividual states. There are also too many individuals to reason in terms of
features. The trading agent will have to reason in terms of individuals such
as customers, days, hotels, flights, and so on.

• A trading agent typically does not make just one purchase, but must make a
sequence of purchases, often a large number of sequential decisions (e.g.,
purchasing one hotel room may require booking ground transportation,
which may in turn require baggage storage), and often plans for ongoing
purchasing, such as for an agent that makes sure a household has enough
food on hand at all times.

• There is often sensing uncertainty in that a trading agent does not know all
of the available options and their availability, but must find out information
that can become old quickly (e.g., if some hotel becomes booked up). A travel
agent does not know if a flight will be canceled or delayed or whether the
passenger’s luggage will be lost. This uncertainty means that the agent must
plan for the unanticipated.

• There is also effect uncertainty in that the agent does not know if an at-
tempted purchase will succeed.

• Complex preferences are at the core of the trading agent. The main prob-
lem is in allowing users to specify what they want. The preferences of users
are typically in terms of functionality, not components. For example, typi-
cal computer buyers have no idea of what hardware to buy, but they know
what functionality they want and they also want the flexibility to be able to
use new features that might not yet exist. Similarly, in a travel domain, what
activities a user may want may depend on the location. Users also may want
the ability to participate in a local custom at their destination, even though
they may not know what these customs are.

• A trading agent has to reason about other agents. In commerce, prices are
governed by supply and demand; this means that it is important to rea-
son about the other competing agents. This happens particularly in a world

1.7. Overview of the Book 39

where many items are sold by auction. Such reasoning becomes particularly
difficult when there are items that must complement each other, such as
flights and hotel booking, and items that can substitute for each other, such
as bus transport or taxis.

• A trading agent should learn about what items sell quickly, which of the sup-
pliers are reliable, where to find good deals, and what unanticipated events
may occur.

• A trading agent faces severe communication limitations. In the time between
finding that some item is available and coordinating the item with other
items, the item may have sold out. This can sometimes be alleviated by sell-
ers agreeing to hold some items (not to sell them to someone else in the
meantime), but sellers will not be prepared to hold an item indefinitely if
others want to buy it.

Because of the personalized nature of the trading agent, it should be able to do
better than a generic purchaser that, for example, only offers packaged tours.

1.7 Overview of the Book

The rest of the book explores the design space defined by the dimensions of
complexity. It considers each dimension separately, where this can be done
sensibly.

Chapter 2 analyzes what is inside the black box of Figure 1.3 (page 11) and
discusses the modular and hierarchical decomposition of intelligent agents.

Chapter 3 considers the simplest case of determining what to do in the case
of a single agent that reasons with explicit states, no uncertainty, and has goals
to be achieved, but with an indefinite horizon. In this case, the problem of solv-
ing the goal can be abstracted to searching for a path in a graph. It is shown
how extra knowledge of the domain can help the search.

Chapters 4 and 5 show how to exploit features. In particular, Chapter 4
considers how to find possible states given constraints on the assignments of
values to features represented as variables. Chapter 5 shows how to determine
whether some proposition must be true in all states that satisfy a given set of
constraints.

Chapter 6 shows how to reason with uncertainty.
Chapter 7 shows how an agent can learn from past experiences and data.

It covers the most common case of learning, namely supervised learning with
features, where a set of observed target features are being learned.

Chapter 8 considers the problem of planning, in particular representing and
reasoning with feature-based representations of states and actions. Chapter 9
considers the problem of planning with uncertainty, and Chapter 10 expands
the case to multiple agents.

Chapter 11 introduces learning under uncertainty and reinforcement
learning.

40 1. Artificial Intelligence and Agents

Chapter 12 shows how to reason in terms of individuals and relations.
Chapter 13 discusses ontologies and how to build knowledge-based systems.
Chapter 14 shows how reasoning about individuals and relations can be com-
bined with planning, learning, and probabilistic reasoning.

Chapter 15 reviews the design space of AI and shows how the material
presented can fit into that design space. It also presents ethical considerations
involved in building intelligent agents.

1.8 Review

The following are the main points you should have learned from this chapter:

• Artificial intelligence is the study of computational agents that act intelli-
gently.

• An agent acts in an environment and only has access to its prior knowledge,
its history of observations, and its goals and preferences.

• An intelligent agent is a physical symbol system that manipulates symbols
to determine what to do.

• A designer of an intelligent agent should be concerned about modularity,
how to describe the world, how far ahead to plan, uncertainty in both per-
ception and the effects of actions, the structure of goals or preferences, other
agents, how to learn from experience, and the fact that all real agents have
limited computational resources.

• To solve a problem by computer, the computer must have an effective repre-
sentation with which to reason.

• To know when you have solved a problem, an agent must have a defini-
tion of what constitutes an adequate solution, such as whether it has to be
optimal, approximately optimal, or almost always optimal, or whether a sat-
isficing solution is adequate.

• In choosing a representation, you should find a representation that is as close
as possible to the problem, so that it is easy to determine what it is represent-
ing and so it can be checked for correctness and be able to be maintained.
Often, users want an explanation of why they should believe the answer.

1.9 References and Further Reading

The ideas in this chapter have been derived from many sources. Here, we will
try to acknowledge those that are explicitly attributable to particular authors.
Most of the other ideas are part of AI folklore; trying to attribute them to any-
one would be impossible.

Haugeland [1997] contains a good collection of articles on the philosophy
behind artificial intelligence, including that classic paper of Turing [1950] that
proposes the Turing test. Cohen [2005] gives a recent discussion of the Turing
test.

1.9. References and Further Reading 41

Nilsson [2009] gives a detailed description of the history of AI. Chrisley and
Begeer [2000] present many classic papers on AI.

The physical symbol system hypothesis was posited by Newell and Simon
[1976]. See also Simon [1996], who discusses the role of symbol systems in a
multidisciplinary context. The distinctions between real, synthetic, and artifi-
cial intelligence are discussed by Haugeland [1985], who also provides useful
introductory material on interpreted, automatic formal symbol systems and
the Church–Turing thesis. For a critique of the symbol-system hypothesis see
Brooks [1990] and Winograd [1990]. Nilsson [2007] evaluates the hypothesis in
terms of recent criticisms.

The use of anytime algorithms is due to Horvitz [1989] and Boddy and
Dean [1994]. See Dean and Wellman [1991, Chapter 8], Zilberstein [1996], and
Russell [1997] for introductions to bounded rationality.

For discussions on the foundations of AI and the breadth of research in AI
see Kirsh [1991a], Bobrow [1993], and the papers in the corresponding volumes,
as well as Schank [1990] and Simon [1995]. The importance of knowledge in AI
is discussed in Lenat and Feigenbaum [1991] and Smith [1991].

For overviews of cognitive science and the role that AI and other disciplines
play in that field, see Gardner [1985], Posner [1989], and Stillings, Feinstein,
Garfield, Rissland, Rosenbaum, Weisler, and Baker-Ward [1987].

Purchasing agents can become very complex. Sandholm [2007] describes
how AI can be used for procurement of multiple goods with complex prefer-
ences.

A number of AI texts are valuable as reference books complementary to
this book, providing a different perspective on AI. In particular, Russell and
Norvig [2010] give a more encyclopedic overview of AI and provide a comple-
mentary source for many of the topics covered in this book. They provide an
outstanding review of the scientific literature, which we do not try to duplicate.

The Encyclopedia of Artificial Intelligence [Shapiro, 1992] is an encyclopedic
reference on AI written by leaders in the field and still provides background
on some of the classic topics. There are also a number of collections of classic
research papers. The general collections of most interest to readers of this book
include Webber and Nilsson [1981] and Brachman and Levesque [1985]. More
specific collections are given in the appropriate chapters.

The Association for the Advancement of Artificial Intelligence (AAAI) pro-
vides introductory material and news at their AI Topics web site (http://www.
aaai.org/AITopics/html/welcome.html). AI Magazine, published by AAAI, often
has excellent overview articles and descriptions of particular applications.
IEEE Intelligent Systems also provides accessible articles on AI research.

There are many journals that provide in-depth research contributions and
conferences where the most up-to-date research is found. These include the
journals Artificial Intelligence, the Journal of Artificial Intelligence Research, IEEE
Transactions on Pattern Analysis and Machine Intelligence, and Computational In-
telligence, as well as more specialized journals such as Neural Computation, Com-
putational Linguistics, Machine Learning, the Journal of Automated Reasoning, the

http://www.
aaai.org/AITopics/html/welcome.html

42 1. Artificial Intelligence and Agents

Journal of Approximate Reasoning, IEEE Transactions on Robotics and Automation,
and the Theory and Practice of Logic Programming. Most of the cutting-edge re-
search is published first in conferences. Those of most interest to a general au-
dience are the biennial International Joint Conference on Artificial Intelligence
(IJCAI), the AAAI Annual Conference, the European Conference on AI (ECAI),
the Pacific Rim International Conference on AI (PRICAI), various national con-
ferences, and many specialized conferences and workshops.

1.10 Exercises

Exercise 1.1 For each of the following, give five reasons why:

(a) A dog is more intelligent than a worm.
(b) A human is more intelligent than a dog.
(c) An organization is more intelligent than an individual human.

Based on these, give a definition of what “more intelligent” may mean.

Exercise 1.2 Give as many disciplines as you can whose aim is to study intelli-
gent behavior of some sort. For each discipline, find out what aspect of behavior is
investigated and what tools are used to study it. Be as liberal as you can regarding
what defines intelligent behavior.

Exercise 1.3 Find out about two applications of AI (not classes of applications,
but specific programs). For each application, write, at most, one typed page de-
scribing it. You should try to cover the following questions:

(a) What does the application actually do (e.g., control a spacecraft, diagnose a
photocopier, provide intelligent help for computer users)?

(b) What AI technologies does it use (e.g., model-based diagnosis, belief net-
works, semantic networks, heuristic search, constraint satisfaction)?

(c) How well does it perform? (According to the authors or to an independent
review? How does it compare to humans? How do the authors know how
well it works?)

(d) Is it an experimental system or a fielded system? (How many users does it
have? What expertise do these users require?)

(e) Why is it intelligent? What aspects of it makes it an intelligent system?
(f) [optional] What programming language and environment was it written in?

What sort of user interface does it have?
(g) References: Where did you get the information about the application? To

what books, articles, or web pages should others who want to know about
the application refer?

Exercise 1.4 Choose four pairs of dimensions that were not covered in the book.
For each pair, give one commonsense example of where the dimensions interact.

Chapter 2

Agent Architectures and
Hierarchical Control

By a hierarchic system, or hierarchy, I mean a system that is composed
of interrelated subsystems, each of the latter being in turn hierarchic in
structure until we reach some lowest level of elementary subsystem. In
most systems of nature it is somewhat arbitrary as to where we leave off the
partitioning and what subsystems we take as elementary. Physics makes
much use of the concept of “elementary particle,” although the particles
have a disconcerting tendency not to remain elementary very long . . .

Empirically a large proportion of the complex systems we observe in
nature exhibit hierarchic structure. On theoretical grounds we would ex-
pect complex systems to be hierarchies in a world in which complexity had
to evolve from simplicity.

– Herbert A. Simon [1996]

This chapter discusses how an intelligent agent can perceive, reason, and act
over time in an environment. In particular, it considers the internal struc-
ture of an agent. As Simon points out in the quote above, hierarchical de-
composition is an important part of the design of complex systems such as
intelligent agents. This chapter presents ways to design agents in terms of hier-
archical decompositions and ways that agents can be built, taking into account
the knowledge that an agent needs to act intelligently.

2.1 Agents

An agent is something that acts in an environment. An agent can, for example,
be a person, a robot, a dog, a worm, the wind, gravity, a lamp, or a computer
program that buys and sells.

43

44 2. Agent Architectures and Hierarchical Control

Purposive agents have preferences. They prefer some states of the world to
other states, and they act to try to achieve the states they prefer most. The non-
purposive agents are grouped together and called nature. Whether or not an
agent is purposive is a modeling assumption that may, or may not, be appropri-
ate. For example, for some applications it may be appropriate to model a dog
as purposive, and for others it may suffice to model a dog as non-purposive.

If an agent does not have preferences, by definition it does not care what
world state it ends up in, and so it does not matter what it does. The only
reason to design an agent is to instill it with preferences – to make it prefer
some world states and try to achieve them. An agent does not have to know
its preferences. For example, a thermostat is an agent that senses the world
and turns a heater either on or off. There are preferences embedded in the
thermostat, such as to keep the occupants of a room at a pleasant tempera-
ture, even though the thermostat arguably does not know these are its prefer-
ences. The preferences of an agent are often the preferences of the designer of
the agent, but sometimes an agent can be given goals and preferences at run
time.

Agents interact with the environment with a body. An embodied agent has
a physical body. A robot is an artificial purposive embodied agent. Sometimes
agents that act only in an information space are called robots, but we just refer
to those as agents.

This chapter considers how to build purposive agents. We use robots as a
main motivating example, because much of the work has been carried out in
the context of robotics and much of the terminology is from robotics. However,
the discussion is intended to cover all agents.

Agents receive information through their sensors. An agent’s actions de-
pend on the information it receives from its sensors. These sensors may, or
may not, reflect what is true in the world. Sensors can be noisy, unreliable, or
broken, and even when sensors are reliable there is still ambiguity about the
world based on sensor readings. An agent must act on the information it has
available. Often this information is very weak, for example, “sensor s appears
to be producing value v.”

Agents act in the world through their actuators (also called effectors). Ac-
tuators can also be noisy, unreliable, slow, or broken. What an agent controls is
the message (command) it sends to its actuators. Agents often carry out actions
to find more information about the world, such as opening a cupboard door to
find out what is in the cupboard or giving students a test to determine their
knowledge.

2.2 Agent Systems

Figure 2.1 depicts the general interaction between an agent and its environ-
ment. Together the whole system is known as an agent system.

2.2. Agent Systems 45

commands

Agent

percepts

Controller

Body

Environment

actionsstimuli

Figure 2.1: An agent system and its components

An agent system is made up of an agent and its environment. The agent
receives stimuli from the environment and carries out actions in the environ-
ment.

An agent is made up of a body and a controller. The controller receives
percepts from the body and sends commands to the body.

A body includes sensors that convert stimuli into percepts and actuators
that convert commands into actions.

Stimuli include light, sound, words typed on a keyboard, mouse move-
ments, and physical bumps. The stimuli can also include information obtained
from a web page or from a database.

Common sensors include touch sensors, cameras, infrared sensors, sonar,
microphones, keyboards, mice, and XML readers used to extract information
from web pages. As a prototypical sensor, a camera senses light coming into
its lens and converts it into a two-dimensional array of intensity values called
pixels. Sometimes multiple pixel arrays exist for different colors or for multiple
cameras. Such pixel arrays could be the percepts for our controller. More often,
percepts consist of higher-level features such as lines, edges, and depth infor-
mation. Often the percepts are more specialized – for example, the positions of
bright orange dots, the part of the display a student is looking at, or the hand
signals given by a human.

Actions include steering, accelerating wheels, moving links of arms, speak-
ing, displaying information, or sending a post command to a web site. Com-
mands include low-level commands such as to set the voltage of a motor to
some particular value, and high-level specifications of the desired motion of
a robot, such as “stop” or “travel at 1 meter per second due east” or “go to
room 103.” Actuators, like sensors, are typically noisy. For example, stopping
takes time; a robot is governed by the laws of physics and has momentum, and
messages take time to travel. The robot may end up going only approximately

46 2. Agent Architectures and Hierarchical Control

1 meter per second, approximately east, and both speed and direction may
fluctuate. Even traveling to a particular room may fail for a number of reasons.

The controller is the brain of the agent. The rest of this chapter is about how
to build controllers.

2.2.1 The Agent Function

Agents are situated in time: they receive sensory data in time and do actions
in time. The action that an agent does at a particular time is a function of its
inputs (page 10). We first consider the notion of time.

Let T be the set of time points. Assume that T is totally ordered and has
some metric that can be used to measure the temporal distance between any
two time points. Basically, we assume that T can be mapped to some subset of
the real line.

T is discrete if there exist only a finite number of time points between any
two time points; for example, there is a time point every hundredth of a second,
or every day, or there may be time points whenever interesting events occur.
T is dense if there is always another time point between any two time points;
this implies there must be infinitely many time points between any two points.
Discrete time has the property that, for all times, except perhaps a last time,
there is always a next time. Dense time does not have a “next time.” Initially,
we assume that time is discrete and goes on forever. Thus, for each time there
is a next time. We write t + 1 to be the next time after time t; it does not mean
that the time points are equally spaced.

Assume that T has a starting point, which we arbitrarily call 0.
Suppose P is the set of all possible percepts. A percept trace, or percept

stream, is a function from T into P. It specifies what is observed at each time.
Suppose C is the set of all commands. A command trace is a function from

T into C. It specifies the command for each time point.

Example 2.1 Consider a household trading agent that monitors the price of
some commodity (e.g., it checks online for special deals and for price increases
for toilet paper) and how much the household has in stock. It must decide
whether to buy more and how much to buy. The percepts are the price and
the amount in stock. The command is the number of units the agent decides to
buy (which is zero if the agent does not buy any). A percept trace specifies for
each time point (e.g., each day) the price at that time and the amount in stock
at that time. Percept traces are given in Figure 2.2. A command trace specifies
how much the agent decides to buy at each time point. An example command
trace is given in Figure 2.3.

The action of actually buying depends on the command but may be dif-
ferent. For example, the agent could issue a command to buy 12 rolls of toilet
paper at a particular price. This does not mean that the agent actually buys
12 rolls because there could be communication problems, the store could have
run out of toilet paper, or the price could change between deciding to buy and
actually buying.

2.2. Agent Systems 47

0 15 30 45 60 75
$1.90
$2.00
$2.10
$2.20
$2.30
$2.40
$2.50
$2.60
$2.70
$2.80

Day

P
ri
ce

0 15 30 45 60 75
0

10
20
30
40
50
60
70
80
90

Day

A
m

ou
n
t

in
S
to

ck

Figure 2.2: Percept traces for Example 2.1

0 15 30 45 60 75
0

10
20
30
40
50
60
70
80
90

Day

A
m

ou
n
t

B
ou

gh
t

Figure 2.3: Command trace for Example 2.1

48 2. Agent Architectures and Hierarchical Control

A percept trace for an agent is thus the sequence of all past, present, and
future percepts received by the controller. A command trace is the sequence of
all past, present, and future commands issued by the controller. The commands
can be a function of the history of percepts. This gives rise to the concept of a
transduction, a function that maps percept traces into command traces.

Because all agents are situated in time, an agent cannot actually observe full
percept traces; at any time it has only experienced the part of the trace up to
now. It can only observe the value of the trace at time t ∈ T when it gets to time
t. Its command can only depend on what it has experienced.

A transduction is causal if, for all times t, the command at time t depends
only on percepts up to and including time t. The causality restriction is needed
because agents are situated in time; their command at time t cannot depend on
percepts after time t.

A controller is an implementation of a causal transduction.
The history of an agent at time t is the percept trace of the agent for all times

before or at time t and the command trace of the agent before time t.
Thus, a causal transduction specifies a function from the agent’s history at

time t into the command at time t. It can be seen as the most general specifica-
tion of an agent.

Example 2.2 Continuing Example 2.1 (page 46), a causal transduction spec-
ifies, for each time, how much of the commodity the agent should buy de-
pending on the price history, the history of how much of the commodity is in
stock (including the current price and amount in stock) and the past history of
buying.

An example of a causal transduction is as follows: buy four dozen rolls if
there are fewer than five dozen in stock and the price is less than 90% of the
average price over the last 20 days; buy a dozen more rolls if there are fewer
than a dozen in stock; otherwise, do not buy any.

Although a causal transduction is a function of an agent’s history, it cannot be
directly implemented because an agent does not have direct access to its entire
history. It has access only to its current percepts and what it has remembered.

The belief state of an agent at time t is all of the information the agent has
remembered from the previous times. An agent has access only to its history
that it has encoded in its belief state. Thus, the belief state encapsulates all of
the information about its history that the agent can use for current and future
commands. At any time, an agent has access to its belief state and its percepts.

The belief state can contain any information, subject to the agent’s memory
and processing limitations. This is a very general notion of belief; sometimes
we use a more specific notion of belief, such as the agent’s belief about what is
true in the world, the agent’s beliefs about the dynamics of the environment,
or the agent’s belief about what it will do in the future.

Some instances of belief state include the following:

• The belief state for an agent that is following a fixed sequence of instructions
may be a program counter that records its current position in the sequence.

2.2. Agent Systems 49

• The belief state can contain specific facts that are useful – for example, where
the delivery robot left the parcel in order to go and get the key, or where it
has already checked for the key. It may be useful for the agent to remember
anything that is reasonably stable and that cannot be immediately observed.

• The belief state could encode a model or a partial model of the state of the
world. An agent could maintain its best guess about the current state of the
world or could have a probability distribution over possible world states;
see Section 5.6 (page 199) and Chapter 6.

• The belief state could be a representation of the dynamics of the world and
the meaning of its percepts, and the agent could use its perception to deter-
mine what is true in the world.

• The belief state could encode what the agent desires, the goals it still has to
achieve, its beliefs about the state of the world, and its intentions, or the
steps it intends to take to achieve its goals. These can be maintained as the
agent acts and observes the world, for example, removing achieved goals
and replacing intentions when more appropriate steps are found.

A controller must maintain the agent’s belief state and determine what
command to issue at each time. The information it has available when it must
do this includes its belief state and its current percepts.

A belief state transition function for discrete time is a function

remember : S× P→ S

where S is the set of belief states and P is the set of possible percepts; st+1 =
remember(st, pt) means that st+1 is the belief state following belief state st when
pt is observed.

A command function is a function

do : S× P→ C

where S is the set of belief states, P is the set of possible percepts, and C is
the set of possible commands; ct = do(st, pt) means that the controller issues
command ct when the belief state is st and when pt is observed.

The belief-state transition function and the command function together
specify a causal transduction for the agent. Note that a causal transduction
is a function of the agent’s history, which the agent doesn’t necessarily have
access to, but a command function is a function of the agent’s belief state and
percepts, which it does have access to.

Example 2.3 To implement the causal transduction of Example 2.2, a control-
ler must keep track of the rolling history of the prices for the previous 20 days.
By keeping track of the average (ave), it can update the average using

ave := ave +
new− old

20

where new is the new price and old is the oldest price remembered. It can then
discard old. It must do something special for the first 20 days.

50 2. Agent Architectures and Hierarchical Control

A simpler controller could, instead of remembering a rolling history in or-
der to maintain the average, remember just the average and use the average as a
surrogate for the oldest item. The belief state can then contain one real number
(ave). The state transition function to update the average could be

ave := ave +
new− ave

20

This controller is much easier to implement and is not sensitive to what hap-
pened 20 time units ago. This way of maintaining estimates of averages is the
basis for temporal differences in reinforcement learning (page 467).

If there exists a finite number of possible belief states, the controller is called
a finite state controller or a finite state machine. A factored representation is
one in which the belief states, percepts, or commands are defined by features
(page 21). If there exists a finite number of features, and each feature can only
have a finite number of possible values, the controller is a factored finite state
machine. Richer controllers can be built using an unbounded number of values
or an unbounded number of features. A controller that has countably many
states can compute anything that is computable by a Turing machine.

2.3 Hierarchical Control

One way that you could imagine building an agent depicted in Figure 2.1
(page 45) is to split the body into the sensors and a complex perception sys-
tem that feeds a description of the world into a reasoning engine implement-
ing a controller that, in turn, outputs commands to actuators. This turns out
to be a bad architecture for intelligent systems. It is too slow, and it is difficult
to reconcile the slow reasoning about complex, high-level goals with the fast
reaction that an agent needs, for example, to avoid obstacles. It also is not clear
that there is a description of a world that is independent of what you do with
it (see Exercise 1 (page 66)).

An alternative architecture is a hierarchy of controllers as depicted in Figure
2.4. Each layer sees the layers below it as a virtual body from which it gets
percepts and to which it sends commands. The lower-level layers are able to
run much faster, react to those aspects of the world that need to be reacted to
quickly, and deliver a simpler view of the world to the higher layers, hiding
inessential information.

In general, there can be multiple features passed from layer to layer and
between states at different times.

There are three types of inputs to each layer at each time:

• the features that come from the belief state, which are referred to as the re-
membered or previous values of these features;

• the features representing the percepts from the layer below in the hierarchy;
and

• the features representing the commands from the layer above in the
hierarchy.

2.3. Hierarchical Control 51

......

Environment

Agent
previous

state

high-level

percepts

low-level

percepts

high-level

commands

low-level

commands

next

state

Figure 2.4: An idealized hierarchical agent system architecture. The unlabeled rect-
angles represent layers, and the double lines represent information flow. The dotted
lines show how the output at one time is the input for the next time.

There are three types of outputs from each layer at each time:

• the higher-level percepts for the layer above,

• the lower-level commands for the layer below, and

• the next values for the belief-state features.

An implementation of a layer specifies how the outputs of a layer are a func-
tion of its inputs. Computing this function can involve arbitrary computation,
but the goal is to keep each layer as simple as possible.

To implement a controller, each input to a layer must get its value from
somewhere. Each percept or command input should be connected to an out-
put of some other layer. Other inputs come from the remembered beliefs. The
outputs of a layer do not have to be connected to anything, or they could be
connected to multiple inputs.

High-level reasoning, as carried out in the higher layers, is often discrete
and qualitative, whereas low-level reasoning, as carried out in the lower lay-
ers, is often continuous and quantitative (see box on page 52). A controller
that reasons in terms of both discrete and continuous values is called a hybrid
system.

52 2. Agent Architectures and Hierarchical Control

Qualitative Versus Quantitative Representations

Much of science and engineering considers quantitative reasoning with nu-
merical quantities, using differential and integral calculus as the main tools.
Qualitative reasoning is reasoning, often using logic, about qualitative dis-
tinctions rather than numerical values for given parameters.

Qualitative reasoning is important for a number of reasons:
• An agent may not know what the exact values are. For example, for the

delivery robot to pour coffee, it may not be able to compute the optimal
angle that the coffee pot needs to be tilted, but a simple control rule may
suffice to fill the cup to a suitable level.
• The reasoning may be applicable regardless of the quantitative values.

For example, you may want a strategy for a robot that works regardless
of what loads are placed on the robot, how slippery the floors are, or
what the actual charge is of the batteries, as long as they are within some
normal operating ranges.
• An agent needs to do qualitative reasoning to determine which quanti-

tative laws are applicable. For example, if the delivery robot is filling a
coffee cup, different quantitative formulas are appropriate to determine
where the coffee goes when the coffee pot is not tilted enough for coffee
to come out, when coffee comes out into a non-full cup, and when the
coffee cup is full and the coffee is soaking into the carpet.

Qualitative reasoning uses discrete values, which can take a number of forms:
• Landmarks are values that make qualitative distinctions in the individ-

ual being modeled. In the coffee example, some important qualitative
distinctions include whether the coffee cup is empty, partially full, or
full. These landmark values are all that is needed to predict what hap-
pens if the cup is tipped upside down or if coffee is poured into the
cup.
• Orders-of-magnitude reasoning involves approximate reasoning that

ignores minor distinctions. For example, a partially full coffee cup may
be full enough to deliver, half empty, or nearly empty. These fuzzy terms
have ill-defined borders. Some relationship exists between the actual
amount of coffee in the cup and the qualitative description, but there
may not be strict numerical divisors.
• Qualitative derivatives indicate whether some value is increasing, de-

creasing, or staying the same.
A flexible agent needs to do qualitative reasoning before it does quantita-
tive reasoning. Sometimes qualitative reasoning is all that is needed. Thus, an
agent does not always need to do quantitative reasoning, but sometimes it
needs to do both qualitative and quantitative reasoning.

2.3. Hierarchical Control 53

Example 2.4 Consider a delivery robot (page 32) able to carry out high-level
navigation tasks while avoiding obstacles. Suppose the delivery robot is re-
quired to visit a sequence of named locations in the environment of Figure 1.7
(page 32), avoiding obstacles it may encounter.

Assume the delivery robot has wheels like a car, and at each time can ei-
ther go straight, turn right, or turn left. It cannot stop. The velocity is con-
stant and the only command is to set the steering angle. Turning the wheels
is instantaneous, but adjusting to a certain direction takes time. Thus, the
robot can only travel straight ahead or go around in circular arcs with a fixed
radius.

The robot has a position sensor that gives its current coordinates and orien-
tation. It has a single whisker sensor that sticks out in front and slightly to the
right and detects when it has hit an obstacle. In the example below, the whisker
points 30◦ to the right of the direction the robot is facing. The robot does not
have a map, and the environment can change (e.g., obstacles can move).

A layered controller for such a delivery robot is depicted in Figure 2.5 (on
the next page). The robot is given a high-level plan to execute. The plan is a se-
quence of named locations to visit in order. The robot needs to sense the world
and to move in the world in order to carry out the plan. The details of the lower
layer are not shown in this figure.

The top layer, called follow plan, is described in Example 2.6 (page 56).
That layer takes in a plan to execute. The plan is a list of named locations to
visit in order. The locations are selected in order. Each selected location be-
comes the current target. This layer determines the x-y coordinates of the tar-
get. These coordinates are the target position for the lower level. The upper
level knows about the names of locations, but the lower levels only know about
coordinates.

The top layer maintains a belief state consisting of a list of names of loca-
tions that the robot still needs to visit and the coordinates of the current target.
It issues commands to the middle layer in terms of the coordinates of the cur-
rent target.

The middle layer, which could be called go to target and avoid obstacles,
tries to keep traveling toward the current target position, avoiding obstacles.
The middle layer is described in Example 2.5 (page 55). The target position,
target pos, is obtained from the top layer. When the middle layer has arrived
at the target position, it signals to the top layer that it has achieved the tar-
get by setting arrived to be true. This signal can be implemented either as the
middle layer issuing an interrupt to the top layer, which was waiting, or as the
top layer continually monitoring the middle layer to determine when arrived
becomes true. When arrived becomes true, the top layer then changes the tar-
get position to the coordinates of the next location on the plan. Because the
top layer changes the current target position, the middle layer must use the
previous target position to determine whether it has arrived. Thus, the middle
layer must get both the current and the previous target positions from the top
layer: the previous target position to determine whether it has arrived, and the
current target position to travel to.

54 2. Agent Architectures and Hierarchical Control

plan

robot_pos

compass

whisker_sensor

go to target and

avoid obstacles

Environment

Delivery Robot

steer

target_pos
arrived

target_pos

to_do

follow plan

steer robot, report

obstacles and position

Figure 2.5: A hierarchical decomposition of the delivery robot

The middle layer can access the robot’s current position and direction and
can determine whether its single whisker sensor is on or off. It can use a simple
strategy of trying to head toward the target unless it is blocked, in which case
it turns left.

The middle layer is built on a lower layer that provides a simple view of the
robot. This lower layer could be called steer robot and report obstacles and position.
It takes in steering commands and reports the robot’s position, orientation, and
whether the sensor is on or off.

Inside a layer are features that can be functions of other features and
of the inputs to the layers. There is an arc into a feature from the features
or inputs on which it is dependent. The graph of how features depend on
each other must be acyclic. The acyclicity of the graph allows the control-
ler to be implemented by running a program that assigns the values in or-
der. The features that make up the belief state can be written to and read from
memory.

2.3. Hierarchical Control 55

Go to target

and avoid obstacles

robot

position

current

target-pos

steer

previous

target-pos

robot

orientation
whisker

sensor

steer

arrived

arrived

Figure 2.6: The middle layer of the delivery robot

Example 2.5 The middle go to location and avoid obstacles layer steers the ro-
bot to avoid obstacles. The inputs and outputs of this layer are given in
Figure 2.6.

The robot has a single whisker sensor that detects obstacles touching the
whisker. The one bit value that specifies whether the whisker sensor has hit an
obstacle is provided by the lower layer. The lower layer also provides the robot
position and orientation. All the robot can do is steer left by a fixed angle, steer
right, or go straight. The aim of this layer is to make the robot head toward its
current target position, avoiding obstacles in the process, and to report when it
has arrived.

This layer of the controller maintains no internal belief state, so the belief
state transition function is vacuous. The command function specifies the robot’s
steering direction as a function of its inputs and whether the robot has arrived.

The robot has arrived if its current position is close to the previous target
position. Thus, arrived is assigned a value that is a function of the robot position
and previous target position, and a threshold constant:

arrived := distance(previous target pos, robot pos) < threshold

where := means assignment, distance is the Euclidean distance, and threshold
is a distance in the appropriate units.

The robot steers left if the whisker sensor is on; otherwise it heads toward
the target position. This can be achieved by assigning the appropriate value to

56 2. Agent Architectures and Hierarchical Control

previous

to_do

previous

target_pos

follow plan

arrived

plan

target_pos

to_do

Figure 2.7: The top layer of the delivery robot controller

the steer variable:

if whisker sensor = on

then steer := left

else if straight ahead(robot pos, robot dir, current target pos)
then steer := straight

else if left of (robot position, robot dir, current target pos)
then steer := left

else steer := right

end if

where straight ahead(robot pos, robot dir, current target pos) is true when the ro-
bot is at robot pos, facing the direction robot dir, and when the current target
position, current target pos, is straight ahead of the robot with some threshold
(for later examples, this threshold is 11◦ of straight ahead). The function left of
tests if the target is to the left of the robot.

This layer is purely quantitative. It reasons in terms of numerical quantities
rather than discrete values.

Example 2.6 The top layer, follow plan, is given a plan – a list of named loca-
tions to visit in order. These are the kinds of targets that could be produced by a
planner, such as those developed in Chapter 8. The top layer is also told when
the robot has arrived at the previous target. It must output target coordinates to
the middle layer, and remember what it needs to carry out the plan. The layer
is shown in Figure 2.7.

This layer maintains an internal belief state. It remembers the current target
position and what locations it still has to visit. The to do feature has as its value a

2.3. Hierarchical Control 57

list of all pending locations to visit. The target pos feature maintains the position
for the current target.

Once the robot has arrived at its previous target, the next target position is
the coordinate of the next location to visit. The top-level plan given to the robot
is in terms of named locations, so these must be translated into coordinates
for the middle layer to use. The following code shows how the target position
and the to do list are changed when the robot has arrived at its previous target
position:

if arrived and not empty(to do)
then

target pos′ := coordinates(head(to do))
to do′ := tail(to do)

end if

where to do′ is the next value for the to do feature, and target pos′ is the next
target position. Here head(to do) is the first element of the to do list, tail(to do) is
the rest of the to do list, and empty(to do) is true when the to do list is empty.

In this layer, if the to do list becomes empty, the robot does not change its
target position. It keeps going around in circles. See Exercise 2.3 (page 67).

This layer determines the coordinates of the named locations. This could
be done by simply having a database that specifies the coordinates of the lo-
cations. Using such a database is sensible if the locations do not move and are
known a priori. However, if the locations can move, the lower layer must be
able to tell the upper layer the current position of a location. The top layer
would have to ask the lower layer the coordinates of a given location. See
Exercise 2.8 (page 68).

To complete the controller, the belief state variables must be initialized, and
the top-level plan must be input. This can be done by initializing the to do list
with the tail of the plan and the target pos with the location of the first location.

A simulation of the plan [goto(o109), goto(storage), goto(o109), goto(o103)]
with one obstacle is given in Figure 2.8 (on the next page). The robot starts
at position (0, 5) facing 90◦ (north), and there is a rectangular obstacle between
the positions (20, 20) and (35,−5).

2.3.1 Agents Modeling the World

The definition of a belief state is very general and does not constrain what
should be remembered by the agent. Often it is useful for the agent to maintain
some model of the world, even if its model is incomplete and inaccurate. A
model of a world is a representation of the state of the world at a particular
time and/or the dynamics of the world.

One method is for the agent to maintain its belief about the world and to
update these beliefs based on its commands. This approach requires a model
of both the state of the world and the dynamics of the world. Given the state
at one time, and the dynamics, the state at the next time can be predicted. This

58 2. Agent Architectures and Hierarchical Control

0

20

40

60

0 20 40 60 80 100

robot path
obstacle

goals

start

Figure 2.8: A simulation of the robot carrying out the plan of Example 2.6

process is known as dead reckoning. For example, a robot could maintain its
estimate of its position and update it based on its actions. When the world
is dynamic or when there are noisy actuators (e.g., a wheel slips, it is not of
exactly the right diameter, or acceleration is not instantaneous), the noise accu-
mulates, so that the estimates of position soon become so inaccurate that they
are useless. However, if the model is accurate at some level of abstraction, this
may be an appropriate model of that level of abstraction.

An alternative is to use perception to build a model of the relevant part
of the world. Perception is the use of sensing information to understand the
world. This could, for example, involve using vision to detect features of the
world and use these features to determine the position of a robot and obstacles
or packages to be picked up. Perception tends to be ambiguous and noisy. It is
difficult to build a model of a three-dimensional world based on a single image
of the world.

A more promising approach is to combine the agent’s prediction of the
world state with sensing information. This can take a number of forms:

• If both the noise of forward prediction and sensor noise are modeled, the
next belief state can be estimated using Bayes’ rule (page 227). This is known
as filtering (page 267).

• With more complicated sensors such as vision, a model can be used to pre-
dict where visual features can be found, and then vision can be used to look
for these features close to the predicted location. This makes the vision task
much simpler and vision can greatly reduce the errors in position arising
from forward prediction alone.

A control problem is separable if the best action can be obtained by first
finding the best model of the world and then using that model to determine
the best action. Unfortunately, most control problems are not separable. This
means that the agent should consider multiple models to determine what to

2.4. Embedded and Simulated Agents 59

do, and what information it gets from the world depends on what it will do
with that information. Usually, there is no best model of the world that is inde-
pendent of what the agent will do with the model.

2.4 Embedded and Simulated Agents

There are a number of ways an agent’s controller can be used:

• An embedded agent is one that is run in the real world, where the actions
are carried out in a real domain and where the sensing comes from a domain.

• A simulated agent is one that is run with a simulated body and environ-
ment; that is, where a program takes in the commands and returns appro-
priate percepts. This is often used to debug a controller before it is deployed.

• A agent system model is where there are models of the controller (which
may or may not be the actual code), the body, and the environment that can
answer questions about how the agent will behave. Such a model can be
used to prove properties of agents before they are built, or it can be used
to answer hypothetical questions about an agent that may be difficult or
dangerous to answer with the real agent.

Each of these is appropriate for different purposes.

• Embedded mode is how the agent must run to be useful.

• A simulated agent is useful to test and debug the controller when many de-
sign options must be explored and building the body is expensive or when
the environment is dangerous or inaccessible. It also allows us to test the
agent under unusual combinations of conditions that may be difficult to ar-
range in the actual world.

How good the simulation is depends on how good the model of the
environment is. Models always have to abstract some aspect of the world.
Appropriate abstraction is important for simulations to be able to tell us
whether the agent will work in a real environment.

• A model of the agent, a model of the set of possible environments, and a
specification of correct behavior allow us to prove theorems about how the
agent will work in such environments. For example, we may want to prove
that a robot running a particular controller will always get within a certain
distance of the target, that it will never get stuck in mazes, or that it will
never crash. Of course, whether what is proved turns out to be true depends
on how accurate the models are.

• Given a model of the agent and the environment, some aspects of the agent
can be left unspecified and can be adjusted to produce the desired or optimal
behavior. This is the general idea behind optimization and planning.

• In reinforcement learning (page 463), the agent improves its performance
while interacting with the real world.

60 2. Agent Architectures and Hierarchical Control

Knowledge

Base

Inference

Engine

offline online

Prior Knowledge

Past Experiences/

Data

Observations
Goals

Actions

Abilities

Figure 2.9: Offline and online decomposition of an agent

2.5 Acting with Reasoning

The previous sections assumed that an agent has some belief state that it main-
tains through time. For an intelligent agent, the belief state can be very com-
plex, even for a single layer.

Experience in studying and building intelligent agents has shown that
an intelligent agent requires some internal representation of its belief state.
Knowledge is the information about a domain that is used for solving prob-
lems in that domain. Knowledge can include general knowledge that can be
applied to particular situations. Thus, it is more general than the beliefs about
a specific state. A knowledge-based system is a system that uses knowledge
about a domain to act or to solve problems.

Philosophers have defined knowledge as true, justified belief. AI re-
searchers tend to use the terms knowledge and belief more interchangeably.
Knowledge tends to mean general information that is taken to be true. Belief
tends to mean information that can be revised based on new information. Often
beliefs come with measures of how much they should be believed and models
of how the beliefs interact. In an AI system, knowledge is typically not neces-
sarily true and is justified only as being useful. This distinction often becomes
blurry when one module of an agent may treat some information as true but
another module may be able to revise that information.

Figure 2.9 shows a refinement of Figure 1.3 (page 11) for a knowledge-based
agent. A knowledge base is built offline and is used online to produce ac-
tions. This decomposition of an agent is orthogonal to the layered view of an
agent; an intelligent agent requires both hierarchical organization and knowl-
edge bases.

Online (page 17), when the agent is acting, the agent uses its knowledge
base, its observations of the world, and its goals and abilities to choose what to
do and to update its knowledge base. The knowledge base is its long-term

2.5. Acting with Reasoning 61

memory, where it keeps the knowledge that is needed to act in the future.
This knowledge comes from prior knowledge and is combined with what is
learned from data and past experiences. The belief state (page 48) is the short-
term memory of the agent, which maintains the model of current environment
needed between time steps. A clear distinction does not always exist between
general knowledge and specific knowledge; for example, an outside delivery
robot could learn general knowledge about a particular city. There is feedback
from the inference engine to the knowledge base, because observing and acting
in the world provide more data from which to learn.

Offline, before the agent has to act, it can build the knowledge base that is
useful for it to act online. The role of the offline computation is to make the on-
line computation more efficient or effective. The knowledge base is built from
prior knowledge and from data of past experiences (either its own past experi-
ences or data it has been given). Researchers have traditionally considered the
case involving lots of data and little prior knowledge in the field of machine
learning. The case of lots of prior knowledge and little or no data from which
to learn has been studied under the umbrella of expert systems. However, for
most non-trivial domains, the agent must use whatever information is avail-
able, and so it requires both rich prior knowledge and lots of data.

The goals and abilities are given offline, online, or both, depending on the
agent. For example, a delivery robot could have general goals of keeping the
lab clean and not damaging itself or other objects, but it could get other deliv-
ery goals at runtime. The online computation can be made more efficient if the
knowledge base is tuned for the particular goals and abilities. However, this is
often not possible when the goals and abilities are only available at runtime.

Figure 2.10 (on the next page) shows more detail of the interface between
the agents and the world.

2.5.1 Design Time and Offline Computation

The knowledge base required for online computation can be built initially at
design time and then augmented offline by the agent.

An ontology is a specification of the meaning of the symbols used in an in-
formation system. It specifies what is being modeled and the vocabulary used
in the system. In the simplest case, if the agent is using explicit state-based rep-
resentation with full observability, the ontology specifies the mapping between
the world and the state. Without this mapping, the agent may know it is in, say,
state 57, but, without the ontology, this information is just a meaningless num-
ber to another agent or person. In other cases, the ontology defines the features
or the individuals and relationships. It is what is needed to convert raw sense
data into something meaningful for the agent or to get meaningful input from
a person or another knowledge source.

Ontologies are built by communities, often independently of a particu-
lar knowledge base or specific application. It is this shared vocabulary that

62 2. Agent Architectures and Hierarchical Control

Knowledge

Base

Inference

Engine

offline online

knowledge

engineers

Data

Actions

Environment

User

Interface

Ontologies

users

perception

sensors

domain

experts wrapper

external

knowledge

sources

Figure 2.10: Internals of an agent, showing roles

allows for effective communication and interoperation of the data from multi-
ple sources (sensors, humans, and databases). Ontologies for the case of indi-
viduals and relationships are discussed in Section 13.3 (page 563).

The ontology logically comes before the data and the prior knowledge: we
require an ontology to have data or to have knowledge. Without an ontology,
data are just sequences of bits. Without an ontology, a human does not know
what to input; it is the ontology that gives the data meaning. Often the ontology
evolves as the system is being developed.

The ontology specifies a level or levels of abstraction. If the ontology
changes, the data must change. For example, a robot may have an ontology
of obstacles (e.g., every physical object is an obstacle to be avoided). If the on-
tology is expanded to differentiate people, chairs, tables, coffee mugs, and the
like, different data about the world are required.

The knowledge base is typically built offline from a combination of expert
knowledge and data. It is usually built before the agent knows the particulars
of the environment in which it must act. Maintaining and tuning the knowl-
edge base is often part of the online computation.

2.5. Acting with Reasoning 63

Offline, there are three major roles involved with a knowledge-based
system:

• Software engineers build the inference engine and user interface. They typ-
ically know nothing about the contents of the knowledge base. They need
not be experts in the use of the system they implement; however, they must
be experts in the use of a programming language like Java, Lisp, or Prolog
rather than in the knowledge representation language of the system they are
designing.

• Domain experts are the people who have the appropriate prior knowledge
about the domain. They know about the domain, but typically they know
nothing about the particular case that may be under consideration. For ex-
ample, a medical domain expert would know about diseases, symptoms,
and how they interact but would not know the symptoms or the diseases of
the particular patient. A delivery robot domain expert may know the sort of
individuals that must be recognized, what the battery meter measures, and
the costs associated with various actions. Domain experts typically do not
know the particulars of the environment the agent would encounter – for
example, the details of the patient for the diagnostic assistant or the details
of the room a robot is in.

Domain experts typically do not know about the internal workings of
the AI system. Often they have only a semantic view of the knowledge
(page 161) and have no notion of the algorithms used by the inference en-
gine. The system should interact with them in terms of the domain, not in
terms of the steps of the computation. For example, it is unreasonable to
expect that domain experts could debug a knowledge base if they were pre-
sented with traces of how an answer was produced. Thus, it is not appropri-
ate to have debugging tools for domain experts that merely trace the execu-
tion of a program.

• Knowledge engineers design, build, and debug the knowledge base in con-
sultation with domain experts. They know about the details of the system
and about the domain through the domain expert. They know nothing about
any particular case. They should know about useful inference techniques
and how the complete system works.

The same people may fill multiple roles: A domain expert who knows about AI
may act as a knowledge engineer; a knowledge engineer may be the same per-
son who writes the system. A large system may have many different software
engineers, knowledge engineers, and experts, each of whom may specialize
in part of the system. These people may not even know they are part of the
system; they may publish information for anyone to use.

Offline, the agent can combine the expert knowledge and the data. At this
stage, the system can be tested and debugged. The agent is able to do compu-
tation that is not particular to the specific instance. For example, it can compile
parts of the knowledge base to allow more efficient inference.

64 2. Agent Architectures and Hierarchical Control

2.5.2 Online Computation

Online, the information about the particular case becomes available, and the
agent has to act. The information includes the observations of the domain and
often information about the available actions and the preferences or goals. The
agent can get observations from sensors, users, and other information sources
(such as web sites), but we assume it does not have access to the domain ex-
perts or knowledge engineer.

An agent typically has much more time for offline computation than for on-
line computation. However, during online computation it can take advantage
of particular goals and particular observations.

For example, a medical diagnosis system only has the details of a partic-
ular patient online. Offline, it can acquire knowledge about how diseases and
symptoms interact and do some debugging and compilation. It can only do the
computation about a particular patient online.

Online the following roles are involved:

• A user is a person who has a need for expertise or has information about
individual cases. Users typically are not experts in the domain of the knowl-
edge base. They often do not know what information is needed by the sys-
tem. Thus, it is unreasonable to expect them to volunteer the information
about a particular case. A simple and natural interface must be provided
because users do not typically understand the internal structure of the sys-
tem. They often, however, must make an informed decision based on the
recommendation of the system; thus, they require an explanation of why the
recommendation is appropriate.

• Sensors provide information about the environment. For example, a ther-
mometer is a sensor that can provide the current temperature at the location
of the thermometer. Sensors may be more sophisticated, such as a vision
sensor. At the lowest level, a vision sensor may simply provide an array of
720× 480 pixels at 30 frames per second. At a higher level, a vision system
may be able to answer specific questions about the location of particular fea-
tures, whether some type of individual is in the environment, or whether
some particular individual is in the scene. An array of microphones can be
used at a low level of abstraction to provide detailed vibration information.
It can also be used as a component of a higher-level sensor to detect an ex-
plosion and to provide the type and the location of the explosion.

Sensors come in two main varieties. A passive sensor continuously feeds
information to the agent. Passive sensors include thermometers, cameras,
and microphones. The designer can typically choose where the sensors are or
where they are pointing, but they just feed the agent information. In contrast,
an active sensor is controlled or asked for information. Examples of an active
sensor include a medical probe able to answer specific questions about a
patient or a test given to a student in an intelligent tutoring system. Often
sensors that are passive sensors at lower levels of abstraction can be seen as
active sensors at higher levels of abstraction. For example, a camera could
be asked whether a particular person is in the room. To do this it may need

2.6. Review 65

to zoom in on the faces in the room, looking for distinguishing features of
the person.

• An external knowledge source, such as a web site or a database, can typi-
cally be asked questions and can provide the answer for a limited domain.
An agent can ask a weather web site for the temperature at a particular lo-
cation or an airline web site for the arrival time of a particular flight. The
knowledge sources have various protocols and efficiency trade-offs. The
interface between an agent and an external knowledge source is called a
wrapper. A wrapper translates between the representation the agent uses
and the queries the external knowledge source is prepared to handle. Often
wrappers are designed so that the agent can ask the same query of mul-
tiple knowledge sources. For example, an agent may want to know about
airplane arrivals, but different airlines or airports may require very different
protocols to access that information. When web sites and databases adhere
to a common ontology, they can be used together because the same symbols
have the same meaning. Having the same symbols mean the same thing is
called semantic interoperability. When they use different ontologies, there
must be mappings between the ontologies to allow them to interoperate.

Again, these roles are separate, even though the people in these roles may
overlap. The domain expert, for example, may act as a user to test or debug
the system. Each of the roles has different requirements for the tools they need.
The tools that explain to a user how the system reached a result can be the same
tools that the domain experts use to debug the knowledge.

2.6 Review

The main points you should have learned from this chapter are as follows:

• An agent system is composed of an agent and an environment.

• Agents have sensors and actuators to interact with the environment.

• An agent is composed of a body and interacting controllers.

• Agents are situated in time and must make decisions of what to do based on
their history of interaction with the environment.

• An agent has direct access not to its history, but to what it has remembered
(its belief state) and what it has just observed. At each point in time, an agent
decides what to do and what to remember based on its belief state and its
current observations.

• Complex agents are built modularly in terms of interacting hierarchical
layers.

• An intelligent agent requires knowledge that is acquired at design time, of-
fline or online.

66 2. Agent Architectures and Hierarchical Control

2.7 References and Further Reading

The model of agent systems is based on the constraint nets of Zhang and
Mackworth [1995], also on Rosenschein and Kaelbling [1995]. The hierarchci-
cal control is based on Albus [1981] and the subsumption architecture of Brooks
[1986]. Turtle Geometry, by Abelson and DiSessa [1981], investigates mathemat-
ics from the viewpoint of modeling simple reactive agents. Luenberger [1979]
is a readable introduction to the classical theory of agents interacting with en-
vironments. Simon [1996] argues for the importance of hierarchical control.

For more detail on agent control see Dean and Wellman [1991], Latombe
[1991], and Agre [1995].

The methodology for building intelligent agents is discussed by Haugeland
[1985], Brooks [1991], Kirsh [1991b], and Mackworth [1993].

Qualitative reasoning is described by Forbus [1996] and Kuipers [2001].
Weld and de Kleer [1990] contains many seminal papers on qualitative rea-
soning. See also Weld [1992] and related discussion in the same issue. For a
recent review see Price, Travé-Massuyàs, Milne, Ironi, Forbus, Bredeweg, Lee,
Struss, Snooke, Lucas, Cavazza, and Coghill [2006].

2.8 Exercises

Exercise 2.1 Section 2.3 (page 50) argued that it was impossible to build a rep-
resentation of a world that is independent of what the agent will do with it. This
exercise lets you evaluate this argument.

Choose a particular world, for example, what is on some part of your desk at
the current time.

i) Get someone to list all of the things that exist in this world (or try it yourself
as a thought experiment).

ii) Try to think of twenty things that they missed. Make these as different from
each other as possible. For example, the ball at the tip of the rightmost ball-
point pen on the desk, or the spring in the stapler, or the third word on page
66 of a particular book on the desk.

iii) Try to find a thing that cannot be described using natural language.

iv) Choose a particular task, such as making the desk tidy, and try to write down
all of the things in the world at a level of description that is relevant to this
task.

Based on this exercise, discuss the following statements:

(a) What exists in a world is a property of the observer.

(b) We need ways to refer to individuals other than expecting each individual
to have a separate name.

(c) What individuals exist is a property of the task as well as of the world.

(d) To describe the individuals in a domain, you need what is essentially a dic-
tionary of a huge number of words and ways to combine them to describe

2.8. Exercises 67

g

Figure 2.11: A robot trap

individuals, and this should be able to be done independently of any partic-
ular domain.

Exercise 2.2 Explain why the middle layer in Example 2.5 (page 55) must have
both the previous target position and the current target position as inputs. Suppose
it had only one of these as input; which one would it have to be, and what would
the problem with this be?

Exercise 2.3 The definition of the target position in Example 2.6 (page 56) means
that, when the plan ends, the robot will just keep the last target position as its
target position and keep circling forever. Change the definition so that the robot
goes back to its home and circles there.

Exercise 2.4 The obstacle avoidance implemented in Example 2.5 (page 55) can
easily get stuck.

(a) Show an obstacle and a target for which the robot using the controller of
Example 2.5 (page 55) would not be able to get around (and it will crash or
loop).

(b) Even without obstacles, the robot may never reach its destination. For ex-
ample, if it is next to its target position, it may keep circling forever without
reaching its target. Design a controller that can detect this situation and find
its way to the target.

Exercise 2.5 Consider the “robot trap” in Figure 2.11.

(a) Explain why it is so tricky for a robot to get to location g. You must explain
what the current robot does as well as why it is difficult to make a more so-
phisticated robot (e.g., one that follows the wall using the “right-hand rule”:
the robot turns left when it hits an obstacle and keeps following a wall, with
the wall always on its right) to work.

68 2. Agent Architectures and Hierarchical Control

(b) An intuition of how to escape such a trap is that, when the robot hits a wall,
it follows the wall until the number of right turns equals the number of left
turns. Show how this can be implemented, explaining the belief state, the
belief-state transition function, and the command function.

Exercise 2.6 When the user selects and moves the current target location, the
robot described in this chapter travels to the original position of that target and
does not try to go to the new position. Change the controller so that the robot will
try to head toward the current location of the target at each step.

Exercise 2.7 The current controller visits the locations in the todo list sequentially.

(a) Change the controller so that it is opportunistic; when it selects the next lo-
cation to visit, it selects the location that is closest to its current position. It
should still visit all of the locations.

(b) Give one example of an environment in which the new controller visits all
of the locations in fewer time steps than the original controller.

(c) Give one example of an environment in which the original controller visits
all of the locations in fewer time steps than the modified controller.

(d) Change the controller so that, at every step, the agent heads toward
whichever target location is closest to its current position.

(e) Can the controller from part (d) get stuck in a loop and never reach a target in
an example where the original controller will work? Either give an example
in which it gets stuck in a loop and explain why it cannot find a solution, or
explain why it does not get into a loop.

Exercise 2.8 Change the controller so that the robot senses the environment to
determine the coordinates of a location. Assume that the body can provide the
coordinates of a named location.

Exercise 2.9 Suppose you have a new job and must build a controller for an in-
telligent robot. You tell your bosses that you just have to implement a command
function and a state transition function. They are very skeptical. Why these func-
tions? Why only these? Explain why a controller requires a command function and
a state transition function, but not other functions. Use proper English. Be concise.

Part II

Representing and Reasoning

69

Chapter 3

States and Searching

Have you ever watched a crab on the shore crawling backward in search
of the Atlantic Ocean, and missing? That’s the way the mind of man
operates.

– H. L. Mencken (1880–1956)

The previous chapter discussed how an agent perceives and acts, but not how
its goals affect its actions. An agent could be programmed to act in the world to
achieve a fixed set of goals, but then it may not adapt to changing goals and so
would not be intelligent. Alternatively, an agent could reason about its abilities
and its goals to determine what to do. This chapter shows how the problem of
an agent deciding what to do can be cast as the problem of searching to find a
path in a graph, and it presents a number of ways that such problems can be
solved on a computer. As Mencken suggests in the quote above, the mind uses
search to solve problems, although not always successfully.

3.1 Problem Solving as Search

In the simplest case of an agent reasoning about what it should do, the agent
has a state-based model of the world, with no uncertainty and with goals to
achieve. This is either a flat (non-hierarchical) representation or a single level
of a hierarchy. The agent can determine how to achieve its goals by searching
in its representation of the world state space for a way to get from its current
state to a goal state. It can find a sequence of actions that will achieve its goal
before it has to act in the world.

This problem can be abstracted to the mathematical problem of finding a
path from a start node to a goal node in a directed graph. Many other prob-
lems can also be mapped to this abstraction, so it is worthwhile to consider

71

72 3. States and Searching

this level of abstraction. Most of this chapter explores various algorithms for
finding such paths.

This notion of search is computation inside the agent. It is different from
searching in the world, when it may have to act in the world, for example, an
agent searching for its keys, lifting up cushions, and so on. It is also different
from searching the web, which involves searching for information. Searching
in this chapter means searching in an internal representation for a path to a
goal.

The idea of search is straightforward: the agent constructs a set of potential
partial solutions to a problem that can be checked to see if they truly are solu-
tions or if they could lead to solutions. Search proceeds by repeatedly selecting
a partial solution, stopping if it is a path to a goal, and otherwise extending it
by one more arc in all possible ways.

Search underlies much of artificial intelligence. When an agent is given a
problem, it is usually given only a description that lets it recognize a solution,
not an algorithm to solve it. It has to search for a solution. The existence of
NP-complete problems (page 170), with efficient means to recognize answers
but no efficient methods for finding them, indicates that searching is, in many
cases, a necessary part of solving problems.

It is often believed that humans are able to use intuition to jump to solutions
to difficult problems. However, humans do not tend to solve general problems;
instead they solve specific instances about which they may know much more
than the underlying search space. Problems in which little structure exists or
in which the structure cannot be related to the physical world are very difficult
for humans to solve. The existence of public key encryption codes, where the
search space is clear and the test for a solution is given – for which humans
nevertheless have no hope of solving and computers cannot solve in a realistic
time frame – demonstrates the difficulty of search.

The difficulty of search and the fact that humans are able to solve some
search problems efficiently suggests that computer agents should exploit
knowledge about special cases to guide them to a solution. This extra knowl-
edge beyond the search space is heuristic knowledge. This chapter considers
one kind of heuristic knowledge in the form of an estimate of the cost from a
node to a goal.

3.2 State Spaces

One general formulation of intelligent action is in terms of state space. A state
contains all of the information necessary to predict the effects of an action and
to determine if it is a goal state. State-space searching assumes that

• the agent has perfect knowledge of the state space and can observe what
state it is in (i.e., there is full observability);

• the agent has a set of actions that have known deterministic effects;

3.2. State Spaces 73

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

Figure 3.1: The delivery robot domain with interesting locations labeled

• some states are goal states, the agent wants to reach one of these goal states,
and the agent can recognize a goal state; and

• a solution is a sequence of actions that will get the agent from its current
state to a goal state.

Example 3.1 Consider the robot delivery domain and the task of finding a
path from one location to another in Figure 3.1. This can be modeled as a state-
space search problem, where the states are locations. Assume that the agent can
use a lower-level controller to carry out the high-level action of getting from one
location to a neighboring location. Thus, at this level of abstraction, the actions
can involve deterministic traveling between neighboring locations.

An example problem is where the robot is outside room r103, at position
o103, and the goal is to get to room r123. A solution is a sequence of actions that
will get the robot to room r123.

Example 3.2 In a more complicated example, the delivery robot may have a
number of parcels to deliver to various locations. In this case, the state may
consist of the location of the robot, the parcels the robot is carrying, and the
locations of the other parcels. The possible actions may be for the robot to move,
to pick up parcels that are at the same location as the robot, or to put down
whatever parcels it is carrying. A goal state may be one in which some specified

74 3. States and Searching

parcels are at their desired locations. There may be many goal states because we
may not care where the robot is or where some of the other parcels are.

Notice that this representation has ignored many details, for example, how
the robot is carrying the parcels (which may affect whether it can carry other
parcels), the battery level of the robot, whether the parcels are fragile or dam-
aged, and the color of the floor. By not having these as part of the state space,
we assume that these details are not relevant to the problem at hand.

Example 3.3 In a tutoring system, a state may consist of the set of topics that
the student knows. The action may be teaching a particular lesson, and the
result of a teaching action may be that the student knows the topic of the lesson
as long as the student knows the topics that are prerequisites for the lesson
being taught. The aim is for the student to know some particular set of topics.

If the effect of teaching also depends on the aptitude of the student, this
detail must be part of the state space, too. We do not have to model what the
student is carrying if that does not affect the result of actions or whether the
goal is achieved.

A state-space problem consists of

• a set of states;

• a distinguished set of states called the start states;

• a set of actions available to the agent in each state;

• an action function that, given a state and an action, returns a new state;

• a set of goal states, often specified as a Boolean function, goal(s), that is true
when s is a goal state; and

• a criterion that specifies the quality of an acceptable solution. For example,
any sequence of actions that gets the agent to the goal state may be accept-
able, or there may be costs associated with actions and the agent may be
required to find a sequence that has minimal total cost. This is called an
optimal solution. Alternatively, it may be satisfied with any solution that is
within 10% of optimal.

This framework is extended in subsequent chapters to include cases where
an agent can exploit the internal features of the states, where the state is not
fully observable (e.g., the robot does not know where the parcels are, or the
teacher does not know the aptitude of the student), where the actions are
stochastic (e.g., the robot may overshoot, or the student perhaps does not learn
a topic that is taught), and where complex preferences exist in terms of rewards
and punishments, not just goal states.

3.3 Graph Searching

In this chapter, we abstract the general mechanism of searching and present
it in terms of searching for paths in directed graphs. To solve a problem, first
define the underlying search space and then apply a search algorithm to that

3.3. Graph Searching 75

search space. Many problem-solving tasks can be transformed into the problem
of finding a path in a graph. Searching in graphs provides an appropriate level
of abstraction within which to study simple problem solving independent of a
particular domain.

A (directed) graph consists of a set of nodes and a set of directed arcs be-
tween nodes. The idea is to find a path along these arcs from a start node to a
goal node.

The abstraction is necessary because there may be more than one way to
represent a problem as a graph. Whereas the examples in this chapter are in
terms of state-space searching, where nodes represent states and arcs repre-
sent actions, future chapters consider different ways to represent problems as
graphs to search.

3.3.1 Formalizing Graph Searching

A directed graph consists of

• a set N of nodes and

• a set A of ordered pairs of nodes called arcs.

In this definition, a node can be anything. All this definition does is constrain
arcs to be ordered pairs of nodes. There can be infinitely many nodes and arcs.
We do not assume that the graph is represented explicitly; we require only a
procedure that can generate nodes and arcs as needed.

The arc 〈n1, n2〉 is an outgoing arc from n1 and an incoming arc to n2.
A node n2 is a neighbor of n1 if there is an arc from n1 to n2; that is, if

〈n1, n2〉 ∈ A. Note that being a neighbor does not imply symmetry; just because
n2 is a neighbor of n1 does not mean that n1 is necessarily a neighbor of n2. Arcs
may be labeled, for example, with the action that will take the agent from one
state to another.

A path from node s to node g is a sequence of nodes 〈n0, n1, . . . , nk〉 such
that s = n0, g = nk, and 〈ni−1, ni〉 ∈ A; that is, there is an arc from ni−1 to ni for
each i. Sometimes it is useful to view a path as the sequence of arcs, 〈no, n1〉 ,
〈n1, n2〉 , . . . , 〈nk−1, nk〉, or a sequence of labels of these arcs.

A cycle is a nonempty path such that the end node is the same as the start
node – that is, a cycle is a path 〈n0, n1, . . . , nk〉 such that n0 = nk and k �= 0. A di-
rected graph without any cycles is called a directed acyclic graph (DAG). This
should probably be an acyclic directed graph, because it is a directed graph
that happens to be acyclic, not an acyclic graph that happens to be directed,
but DAG sounds better than ADG!

A tree is a DAG where there is one node with no incoming arcs and every
other node has exactly one incoming arc. The node with no incoming arcs is
called the root of the tree and nodes with no outgoing arcs are called leaves.

To encode problems as graphs, one set of nodes is referred to as the start
nodes and another set is called the goal nodes. A solution is a path from a
start node to a goal node.

76 3. States and Searching

16

8 12

4

6
4

4

4 9

7

7

4

3
6

8

6
4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

Figure 3.2: A graph with arc costs for the delivery robot domain

Sometimes there is a cost – a positive number – associated with arcs. We
write the cost of arc

〈
ni, nj

〉
as cost(

〈
ni, nj

〉
). The costs of arcs induces a cost of

paths.
Given a path p = 〈n0, n1, . . . , nk〉, the cost of path p is the sum of the costs of

the arcs in the path:

cost(p) = cost(〈n0, n1〉) + · · ·+ cost(〈nk−1, nk〉)

An optimal solution is one of the least-cost solutions; that is, it is a path p
from a start node to a goal node such that there is no path p′ from a start node
to a goal node where cost(p′) < cost(p).

Example 3.4 Consider the problem of the delivery robot finding a path from
location o103 to location r123 in the domain depicted in Figure 3.1 (page 73). In
this figure, the interesting locations are named. For simplicity, we consider only
the locations written in bold and we initially limit the directions that the robot
can travel. Figure 3.2 shows the resulting graph where the nodes represent lo-
cations and the arcs represent possible single steps between locations. In this
figure, each arc is shown with the associated cost of getting from one location
to the next.

3.4. A Generic Searching Algorithm 77

In this graph, the nodes are N = {mail, ts, o103, b3, o109, . . .} and the arcs
are A = {〈ts, mail〉 , 〈o103, ts〉 , 〈o103, b3〉 , 〈o103, o109〉 , . . .}. Node o125 has no
neighbors. Node ts has one neighbor, namely mail. Node o103 has three neigh-
bors, namely ts, b3, and o109.

There are three paths from o103 to r123:

〈o103, o109, o119, o123, r123〉
〈o103, b3, b4, o109, o119, o123, r123〉
〈o103, b3, b1, b2, b4, o109, o119, o123, r123〉

If o103 were a start node and r123 were a goal node, each of these three paths
would be a solution to the graph-searching problem.

In many problems the search graph is not given explicitly; it is dynamically
constructed as needed. All that is required for the search algorithms that follow
is a way to generate the neighbors of a node and to determine if a node is a goal
node.

The forward branching factor of a node is the number of arcs leaving the
node. The backward branching factor of a node is the number of arcs entering
the node. These factors provide measures of the complexity of graphs. When
we discuss the time and space complexity of the search algorithms, we assume
that the branching factors are bounded from above by a constant.

Example 3.5 In the graph of Figure 3.2, the forward branching factor of node
o103 is three; there are three arcs coming out of node o103. The backward
branching factor of node o103 is zero; there are no arcs coming into node o103.
The forward branching factor of mail is zero and the backward branching factor
of mail is one. The forward branching factor of node b3 is two and the backward
branching factor of b3 is one.

The branching factor is important because it is a key component in the size of
the graph. If the forward branching factor for each node is b, and the graph is
a tree, there are bn nodes that are n arcs away from any node.

3.4 A Generic Searching Algorithm

This section describes a generic algorithm to search for a solution path in a
graph. The algorithm is independent of any particular search strategy and any
particular graph.

The intuitive idea behind the generic search algorithm, given a graph, a set
of start nodes, and a set of goal nodes, is to incrementally explore paths from
the start nodes. This is done by maintaining a frontier (or fringe) of paths from
the start node that have been explored. The frontier contains all of the paths
that could form initial segments of paths from a start node to a goal node.
(See Figure 3.3 (on the next page), where the frontier is the set of paths to the
gray shaded nodes.) Initially, the frontier contains trivial paths containing no

78 3. States and Searching

ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

Figure 3.3: Problem solving by graph searching

arcs from the start nodes. As the search proceeds, the frontier expands into the
unexplored nodes until a goal node is encountered. To expand the frontier, the
searcher selects and removes a path from the frontier, extends the path with
each arc leaving the last node, and adds these new paths to the frontier. A
search strategy defines which element of the frontier is selected at each step.

The generic search algorithm is shown in Figure 3.4. Initially, the frontier is
the set of empty paths from start nodes. At each step, the algorithm advances
the frontier by removing a path 〈s0, . . . , sk〉 from the frontier. If goal(sk) is true
(i.e., sk is a goal node), it has found a solution and returns the path that was
found, namely 〈s0, . . . , sk〉. Otherwise, the path is extended by one more arc by
finding the neighbors of sk. For every neighbor s of sk, the path 〈s0, . . . , sk, s〉 is
added to the frontier. This step is known as expanding the node sk.

This algorithm has a few features that should be noted:

• The selection of a path at line 13 is non-deterministic. The choice of path that
is selected can affect the efficiency; see the box on page 170 for more details
on our use of “select”. A particular search strategy will determine which
path is selected.

• It is useful to think of the return at line 15 as a temporary return; another
path to a goal can be searched for by continuing to line 16.

3.5. Uninformed Search Strategies 79

1: procedure Search(G, S, goal)
2: Inputs
3: G: graph with nodes N and arcs A
4: S: set of start nodes
5: goal: Boolean function of states

6: Output
7: path from a member of S to a node for which goal is true
8: or ⊥ if there are no solution paths

9: Local
10: Frontier: set of paths

11: Frontier← {〈s〉 : s ∈ S}
12: while Frontier �= {} do
13: select and remove 〈s0, . . . , sk〉 from Frontier
14: if goal(sk) then
15: return 〈s0, . . . , sk〉
16: Frontier← Frontier∪ {〈s0, . . . , sk, s〉 : 〈sk, s〉 ∈ A}
17: return ⊥

Figure 3.4: Generic graph searching algorithm

• If the procedure returns ⊥, no solutions exist (or there are no remaining so-
lutions if the proof has been retried).

• The algorithm only tests if a path ends in a goal node after the path has been
selected from the frontier, not when it is added to the frontier. There are two
main reasons for this. Sometimes a very costly arc exists from a node on the
frontier to a goal node. The search should not always return the path with
this arc, because a lower-cost solution may exist. This is crucial when the
least-cost path is required. The second reason is that it may be expensive to
determine whether a node is a goal node.

If the path chosen does not end at a goal node and the node at the end has
no neighbors, extending the path means removing the path. This outcome is
reasonable because this path could not be part of a path from a start node to a
goal node.

3.5 Uninformed Search Strategies

A problem determines the graph and the goal but not which path to select
from the frontier. This is the job of a search strategy. A search strategy specifies
which paths are selected from the frontier. Different strategies are obtained by
modifying how the selection of paths in the frontier is implemented.

80 3. States and Searching

1

2

3 13

4 12 14

7

8 10

9 11

5

6

15 16

Figure 3.5: The order nodes are expanded in depth-first search

This section presents three uninformed search strategies that do not take
into account the location of the goal. Intuitively, these algorithms ignore where
they are going until they find a goal and report success.

3.5.1 Depth-First Search

The first strategy is depth-first search. In depth-first search, the frontier acts
like a last-in first-out stack. The elements are added to the stack one at a time.
The one selected and taken off the frontier at any time is the last element that
was added.

Example 3.6 Consider the tree-shaped graph in Figure 3.5. Suppose the start
node is the root of the tree (the node at the top) and the nodes are ordered from
left to right so that the leftmost neighbor is added to the stack last. In depth-
first search, the order in which the nodes are expanded does not depend on the
location of the goals. The first sixteen nodes expanded are numbered in order
of expansion in Figure 3.5. The shaded nodes are the nodes at the ends of the
paths on the frontier after the first sixteen steps.

Notice how the first six nodes expanded are all in a single path. The sixth
node has no neighbors. Thus, the next node that is expanded is a child of the
lowest ancestor of this node that has unexpanded children.

Implementing the frontier as a stack results in paths being pursued in a
depth-first manner – searching one path to its completion before trying an al-
ternative path. This method is said to involve backtracking: The algorithm se-
lects a first alternative at each node, and it backtracks to the next alternative

3.5. Uninformed Search Strategies 81

when it has pursued all of the paths from the first selection. Some paths may
be infinite when the graph has cycles or infinitely many nodes, in which case a
depth-first search may never stop.

This algorithm does not specify the order in which the neighbors are added
to the stack that represents the frontier. The efficiency of the algorithm is sensi-
tive to this ordering.

Example 3.7 Consider depth-first search from o103 in the graph given in Fig-
ure 3.2. The only goal node is r123. In this example, the frontier is shown as a
list of paths with the top of the stack at the beginning of the list.

Initially, the frontier contains the trivial path 〈o103〉.
At the next stage, the frontier contains the following paths:

[〈o103, ts〉 , 〈o103, b3〉 , 〈o103, o109〉].
Next, the path 〈o103, ts〉 is selected because it is at the top of the stack. It is
removed from the frontier and replaced by extending it by one arc, resulting in
the frontier

[〈o103, ts, mail〉 , 〈o103, b3〉 , 〈o103, o109〉].
Next, the first path 〈o103, ts, mail〉 is removed from the frontier and is replaced
by the set of paths that extend it by one arc, which is the empty set because mail
has no neighbors. Thus, the resulting frontier is

[〈o103, b3〉 , 〈o103, o109〉].
At this stage, the path 〈o103, b3〉 is the top of the stack. Notice what has hap-
pened: depth-first search has pursued all paths from ts and, when all of these
paths were exhausted (there was only one), it backtracked to the next element
of the stack. Next, 〈o103, b3〉 is selected and is replaced in the frontier by the
paths that extend it by one arc, resulting in the frontier

[〈o103, b3, b1〉 , 〈o103, b3, b4〉 , 〈o103, o109〉].
Then 〈o103, b3, b1〉 is selected from the frontier and is replaced by all one-arc
extensions, resulting in the frontier

[〈o103, b3, b1, c2〉 , 〈o103, b3, b1, b2〉 , 〈o103, b3, b4〉 ,

〈o103, o109〉].
Now the first path is selected from the frontier and is extended by one arc,
resulting in the frontier

[〈o103, b3, b1, c2, c3〉 , 〈o103, b3, b1, c2, c1〉 ,

〈o103, b3, b1, b2〉 , 〈o103, b3, b4〉 , 〈o103, o109〉].
Node c3 has no neighbors, and thus the search “backtracks” to the last alterna-
tive that has not been pursued, namely to the path to c1.

Suppose 〈n0, . . . , nk〉 is the selected path in the frontier. Then every other
element of the frontier is of the form 〈n0, . . . , ni, m〉, for some index i < n and
some node m that is a neighbor of ni; that is, it follows the selected path for a
number of arcs and then has exactly one extra node.

82 3. States and Searching

To understand the complexity (see the box on page 83) of depth-first search,
consider an analogy using family trees, where the neighbors of a node corre-
spond to its children in the tree. At the root of the tree is a start node. A branch
down this tree corresponds to a path from a start node. Consider the node at
the end of path at the top of the frontier. The other elements of the frontier
correspond to children of ancestors of that node – the “uncles,” “great uncles,”
and so on. If the branching factor is b and the first element of the list has length
n, there can be at most n× (b− 1) other elements of the frontier. These elements
correspond to the b− 1 alternative paths from each node. Thus, for depth-first
search, the space used is linear in the depth of the path length from the start to
a node.

If there is a solution on the first branch searched, then the time complex-
ity is linear in the length of the path; it considers only those elements on the
path, along with their siblings. The worst-case complexity is infinite. Depth-
first search can get trapped on infinite branches and never find a solution, even
if one exists, for infinite graphs or for graphs with loops. If the graph is a fi-
nite tree, with the forward branching factor bounded by b and depth n, the
worst-case complexity is O(bn).

Example 3.8 Consider a modification of the delivery graph, in which the
agent has much more freedom in moving between locations. The new graph
is presented in Figure 3.6 (page 84). An infinite path leads from ts to mail, back
to ts, back to mail, and so forth. As presented, depth-first search follows this
path forever, never considering alternative paths from b3 or o109. The frontiers
for the first five iterations of the path-finding search algorithm using depth-first
search are

[〈o103〉]
[〈o103, ts〉 , 〈o103, b3〉 , 〈o103, o109〉]
[〈o103, ts, mail〉 , 〈o103, ts, o103〉 , 〈o103, b3〉 , 〈o103, o109〉]
[〈o103, ts, mail, ts〉 , 〈o103, ts, o103〉 , 〈o103, b3〉 , 〈o103, o109〉]
[〈o103, ts, mail, ts, mail〉 , 〈o103, ts, mail, ts, o103〉 , 〈o103, ts, o103〉 ,

〈o103, b3〉 , 〈o103, o109〉]
Depth-first search can be improved by not considering paths with cycles
(page 93).

Because depth-first search is sensitive to the order in which the neighbors
are added to the frontier, care must be taken to do it sensibly. This ordering can
be done statically (so that the order of the neighbors is fixed) or dynamically
(where the ordering of the neighbors depends on the goal).

Depth-first search is appropriate when either

• space is restricted;
• many solutions exist, perhaps with long path lengths, particularly for the

case where nearly all paths lead to a solution; or
• the order of the neighbors of a node are added to the stack can be tuned

so that solutions are found on the first try.

3.5. Uninformed Search Strategies 83

Comparing Algorithms

Algorithms (including search algorithms) can be compared on
• the time taken,
• the space used, and
• the quality or accuracy of the results.

The time taken, space used, and accuracy of an algorithm are a function of
the inputs to the algorithm. Computer scientists talk about the asymptotic
complexity of algorithms, which specifies how the time or space grows with
the input size of the algorithm. An algorithm has time (or space) complexity
O(f (n)) – read “big-oh of f (n)” – for input size n, where f (n) is some func-
tion of n, if there exist constants n0 and k such that the time, or space, of the
algorithm is less than k× f (n) for all n > n0. The most common types of func-
tions are exponential functions such as 2n, 3n, or 1.015n; polynomial functions
such as n5, n2, n, or n1/2; and logarithmic functions, log n. In general, exponen-
tial algorithms get worse more quickly than polynomial algorithms which, in
turn, are worse than logarithmic algorithms.

An algorithm has time or space complexity Ω(f (n)) for input size n if there
exist constants n0 and k such that the time or space of the algorithm is greater
than k× f (n) for all n > n0. An algorithm has time or space complexity Θ(n)
if it has complexity O(n) and Ω(n). Typically, you cannot give an Θ(f (n))
complexity on an algorithm, because most algorithms take different times for
different inputs. Thus, when comparing algorithms, one has to specify the
class of problems that will be considered.

Algorithm A is better than B, using a measure of either time, space, or
accuracy, could mean:
• the worst case of A is better than the worst case of B; or
• A works better in practice, or the average case of A is better than the

average case of B, where you average over typical problems; or
• you characterize the class of problems for which A is better than B, so

that which algorithm is better depends on the problem; or
• for every problem, A is better than B.

The worst-case asymptotic complexity is often the easiest to show, but it is
usually the least useful. Characterizing the class of problems for which one
algorithm is better than another is usually the most useful, if it is easy to de-
termine which class a given problem is in. Unfortunately, this characterization
is usually very difficult.

Characterizing when one algorithm is better than the other can be done ei-
ther theoretically using mathematics or empirically by building implementa-
tions. Theorems are only as valid as the assumptions on which they are based.
Similarly, empirical investigations are only as good as the suite of test cases
and the actual implementations of the algorithms. It is easy to disprove a con-
jecture that one algorithm is better than another for some class of problems
by showing a counterexample, but it is much more difficult to prove such a
conjecture.

84 3. States and Searching

16

8 12

4

6
4

4

4 9

7

7

4

3
6

8

6
4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

Figure 3.6: A graph, with cycles, for the delivery robot domain. Edges of the form
X ←→ Y means there is an arc from X to Y and an arc from Y to X. That is,
〈X, Y〉 ∈ A and 〈Y, X〉 ∈ A.

It is a poor method when

• it is possible to get caught in infinite paths; this occurs when the graph is
infinite or when there are cycles in the graph; or

• solutions exist at shallow depth, because in this case the search may look
at many long paths before finding the short solutions.

Depth-first search is the basis for a number of other algorithms, such as itera-
tive deepening (page 95).

3.5.2 Breadth-First Search

In breadth-first search the frontier is implemented as a FIFO (first-in, first-out)
queue. Thus, the path that is selected from the frontier is the one that was
added earliest.

This approach implies that the paths from the start node are generated in
order of the number of arcs in the path. One of the paths with the fewest arcs
is selected at each stage.

3.5. Uninformed Search Strategies 85

1

2

4 5

8 9 10 11 12 13

3

6 7

1615

14

Figure 3.7: The order in which nodes are expanded in breadth-first search

Example 3.9 Consider the tree-shaped graph in Figure 3.7. Suppose the start
node is the node at the top. In breadth-first search, as in depth-first search, the
order in which the nodes are expanded does not depend on the location of
the goal. The first sixteen nodes expanded are numbered in order of expansion
in the figure. The shaded nodes are the nodes at the ends of the paths of the
frontier after the first sixteen steps.

Example 3.10 Consider breadth-first search from o103 in the graph given in
Figure 3.2 (page 76). The only goal node is r123. Initially, the frontier is [〈o103〉].
This is extended by o103’s neighbors, making the frontier [〈o103, ts〉, 〈o103, b3〉,
〈o103, o109〉]. These are the nodes one arc away from o013. The next three paths
chosen are 〈o103, ts〉, 〈o103, b3〉, and 〈o103, o109〉, at which stage the frontier
contains

[〈o103, ts, mail〉 , 〈o103, b3, b1〉 , 〈o103, b3, b4〉 ,

〈o103, o109, o111〉 , 〈o103, o109, o119〉].

These are the paths containing two arcs and starting at o103. These five paths
are the next elements of the frontier chosen, at which stage the frontier contains
the paths of three arcs away from o103, namely,

[〈o103, b3, b1, c2〉 , 〈o103, b3, b1, b2〉 , 〈o103, b3, b4, o109〉 ,

〈o103, o109, o119, storage〉 , 〈o103, o109, o119, o123〉].

Note how each of the paths on the frontier has approximately the same number
of arcs. For breadth-first search, the number of arcs in the paths on the frontier
always differs by, at most, one.

86 3. States and Searching

Suppose the branching factor of the search is b. If the first path of the frontier
contains n arcs, there are at least bn−1 elements of the frontier. All of these paths
contain n or n + 1 arcs. Thus, both space and time complexities are exponential
in the number of arcs of the path to a goal with the fewest arcs. This method
is guaranteed, however, to find a solution if one exists and will find a solution
with the fewest arcs.

Breadth-first search is useful when

• space is not a problem;

• you want to find the solution containing the fewest arcs;

• few solutions may exist, and at least one has a short path length; and

• infinite paths may exist, because it explores all of the search space, even
with infinite paths.

It is a poor method when all solutions have a long path length or there is some
heuristic knowledge available. It is not used very often because of its space
complexity.

3.5.3 Lowest-Cost-First Search

When a non-unit cost is associated with arcs, we often want to find the solution
that minimizes the total cost of the path. For example, for a delivery robot, costs
may be distances and we may want a solution that gives the minimum total
distance. Costs for a delivery robot may be resources required by the robot
to carry out the action represented by the arc. The cost for a tutoring system
may be the time and effort required by the students. In each of these cases, the
searcher should try to minimize the total cost of the path found to reach the
goal.

The search algorithms considered thus far are not guaranteed to find
the minimum-cost paths; they have not used the arc cost information at all.
Breadth-first search finds a solution with the fewest arcs first, but the distribu-
tion of arc costs may be such that a path of fewest arcs is not one of minimal
cost.

The simplest search method that is guaranteed to find a minimum cost path
is similar to breadth-first search; however, instead of expanding a path with
the fewest number of arcs, it selects a path with the minimum cost. This is
implemented by treating the frontier as a priority queue ordered by the cost
function (page 76).

Example 3.11 Consider a lowest-cost-first search from o103 in the graph given
in Figure 3.2 (page 76). The only goal node is r123. In this example, paths are
denoted by the end node of the path. A subscript shows the cost of the path.

Initially, the frontier is [o1030]. At the next stage it is [b34, ts8, o10912]. The
path to b3 is selected, with the resulting frontier

[b18, ts8, b411, o10912].

3.6. Heuristic Search 87

The path to b1 is then selected, resulting in frontier

[ts8, c211, b411, o10912, b214].

Then the path to ts is selected, and the resulting frontier is

[c211, b411, o10912, mail14, b214].

Then c2 is selected, and so forth. Note how the lowest-cost-first search grows
many paths incrementally, always expanding the path with lowest cost.

If the costs of the arcs are bounded below by a positive constant and the branch-
ing factor is finite, the lowest-cost-first search is guaranteed to find an optimal
solution – a solution with lowest path cost – if a solution exists. Moreover, the
first path to a goal that is found is a path with least cost. Such a solution is
optimal, because the algorithm generates paths from the start in order of path
cost. If a better path existed than the first solution found, it would have been
selected from the frontier earlier.

The bounded arc cost is used to guarantee the lowest-cost search will
find an optimal solution. Without such a bound there can be infinite paths
with a finite cost. For example, there could be nodes n0, n1, n2, . . . with an arc
〈ni−1, ni〉 for each i > 0 with cost 1/2i. Infinitely many paths of the form
〈n0, n1, n2, . . . , nk〉 exist, all of which have a cost of less than 1. If there is an
arc from n0 to a goal node with a cost greater than or equal to 1, it will never be
selected. This is the basis of Zeno’s paradoxes that Aristotle wrote about more
than 2,300 years ago.

Like breadth-first search, lowest-cost-first search is typically exponential in
both space and time. It generates all paths from the start that have a cost less
than the cost of the solution.

3.6 Heuristic Search

All of the search methods in the preceding section are uninformed in that they
did not take into account the goal. They do not use any information about
where they are trying to get to unless they happen to stumble on a goal. One
form of heuristic information about which nodes seem the most promising is
a heuristic function h(n), which takes a node n and returns a non-negative real
number that is an estimate of the path cost from node n to a goal node. The
function h(n) is an underestimate if h(n) is less than or equal to the actual cost
of a lowest-cost path from node n to a goal.

The heuristic function is a way to inform the search about the direction to a
goal. It provides an informed way to guess which neighbor of a node will lead
to a goal.

There is nothing magical about a heuristic function. It must use only infor-
mation that can be readily obtained about a node. Typically a trade-off exists
between the amount of work it takes to derive a heuristic value for a node and

88 3. States and Searching

how accurately the heuristic value of a node measures the actual path cost from
the node to a goal.

A standard way to derive a heuristic function is to solve a simpler problem
and to use the actual cost in the simplified problem as the heuristic function of
the original problem.

Example 3.12 For the graph of Figure 3.2 (page 76), the straight-line distance
in the world between the node and the goal position can be used as the heuristic
function.

The examples that follow assume the following heuristic function:

h(mail) = 26 h(ts) = 23 h(o103) = 21
h(o109) = 24 h(o111) = 27 h(o119) = 11
h(o123) = 4 h(o125) = 6 h(r123) = 0

h(b1) = 13 h(b2) = 15 h(b3) = 17
h(b4) = 18 h(c1) = 6 h(c2) = 10
h(c3) = 12 h(storage) = 12

This h function is an underestimate because the h value is less than or equal
to the exact cost of a lowest-cost path from the node to a goal. It is the exact
cost for node o123. It is very much an underestimate for node b1, which seems
to be close, but there is only a long route to the goal. It is very misleading for
c1, which also seems close to the goal, but no path exists from that node to the
goal.

Example 3.13 Consider the delivery robot of Example 3.2 (page 73), where
the state space includes the parcels to be delivered. Suppose the cost function is
the total distance traveled by the robot to deliver all of the parcels. One possible
heuristic function is the largest distance of a parcel from its destination. If the
robot could only carry one parcel, a possible heuristic function is the sum of
the distances that the parcels must be carried. If the robot could carry multiple
parcels at once, this may not be an underestimate of the actual cost.

The h function can be extended to be applicable to (non-empty) paths. The
heuristic value of a path is the heuristic value of the node at the end of the path.
That is:

h(〈no, . . . , nk〉) = h(nk)

A simple use of a heuristic function is to order the neighbors that are added to
the stack representing the frontier in depth-first search. The neighbors can be
added to the frontier so that the best neighbor is selected first. This is known as
heuristic depth-first search. This search chooses the locally best path, but it ex-
plores all paths from the selected path before it selects another path. Although
it is often used, it suffers from the problems of depth-fist search.

Another way to use a heuristic function is to always select a path on
the frontier with the lowest heuristic value. This is called best-first search. It

3.6. Heuristic Search 89

g

s

Figure 3.8: A graph that is bad for best-first search

usually does not work very well; it can follow paths that look promising be-
cause they are close to the goal, but the costs of the paths may keep increasing.

Example 3.14 Consider the graph shown in Figure 3.8, where the cost of an
arc is its length. The aim is to find the shortest path from s to g. Suppose the
Euclidean distance to the goal g is used as the heuristic function. A heuristic
depth-first search will select the node below s and will never terminate. Simi-
larly, because all of the nodes below s look good, a best-first search will cycle
between them, never trying an alternate route from s.

3.6.1 A∗ Search

A∗ search is a combination of lowest-cost-first and best-first searches that con-
siders both path cost and heuristic information in its selection of which path to
expand. For each path on the frontier, A∗ uses an estimate of the total path cost
from a start node to a goal node constrained to start along that path. It uses
cost(p), the cost of the path found, as well as the heuristic function h(p), the
estimated path cost from the end of p to the goal.

For any path p on the frontier, define f (p) = cost(p) + h(p). This is an esti-
mate of the total path cost to follow path p then go to a goal node.

If n is the node at the end of path p, this can be depicted as follows:

start actual−→ n︸ ︷︷ ︸
cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f (p)

If h(n) is an underestimate of the path costs from node n to a goal node,
then f (p) is an underestimate of a path cost of going from a start node to a goal
node via p.

90 3. States and Searching

A∗ is implemented by treating the frontier as a priority queue ordered by
f (p).

Example 3.15 Consider using A∗ search in Example 3.4 (page 76) using the
heuristic function of Figure 3.12 (page 88). In this example, the paths on the
frontier are shown using the final node of the path, subscripted with the f -
value of the path. The frontier is initially [o10321], because h(o103) = 21 and the
cost of the path is zero. It is replaced by its neighbors, forming the frontier

[b321, ts31, o10936].

The first element represents the path 〈o103, b3〉; its f -value is f (〈o103, b3〉) =
cost(〈o103, b3〉) + h(b3) = 4 + 17 = 21. Next b3 is selected and replaced by its
neighbors, forming the frontier

[b121, b429, ts31, o10936].

Then the path to b1 is selected and replaced by its neighbors, forming the
frontier

[c221, b429, b229, ts31, o10936].

Then the path to c2 is selected and replaced by its neighbors, forming

[c121, b429, b229, c329, ts31, o10936].

Up to this stage, the search has been continually exploring what seems to be
the direct path to the goal. Next the path to c1 is selected and is replaced by its
neighbors, forming the frontier

[b429, b229, c329, ts31, c335, o10936].

At this stage, there are two different paths to the node c3 on the queue. The
path to c3 that does not go through c1 has a lower f -value than the one that
does. Later (page 93), we consider the situation when one of these paths can be
pruned.

There are two paths with the same f -value. The algorithm does not specify
which is selected. Suppose the path to b4 is selected next and is replaced by its
neighbors, forming

[b229, c329, ts31, c335, o10936, o10942].

Then the path to b2 is selected and replaced by its neighbors, which is the empty
set, forming

[c329, ts31, c335, b435, o10936, o10942].

Then the path to c3 is removed and has no neighbors; thus, the new frontier is

[ts31, c335, b435, o10936, o10942].

Note how A∗ pursues many different paths from the start.
A lowest-cost path is eventually found. The algorithm is forced to try many

different paths, because several of them temporarily seemed to have the lowest
cost. It still does better than either lowest-cost-first search or best-first search.

3.6. Heuristic Search 91

Example 3.16 Consider Figure 3.8 (page 89), which was a problematic graph
for the other heuristic methods. Although it initially searches down from s be-
cause of the heuristic function, eventually the cost of the path becomes so large
that it picks the node on an actual optimal path.

The property that A∗ always finds an optimal path, if one exists, and that the
first path found to a goal is optimal is called the admissibility of A∗. Admis-
sibility means that, even when the search space is infinite, if solutions exist, a
solution will be found and the first path found will be an optimal solution – a
lowest-cost path from a start node to a goal node.

Proposition 3.1. (A∗ admissibility): If there is a solution, A∗ always finds a solution,
and the first solution found is an optimal solution, if

• the branching factor is finite (each node has only a finite number of neighbors),

• arc costs are greater than some ε > 0, and

• h(n) is a lower bound on the actual minimum cost of the lowest-cost path from
n to a goal node.

Proof. Part A: A solution will be found. If the arc costs are all greater than some
ε > 0, eventually, for all paths p in the frontier, cost(p) will exceed any fi-
nite number and, thus, will exceed a solution cost if one exists (at depth in
the search tree no greater than m/ε, where m is the solution cost). Because the
branching factor is finite, only a finite number of nodes must be expanded be-
fore the search tree could get to this size, but the A∗ search would have found
a solution by then.
Part B: The first path to a goal selected is an optimal path. The f -value for
any node on an optimal solution path is less than or equal to the f -value of an
optimal solution. This is because h is an underestimate of the actual cost from
a node to a goal. Thus, the f -value of a node on an optimal solution path is less
than the f -value for any non-optimal solution. Thus, a non-optimal solution
can never be chosen while a node exists on the frontier that leads to an optimal
solution (because an element with minimum f -value is chosen at each step). So,
before it can select a non-optimal solution, it will have to pick all of the nodes
on an optimal path, including each of the optimal solutions.

It should be noted that the admissibility of A∗ does not ensure that every
intermediate node selected from the frontier is on an optimal path from the
start node to a goal node. Admissibility relieves the algorithm from worrying
about cycles and ensures that the first solution found will be optimal. It does
not ensure that the algorithm will not change its mind about which partial path
is the best while it is searching.

To see how the heuristic function improves the efficiency of A∗, suppose
c is the cost of a shortest path from a start node to a goal node. A∗, with an
admissible heuristic, expands every path from a start node in the set

{p : cost(p) + h(p) < c}

92 3. States and Searching

Strategy Selection from Frontier Halts? Space
Depth-first Last node added No Linear
Breadth-first First node added Yes Exponential
Best-first Globally minimal h(p) No Exponential
Lowest-cost-first Minimal cost(p) Yes Exponential
A∗ Minimal cost(p) + h(p) Yes Exponential

“Halts?” means “Is the method guaranteed to halt if there is a path to a goal
on a (possibly infinite) graph with a finite number of neighbors for each node
and where the arc costs have a positive lower bound?” Those search strategies
where the answer is “Yes” have worst-case time complexity which increases
exponentially with the size of the path length. Those algorithms that are not
guaranteed to halt have infinite worst-case time complexity.

Space refers to the space complexity, which is either “Linear” in the path
length or “Exponential” in the path length.

Figure 3.9: Summary of search strategies

and some of the paths in the set

{p : cost(p) + h(p) = c}.

Improving h affects the efficiency of A∗ if it reduces the size of the first of these
sets.

3.6.2 Summary of Search Strategies

The table in Figure 3.9 gives a summary of the searching strategies presented
so far.

The depth-first methods are linear in space with respect to the path lengths
explored but are not guaranteed to find a solution if one exists. Breadth-first,
lowest-cost-first, and A∗ may be exponential in both space and time, but they
are guaranteed to find a solution if one exists, even if the graph is infinite (as
long as there are finite branching factors and positive non-trivial arc costs).

Lowest-cost-first and A∗ searches are guaranteed to find the least-cost solu-
tion as the first solution found.

3.7 More Sophisticated Search

A number of refinements can be made to the preceding strategies. First, we
present two methods that are applicable when there are cycles in the graph;
one checks explicitly for cycles, whereas the other method checks for multiple
paths to a node. Next, we present iterative deepening and depth-first branch-
and-bound searches, which are general methods that are guaranteed to find

3.7. More Sophisticated Search 93

a solution (even an optimal solution), like breadth-first search or A∗ search,
but using the space advantages of depth-first search. We present problem-
reduction methods to break down a search problem into a number of smaller
search problems, each of which may be much easier to solve. Finally, we show
how dynamic programming can be used for path finding and for constructing
heuristic functions.

3.7.1 Cycle Checking

It is possible for a graph representing a search space to include cycles. For
example, in the robot delivery domain of Figure 3.6 (page 84), the robot can
go back and forth between nodes o103 and o109. Some of the aforementioned
search methods can get trapped in cycles, continuously repeating the cycle and
never finding an answer even in finite graphs. The other methods can loop
though cycles, but eventually they still find a solution.

The simplest method of pruning the search tree, while guaranteeing that a
solution will be found in a finite graph, is to ensure that the algorithm does not
consider neighbors that are already on the path from the start. A cycle check or
loop check checks for paths where the last node already appears on the path
from the start node to that node. With a cycle check, only the paths 〈s0, . . . , sk, s〉,
where s /∈ {s0, . . . , sk}, are added to the frontier at line 16 of Figure 3.4 (page 79).
Alternatively, the check can be made after a node is selected; paths with a cycle
can be thrown away.

The computational complexity of a cycle check depends on the search
method being used. For depth-first methods, where the graph is explicitly
stored, the overhead can be as low as a constant factor; a bit can be added to
each node in the graph that is assigned a value of 1 when the node is expanded,
and assigned a value of 0 on backtracking. A search algorithm can avoid cycles
by never expanding a node with its bit set to 1. This approach works because
depth-first search maintains a single current path. The elements on the frontier
are alternative branches from this path. Even if the graph is generated dynam-
ically, as long as an efficient indexing structure is used for the nodes on the
current path, a cycle check can be done efficiently.

For the search strategies that maintain multiple paths – namely, all of those
with exponential space in Figure 3.9 – a cycle check takes time linear in the
length of the path being searched. These algorithms cannot do better than
searching up the partial path being considered, checking to ensure they do not
add a node that already appears in the path.

3.7.2 Multiple-Path Pruning

There is often more than one path to a node. If only one path is required, a
search algorithm can prune from the frontier any path that leads to a node to
which it has already found a path.

94 3. States and Searching

Multiple-path pruning can be implemented by keeping a closed list of
nodes that have been expanded. When a path is selected at line 13 of Figure
3.4 (page 79), if its last node is in the closed list, the path can be discarded.
Otherwise, its last node is added to the closed list, and the algorithm proceeds
as before.

This approach does not necessarily guarantee that the shortest path is not
discarded. Something more sophisticated may have to be done to guarantee
that an optimal solution is found. To ensure that the search algorithm can still
find a lowest-cost path to a goal, one of the following can be done:

• Make sure that the first path found to any node is a lowest-cost path to
that node, then prune all subsequent paths found to that node, as discussed
earlier.

• If the search algorithm finds a lower-cost path to a node than one already
found, it can remove all paths that used the higher-cost path to the node
(because these cannot be on an optimal solution). That is, if there is a path
p on the frontier 〈s, . . . , n, . . . , m〉, and a path p′ to n is found that is shorter
than the portion of the path from s to n in p, then p can be removed from the
frontier.

• Whenever the search finds a lower-cost path to a node than a path to that
already found, it can incorporate a new initial section on the paths that have
extended the initial path. Thus, if there is a path p = 〈s, . . . , n, . . . , m〉 on the
frontier, and a path p′ to n is found that is shorter than the portion of p from
s to n, then p′ can replace the initial part of p to n.

The first of these alternatives allows the use of the closed list without losing
the ability to find an optimal path. The others require more sophisticated algo-
rithms.

In lowest-cost-first search, the first path found to a node (i.e., when the node
is selected from the frontier) is the least-cost path to the node. Pruning subse-
quent paths to that node cannot remove a lower-cost path to that node, and
thus pruning subsequent paths to each node still enables an optimal solution
to be found.

As described earlier, A∗ (page 89) does not guarantee that when a path to
a node is selected for the first time it is the lowest cost path to that node. Note
that the admissibility theorem (page 91) guarantees this for every path to a goal
node but not for every path. To see when pruning subsequent paths to a node
can remove the optimal solution, suppose the algorithm has selected a path p
to node n for expansion, but there exists a lower-cost path to node n, which it
has not found yet. Then there must be a path p′ on the frontier that is the initial
part of the lower-cost path. Suppose path p′ ends at node n′. It must be that
f (p) ≤ f (p′), because p was selected before p′. This means that

cost(p) + h(n) ≤ cost(p′) + h(n′).

If the path to n via p′ has a lower cost than the path p,

cost(p′) + d(n′, n) < cost(p),

3.7. More Sophisticated Search 95

where d(n′, n) is the actual cost of the shortest path from node n′ to n. From
these two equations, we can derive

d(n′, n) < cost(p)− cost(p′) ≤ h(p′)− h(p) = h(n′)− h(n).

Thus, we can ensure that the first path found to any node is the lowest-cost
path if |h(n′)− h(n)| ≤ d(n′, n) for any two nodes n and n′. The monotone re-
striction on h is that |h(n′)− h(n)| ≤ d(n′, n) for any two nodes n and n′. That
is, the difference in the heuristic values for two nodes must be less than or equal
to the actual cost of the lowest-cost path between the nodes. It is applicable to,
for example, the heuristic function of Euclidean distance (the straight-line dis-
tance in an n-dimensional Euclidean space) between two points when the cost
function is distance. It is also typically applicable when the heuristic function
is a solution to a simplified problem that has shorter solutions.

With the monotone restriction, the f -values on the frontier are monotoni-
cally non-decreasing. That is, when the frontier is expanded, the f -values do
not get smaller. Thus, with the monotone restriction, subsequent paths to any
node can be pruned in A∗ search.

Multiple-path pruning subsumes a cycle check, because a cycle is another
path to a node and is therefore pruned. Multiple-path pruning can be done in
constant time, if the graph is explicitly stored, by setting a bit on each node to
which a path has been found. It can be done in logarithmic time (in the number
of nodes expanded, as long as it is indexed appropriately), if the graph is dy-
namically generated, by storing the closed list of all of the nodes that have been
expanded. Multiple-path pruning is preferred over cycle checking for breadth-
first methods where virtually all of the nodes considered have to be stored
anyway. For depth-first search strategies, however, the algorithm does not oth-
erwise have to store all of the nodes already considered. Storing them makes
the method exponential in space. Therefore, cycle checking is preferred over
multiple-path checking for depth-first methods.

3.7.3 Iterative Deepening

So far, none of the methods discussed have been ideal; the only ones that
guarantee that a path will be found require exponential space (see Figure 3.9
(page 92)). One way to combine the space efficiency of depth-first search with
the optimality of breadth-first methods is to use iterative deepening. The idea
is to recompute the elements of the frontier rather than storing them. Each re-
computation can be a depth-first search, which thus uses less space.

Consider making a breadth-first search into an iterative deepening search.
This is carried out by having a depth-first searcher, which searches only to a
limited depth. It can first do a depth-first search to depth 1 by building paths
of length 1 in a depth-first manner. Then it can build paths to depth 2, then
depth 3, and so on. It can throw away all of the previous computation each
time and start again. Eventually it will find a solution if one exists, and, as it is

96 3. States and Searching

enumerating paths in order, the path with the fewest arcs will always be found
first.

When implementing an iterative deepening search, you have to distinguish
between

• failure because the depth bound was reached and

• failure that does not involve reaching the depth bound.

In the first case, the search must be retried with a larger depth bound. In the
second case, it is a waste of time to try again with a larger depth bound, because
no path exists no matter what the depth. We say that failure due to reaching the
depth bound is failing unnaturally, and failure without reaching the depth
bound is failing naturally.

An implementation of iterative-deepening search, IdSearch, is presented in
Figure 3.10. The local procedure dbsearch implements a depth-bounded depth-
first search (using recursion to keep the stack) that places a limit on the length
of the paths for which it is searching. It uses a depth-first search to find all
paths of length k + b, where k is the path length of the given path from the start
and b is a non-negative integer. The iterative-deepening searcher calls this for
increasing depth bounds. This program finds the paths to goal nodes in the
same order as does the breadth-first search. As in the generic graph searching
algorithm, to find more solutions after the return on line 22, the search can
continue from line 23.

The iterative-deepening search fails whenever the breadth-first search
would fail. When asked for multiple answers, it only returns each successful
path once, even though it may be rediscovered in subsequent iterations. Halt-
ing is achieved by keeping track of when increasing the bound could help find
an answer:

• The depth bound is increased if the depth bound search was truncated by
reaching the depth bound. In this case, the search failed unnaturally. The
search failed naturally if the search did not prune any paths due to the depth
bound. In this case, the program can stop and report no (more) paths.

• The search only reports a solution path if that path would not have been
reported in the previous iteration. Thus, it only reports paths whose length
is the depth bound.

The obvious problem with iterative deepening is the wasted computation
that occurs at each step. This, however, may not be as bad as one might think,
particularly if the branching factor is high. Consider the running time of the
algorithm. Assume a constant branching factor of b > 1. Consider the search
where the bound is k. At depth k, there are bk nodes; each of these has been
generated once. The nodes at depth k − 1 have been generated twice, those
at depth k − 2 have been generated three times, and so on, and the nodes
at depth 1 have been generated k times. Thus, the total number of nodes

3.7. More Sophisticated Search 97

1: procedure IdSearch(G, s, goal)
2: Inputs
3: G: graph with nodes N and arcs A
4: s: set of start nodes
5: goal: Boolean function on states

6: Output
7: path from s to a node for which goal is true
8: or ⊥ if there is no such path

9: Local
10: natural failure: Boolean
11: bound: integer
12: procedure dbsearch(〈n0, . . . , nk〉 , b)
13: Inputs
14: 〈n0, . . . , nk〉: path
15: b: integer, b ≥ 0

16: Output
17: path to goal of length k + b
18: if b > 0 then
19: for each arc 〈nk, n〉 ∈ A do
20: dbsearch(〈n0, . . . , nk, n〉 , b− 1)
21: else if goal(nk) then
22: return 〈n0, . . . , nk〉
23: else if nk has any neighbors then
24: natural failure := false

25: bound := 0
26: repeat
27: natural failure := true
28: dbsearch({〈s〉 : s ∈ S}, bound)
29: bound := bound + 1
30: until natural failure
31: return ⊥

Figure 3.10: Iterative deepening search

generated is

bk + 2bk−1 + 3bk−2 + · · ·+ kb

= bk(1 + 2b−1 + 3b−2 + · · ·+ kb1−k)

≤ bk

(
∞

∑
i=1

ib(1−i)

)

= bk
(

b
b− 1

)2

.

98 3. States and Searching

There is a constant overhead (b/(b− 1))2 times the cost of generating the nodes
at depth n. When b = 2 there is an overhead factor of 4, and when b = 3 there
is an overhead of 2.25 over generating the frontier. This algorithm is O(bk) and
there cannot be an asymptotically better uninformed search strategy. Note that,
if the branching factor is close to 1, this analysis does not work (because then
the denominator would be close to zero); see Exercise 3.9 (page 109).

Iterative deepening can also be applied to an A∗ search. Iterative deepen-
ing A∗ (IDA∗) performs repeated depth-bounded depth-first searches. Instead
of the bound being on the number of arcs in the path, it is a bound on the
value of f (n). The threshold starts at the value of f (s), where s is the starting
node with minimal h-value. IDA∗ then carries out a depth-first depth-bounded
search but never expands a node with a higher f -value than the current bound.
If the depth-bounded search fails unnaturally, the next bound is the minimum
of the f -values that exceeded the previous bound. IDA∗ thus checks the same
nodes as A∗ but recomputes them with a depth-first search instead of storing
them.

3.7.4 Branch and Bound

Depth-first branch-and-bound search is a way to combine the space saving of
depth-first search with heuristic information. It is particularly applicable when
many paths to a goal exist and we want an optimal path. As in A∗ search, we
assume that h(n) is less than or equal to the cost of a lowest-cost path from n to
a goal node.

The idea of a branch-and-bound search is to maintain the lowest-cost path
to a goal found so far, and its cost. Suppose this cost is bound. If the search
encounters a path p such that cost(p) + h(p) ≥ bound, path p can be pruned. If
a non-pruned path to a goal is found, it must be better than the previous best
path. This new solution is remembered and bound is set to the cost of this new
solution. It then keeps searching for a better solution.

Branch-and-bound search generates a sequence of ever-improving solu-
tions. Once it has found a solution, it can keep improving it.

Branch-and-bound search is typically used with depth-first search, where
the space saving of the depth-first search can be achieved. It can be im-
plemented similarly to depth-bounded search, but where the bound is in
terms of path cost and reduces as shorter paths are found. The algorithm re-
members the lowest-cost path found and returns this path when the search
finishes.

The algorithm is shown in Figure 3.11. The internal procedure cbsearch, for
cost-bounded search, uses the global variables to provide information to the
main procedure.

Initially, bound can be set to infinity, but it is often useful to set it to an
overestimate, bound0, of the path cost of an optimal solution. This algorithm

3.7. More Sophisticated Search 99

1: procedure DFBranchAndBound(G, s, goal, h, bound0)
2: Inputs
3: G: graph with nodes N and arcs A
4: s: start node
5: goal: Boolean function on nodes
6: h: heuristic function on nodes
7: bound0: initial depth bound (can be ∞ if not specified)

8: Output
9: a least-cost path from s to a goal node if there is a solution with cost

less than bound0
10: or ⊥ if there is no solution with cost less than bound0

11: Local
12: best path: path or ⊥
13: bound: non-negative real
14: procedure cbsearch(〈n0, . . . , nk〉)
15: if cost(〈n0, . . . , nk〉) + h(nk) < bound then
16: if goal(nk) then
17: best path := 〈n0, . . . , nk〉
18: bound := cost(〈n0, . . . , nk〉)
19: else
20: for each arc 〈nk, n〉 ∈ A do
21: cbsearch(〈n0, . . . , nk, n〉)
22: best path := ⊥
23: bound := bound0
24: cbsearch(〈s〉)
25: return best path

Figure 3.11: Depth-first branch-and-bound search

will return an optimal solution – a least-cost path from the start node to a goal
node – if there is a solution with cost less than the initial bound bound0.

If the initial bound is slightly above the cost of a lowest-cost path, this al-
gorithm can find an optimal path expanding no more arcs than A∗ search. This
happens when the initial bound is such that the algorithm prunes any path that
has a higher cost than a lowest-cost path; once it has found a path to the goal, it
only explores paths whose the f -value is lower than the path found. These are
exactly the paths that A∗ explores when it finds one solution.

If it returns ⊥ when bound0 = ∞, there are no solutions. If it returns ⊥
when bound0 is some finite value, it means no solution exists with cost less than
bound0. This algorithm can be combined with iterative deepening to increase
the bound until either a solution is found or it can be shown there is no solution.
See Exercise 3.13 (page 109).

100 3. States and Searching

1

2

3 11

4 10 12 15

16

17 18

8

9

5

6

13 14

7

Figure 3.12: The nodes expanded in depth-first branch-and-bound search

Example 3.17 Consider the tree-shaped graph in Figure 3.12. The goal nodes
are shaded. Suppose that each arc has length 1, and there is no heuristic infor-
mation (i.e., h(n) = 0 for each node n). In the algorithm, suppose depth0 = ∞
and the depth-first search always chooses the leftmost child first. This figure
shows the order in which the nodes are checked to determine if they are a goal
node. The nodes that are not numbered are not checked for being a goal node.

The subtree under the node numbered “5” does not have a goal and is
explored fully (or up to depth depth0 if it had a finite value). The ninth node
checked is a goal node. It has a path cost of 5, and so the bound is set to 5. From
then on, only paths with a length of less than 5 are checked for being a solu-
tion. The fifteenth node checked is also a goal. It has a path cost of 3, and so the
bound is reduced to 3. There are no other goal nodes found, and so the path to
the node labeled 15 is returned. It is an optimal path. There is another optimal
path that is pruned; the algorithm never checks the children of the node labeled
with 18.

If there was heuristic information, it could be used to prune parts of the
search space, as in A∗ search.

3.7.5 Direction of Search

The size of the search space of the generic search algorithm on finite uniform
graphs is bk, where b is the branching factor and k is the path length. Anything
that can be done to reduce k or b can potentially give great savings.

The abstract definition of the graph-searching method of problem solving is
symmetric in the sense that the algorithm can either begin with a start node and

3.7. More Sophisticated Search 101

search forward for a goal node or begin with a goal node and search backward
for a start node in the inverse graph. Note that in many applications the goal
is determined implicitly by a Boolean function that returns true when a goal
is found, and not explicitly as a set of nodes, so backward search may not be
possible.

For those cases where the goal nodes are explicit, it may be more efficient
to search in one direction than in the other. The size of the search space is ex-
ponential in the branching factor. It is typically the case that forward and back-
ward searches have different branching factors. A general principle is to search
forward or backward, depending on which has the smaller branching factor.

The following sections consider some ways in which search efficiency can
be improved beyond this for many search spaces.

Bidirectional Search

The idea of a bidirectional search is to reduce the search time by searching
forward from the start and backward from the goal simultaneously. When the
two search frontiers intersect, the algorithm can reconstruct a single path that
extends from the start state through the frontier intersection to the goal.

A new problem arises during a bidirectional search, namely ensuring that
the two search frontiers actually meet. For example, a depth-first search in both
directions is not likely to work well because its small search frontiers are likely
to pass each other by. Breadth-first search in both directions would be guaran-
teed to meet.

A combination of depth-first search in one direction and breadth-first
search in the other would guarantee the required intersection of the search
frontiers, but the choice of which to apply in which direction may be dif-
ficult. The decision depends on the cost of saving the breadth-first frontier
and searching it to check when the depth-first method will intersect one of its
elements.

There are situations where a bidirectional search can result in substantial
savings. For example, if the forward and backward branching factors of the
search space are both b, and the goal is at depth k, then breadth-first search will
take time proportional to bk, whereas a symmetric bidirectional search will take
time proportional to 2bk/2. This is an exponential savings in time, even though
the time complexity is still exponential. Note that this complexity analysis as-
sumes that finding the intersection of frontiers is free, which may not be a valid
assumption for many applications (see Exercise 3.10 (page 109)).

Island-Driven Search

One of the ways that search may be made more efficient is to identify a limited
number of places where the forward search and backward search can meet.
For example, in searching for a path from two rooms on different floors, it may
be appropriate to constrain the search to first go to the elevator on one level,

102 3. States and Searching

then to the elevator on the goal level. Intuitively, these designated positions
are islands in the search graph, which are constrained to be on a solution path
from the start node to a goal node.

When islands are specified, an agent can decompose the search problem
into several search problems, for example, one from the initial room to the ele-
vator, one from the elevator on one level to the elevator on the other level, and
one from the elevator to the destination room. This reduces the search space
by having three simpler problems to solve. Having smaller problems helps to
reduce the combinatorial explosion of large searches and is an example of how
extra knowledge about a problem can be used to improve efficiency of search.

To find a path between s and g using islands:

1. Identify a set of islands i0, ..., ik;

2. Find paths from s to i0, from ij−1 to ij for each j from 1 to k, and from ik to g.

Each of these searching problems should be correspondingly simpler than the
general problem and therefore easier to solve.

The identification of islands is extra knowledge which may be beyond that
which is in the graph. The use of inappropriate islands may make the problem
more difficult (or even impossible to solve). It may also be possible to iden-
tify an alternate decomposition of the problem by choosing a different set of
islands and search through the space of possible islands. Whether this works
in practice depends on the details of the problem.

Searching in a Hierarchy of Abstractions

The notion of islands can be used to define problem-solving strategies that
work at multiple levels of detail or multiple levels of abstraction.

The idea of searching in a hierarchy of abstractions first involves abstracting
the problem, leaving out as many details as possible. A partial solution to a
problem may be found – one that requires further details to be worked out. For
example, the problem of getting from one room to another requires the use of
many instances of turning, but an agent would like to reason about the problem
at a level of abstraction where the details of the actual steering are omitted. It is
expected that an appropriate abstraction solves the problem in broad strokes,
leaving only minor problems to be solved. The route planning problem for the
delivery robot is too difficult to solve by searching without leaving out details
until it must consider them.

One way this can be implemented is to generalize island-driven search to
search over possible islands. Once a solution is found at the island level, sub-
problems can be solved recursively in the same manner. Information that is
found at the lower level can inform higher levels that some potential solution
does not work as well as expected. The higher level can then use that informa-
tion to replan. This process typically does not result in a guaranteed optimal
solution because it only considers some of the high-level decompositions.

3.7. More Sophisticated Search 103

Searching in a hierarchy of abstractions depends very heavily on how one
decomposes and abstracts the problem to be solved. Once the problems are ab-
stracted and decomposed, any of the search methods can be used to solve them.
It is not easy, however, to recognize useful abstractions and problem decompo-
sitions.

3.7.6 Dynamic Programming

Dynamic programming is a general method for optimization that involves stor-
ing partial solutions to problems, so that a solution that has already been found
can be retrieved rather than being recomputed. Dynamic programming algo-
rithms are used throughout AI.

Dynamic programming can be used for finding paths in graphs. Intuitively,
dynamic programming for graph searching can be seen as constructing the
perfect heuristic function so that A∗, even if it keeps only one element of the
frontier, is guaranteed to find a solution. This cost-to-goal function represents
the exact cost of a minimal-cost path from each node to the goal.

A policy is a specification of which arc to take from each node. The cost-
to-goal function can be computed offline and can be used to build an optimal
policy. Online, an agent can use this policy to determine what to do at each
point.

Let cost to goal(n) be the actual cost of a lowest-cost path from node n to a
goal; cost to goal(n) can be defined as

cost to goal(n) =
{

0 if is goal(n),
min〈n,m〉∈A(cost(〈n, m〉) + cost to goal(m)) otherwise.

The general idea is to start at the goal and build a table of the cost to goal(n)
value for each node. This can be done by carrying out a lowest-cost-first search,
with multiple-path pruning, from the goal nodes in the inverse graph, which is
the graph with all arcs reversed. Rather than having a goal to search for, the
dynamic programming algorithm records the cost to goal values for each node
found. It uses the inverse graph to compute the costs from each node to the goal
and not the costs from the goal to each node. In essence, dynamic programming
works backward from the goal by trying to build the lowest-cost paths to the
goal from each node in the graph.

For a particular goal, once the cost to goal value for each node has been
recorded, an agent can use the cost to goal value to determine the next arc on
an optimal path. From node n it should go to a neighbor m that minimizes
cost(〈n, m〉) + cost to goal(m). Following this policy will take the agent from
any node to a goal along a lowest-cost path. Given cost to goal, determining
which arc is optimal takes constant time with respect to the size of the graph,
assuming a bounded number of neighbors for each node. Dynamic program-
ming takes time and space linear in the size of the graph to build the cost to goal
table.

104 3. States and Searching

Dynamic programming is useful when

• the goal nodes are explicit (the previous methods only assumed a func-
tion that recognizes goal nodes);
• a lowest-cost path is needed;
• the graph is finite and small enough to be able to store the cost to goal

value for each node;
• the goal does not change very often; and
• the policy is used a number of times for each goal, so that the cost of

generating the cost to goal values can be amortized over many instances
of the problem.

The main problems with dynamic programming are that

• it only works when the graph is finite and the table can be made small
enough to fit into memory,
• an agent must recompute a policy for each different goal, and
• the time and space required is linear in the size of the graph, where the

graph size for finite graphs is typically exponential in the path length.

Example 3.18 For the graph given in Figure 3.2 (page 76), the cost from r123
to the goal is 0; thus,

cost to goal(r123) = 0.

Continuing with a lowest-cost-first search from r123:

cost to goal(o123) = 4
cost to goal(o119) = 13
cost to goal(o109) = 29
cost to goal(b4) = 36
cost to goal(b2) = 39
cost to goal(o103) = 41
cost to goal(b3) = 43
cost to goal(b1) = 45

At this stage the backward search halts. Two things can be noticed here. First,
if a node does not have a cost to goal value, then no path to the goal exists from
that node. Second, an agent can quickly determine the next arc on a lowest-cost
path to the goal for any node. For example, if the agent is at o103, to determine
a lowest-cost path to r123 it compares 4 + 43 (the cost of going via b3) with
12 + 29 (the cost of going straight to o109) and can quickly determine to go to
o109.

When building the cost to goal function, the searcher has implicitly deter-
mined which neighbor leads to the goal. Instead of determining at run time
which neighbor is on an optimal path, it can store this information.

3.7. More Sophisticated Search 105

Optimality of the A∗ algorithm

A search algorithm is optimal if no other search algorithm uses less time or
space or expands fewer nodes, both with a guarantee of solution quality. The
optimal search algorithm would be one that picks the correct node at each
choice. However, this specification is not effective because we cannot directly
implement it. Whether such an algorithm is possible is an open question (as
to whether P = NP). There does, however, seem to be a statement that can be
proved.

Optimality of A∗: Among search algorithms that only use arc costs and
a heuristic estimate of the cost from a node to a goal, no algorithm expands
fewer nodes than A∗ and guarantees to find a lowest-cost path.

Proof sketch: Given only the information about the arc costs and the
heuristic information, unless the algorithm has expanded each path p, where
f (p) is less than the cost of an optimal path, it does not know whether p leads
to a lower-cost path. More formally, suppose an algorithm A′ found a path
for a problem P where some path p was not expanded such that f (p) was less
than the solution found. Suppose there was another problem P′, which was
the same as P, except that there really was a path via p with cost f (p). The
algorithm A′ cannot tell P′ from P, because it did not expand the path p, so it
would report the same solution for P′ as for P, but the solution found for P
would not be optimal for P′ because the solution found has a higher cost than
the path via p. Therefore, an algorithm is not guaranteed to find a lowest-cost
path unless it explores all paths with f -values less than the value of an optimal
path; that is, it must explore all the paths that A∗ explores.

Counterexample: Although this proof seems reasonable, there are algo-
rithms that explore fewer nodes. Consider an algorithm that does a forward
A∗-like search and a backward dynamic programming search, where the steps
are interleaved in some way (e.g., by alternating between the forward steps
and the backward steps). The backward search builds a table of cost to goal(n)
values of the actual discovered cost from n to a goal, and it maintains a bound
b, where it has explored all paths of cost less than b to a goal. The forward
search uses a priority queue on cost(p) + c(n), where n is the node at the end
of the path p, and c(n) is cost to goal(n) if it has been computed; otherwise,
c(n) is max(h(n), b). The intuition is that, if a path exists from the end of path
p to a goal node, either it uses a path that has been discovered by the backward
search or it uses a path that costs at least b. This algorithm is guaranteed to
find a lowest-cost path and often expands fewer nodes than A∗ (see Exercise
3.11 (page 109)).

Conclusion: Having a counterexample would seem to mean that the opti-
mality of A∗ is false. However, the proof does seem to have some appeal and
perhaps it should not be dismissed outright. A∗ is not optimal out of the class
of all algorithms, but the proof seems right for the class of algorithms that
only do forward search. See Exercise 3.12 (page 109).

106 3. States and Searching

Dynamic programming can be used to construct heuristics for A∗ and
branch-and-bound searches. One way to build a heuristic function is to sim-
plify the problem (e.g., by leaving out some details) until the simplified prob-
lem has a small enough state space. Dynamic programming can be used to find
the optimal path length to a goal in the simplified problem. This information
can then be used as a heuristic for the original problem.

3.8 Review

The following are the main points you should have learned from this chapter:

• Many problems can be abstracted as the problem of finding paths in graphs.

• Breadth-first and depth-first searches can find paths in graphs without any
extra knowledge beyond the graph.

• A∗ search can use a heuristic function that estimates the cost from a node to
a goal. If this estimate underestimates the actual cost, A∗ is guaranteed to
find a least-cost path first.

• Iterative deepening and depth-first branch-and-bound searches can be used
to find least-cost paths with less memory than methods such as A∗, which
store multiple paths.

• When graphs are small, dynamic programming can be used to record the
actual cost of a least-cost path from each node to the goal, which can be used
to find the next arc in an optimal path.

3.9 References and Further Reading

There is a lot of information on search techniques in the literature of operations
research, computer science, and AI. Search was seen early on as one of the
foundations of AI. The AI literature emphasizes heuristic search.

Basic search algorithms are discussed in Nilsson [1971]. For a detailed anal-
ysis of heuristic search see Pearl [1984]. The A∗ algorithm was developed by
Hart, Nilsson, and Raphael [1968].

Depth-first iterative deepening is described in Korf [1985].
Branch-and-bound search was developed in the operations research com-

munity and is described in Lawler and Wood [1966].
Dynamic programming is a general algorithm that will be used as a dual

to search algorithms in other parts of the book. The specific algorithm pre-
sented here was invented by Dijkstra [1959]. See Cormen, Leiserson, Rivest,
and Stein [2001] for more details on the general class of dynamic programming
algorithms.

The idea of using dynamic programming as a source of heuristics for A∗

search was proposed by Culberson and Schaeffer [1998] and further developed
by Felner, Korf, and Hanan [2004].

Minsky [1961] discussed islands and problem reduction.

3.10. Exercises 107

s

g

Figure 3.13: A grid-searching problem

3.10 Exercises

Exercise 3.1 Comment on the following quote: “One of the main goals of AI
should be to build general heuristics that can be used for any graph-searching
problem.”

Exercise 3.2 Which of the path-finding search procedures are fair in the sense
that any element on the frontier will eventually be chosen? Consider this for ques-
tion finite graphs without loops, finite graphs with loops, and infinite graphs (with
finite branching factors).

Exercise 3.3 Consider the problem of finding a path in the grid shown in
Figure 3.13 from the position s to the position g. A piece can move on the grid
horizontally and vertically, one square at a time. No step may be made into a for-
bidden shaded area.

(a) On the grid shown in Figure 3.13, number the nodes expanded (in order) for
a depth-first search from s to g, given that the order of the operators is up,
left, right, then down. Assume there is a cycle check.

(b) For the same grid, number the nodes expanded, in order, for a best-first
search from s to g. Manhattan distance should be used as the evaluation
function. The Manhattan distance between two points is the distance in the
x-direction plus the distance in the y-direction. It corresponds to the distance
traveled along city streets arranged in a grid. Assume multiple-path prun-
ing. What is the first path found?

(c) On the same grid, number the nodes expanded, in order, for a heuristic
depth-first search from s to g, given Manhattan distance as the evaluation
function. Assume a cycle check. What is the path found?

108 3. States and Searching

(d) Number the nodes in order for an A∗ search, with multiple-path pruning,
for the same graph. What is the path found?

(e) Show how to solve the same problem using dynamic programming. Give
the dist value for each node, and show which path is found.

(f) Based on this experience, discuss which algorithms are best suited for this
problem.

(g) Suppose that the graph extended infinitely in all directions. That is, there is
no boundary, but s, g, and the blocks are in the same positions relative to
each other. Which methods would no longer find a path? Which would be
the best method, and why?

Exercise 3.4 This question investigates using graph searching to design video
presentations. Suppose there exists a database of video segments, together with
their length in seconds and the topics covered, set up as follows:

Segment Length Topics covered
seg0 10 [welcome]
seg1 30 [skiing, views]
seg2 50 [welcome, artificial intelligence, robots]
seg3 40 [graphics, dragons]
seg4 50 [skiing, robots]

Suppose we represent a node as a pair:

〈To Cover, Segs〉 ,

where Segs is a list of segments that must be in the presentation, and To Cover is a
list of topics that also must be covered. Assume that none of the segments in Segs
cover any of the topics in To Cover.

The neighbors of a node are obtained by first selecting a topic from To Cover.
There is a neighbor for each segment that covers the selected topic. [Part of this
exercise is to think about the exact structure of these neighbors.]

For example, given the aforementioned database of segments, the neighbors of
the node 〈[welcome, robots], []〉, assuming that welcome was selected, are 〈[], [seg2]〉
and 〈[robots], [seg0]〉.

Thus, each arc adds exactly one segment but can cover one or more topics.
Suppose that the cost of the arc is equal to the time of the segment added.

The goal is to design a presentation that covers all of the topics in MustCover.
The starting node is 〈MustCover, []〉, and the goal nodes are of the form
〈[], Presentation〉. The cost of the path from a start node to a goal node is the time
of the presentation. Thus, an optimal presentation is a shortest presentation that
covers all of the topics in MustCover.

(a) Suppose that the goal is to cover the topics [welcome, skiing, robots]. Suppose
the algorithm always select the leftmost topic to find the neighbors for each
node. Draw the search space expanded for a lowest-cost-first search until the
first solution is found. This should show all nodes expanded, which node is
a goal node, and the frontier when the goal was found.

3.10. Exercises 109

(b) Give a non-trivial heuristic function h that is an underestimate of the real
cost. [Note that h(n) = 0 for all n is the trivial heuristic function.] Does it
satisfy the monotone restriction for a heuristic function?

Exercise 3.5 Draw two different graphs, indicating start and goal nodes, for
which forward search is better in one and backward search is better in the
other.

Exercise 3.6 Implement iterative-deepening A∗. This should be based on the it-
erative deepening searcher of Figure 3.10 (page 97).

Exercise 3.7 Suppose that, rather than finding an optimal path from the start to a
goal, we wanted a path with a cost not more than, say, 10% greater than the least-
cost path. Suggest an alternative to an iterative-deepening A∗ search that would
guarantee this outcome. Why might this be advantageous to iterative-deepening
A∗ search?

Exercise 3.8 How can depth-first branch-and-bound be modified to find a path
with a cost that is not more than, say 10% greater than the least-cost path. How
does this algorithm compare to the variant of A∗ from the previous question?

Exercise 3.9 The overhead for iterative deepening with b− 1 on the denominator
(page 97) is not a good approximation when b ≈ 1. Give a better estimate of the
complexity of iterative deepening when b = 1. What is the complexity of the other
methods given in this chapter? Suggest a way that iterative deepening can have a
lower overhead when the branching factor is close to 1.

Exercise 3.10 Bidirectional search must be able to determine when the frontiers
intersect. For each of the following pairs of searches specify how to determine
when the frontiers intersect:

(a) Breadth-first search and depth-bounded depth-first search.

(b) Iterative deepening search and depth-bounded depth-first search.

(c) A∗ and depth-bounded depth-bounded search.

(d) A∗ and A∗.

Exercise 3.11 Consider the algorithm sketched in the counterexample of the box
on page 105:

(a) When can the algorithm stop? (Hint: it does not have to wait until the for-
ward search finds a path to a goal).

(b) What data structures should be kept?

(c) Specify the algorithm in full.

(d) Show that it finds the optimal path.

(e) Give an example where it expands (many) fewer nodes than A∗.

Exercise 3.12 Give a statement of the optimality of A∗ that specifies the class of
algorithms for which A∗ is optimal. Give the formal proof.

Exercise 3.13 The depth-first branch and bound of Figure 3.11 (page 99) is like
a depth-bounded search in that it only finds a solution if there is a solution with

110 3. States and Searching

cost less than bound. Show how this can be combined with an iterative deepening
search to increase the depth bound if there is no solution for a particular depth
bound. This algorithm must return ⊥ in a finite graph if there is no solution. The
algorithm should allow the bound to be incremented by an arbitrary amount and
still return an optimal (least-cost) solution when there is a solution.

Chapter 4

Features and Constraints

Every task involves constraint,
Solve the thing without complaint;
There are magic links and chains
Forged to loose our rigid brains.
Structures, strictures, though they bind,
Strangely liberate the mind.

– James Falen

Instead of reasoning explicitly in terms of states, it is often better to describe
states in terms of features and then to reason in terms of these features. Often
these features are not independent and there are hard constraints that specify
legal combinations of assignments of values to variables. As Falen’s elegant
poem emphasizes, the mind discovers and exploits constraints to solve tasks.
Common examples occur in planning and scheduling, where an agent must
assign a time for each action that must be carried out; typically, there are con-
straints on when actions can be carried out and constraints specifying that the
actions must actually achieve a goal. There are also often preferences over val-
ues that can be specified in terms of soft constraints. This chapter shows how
to generate assignments that satisfy a set of hard constraints and how to opti-
mize a collection of soft constraints.

4.1 Features and States

For any practical problem, an agent cannot reason in terms of states; there
are simply too many of them. Moreover, most problems do not come with an
explicit list of states; the states are typically described implicitly in terms of

111

112 4. Features and Constraints

features. When describing a real state space, it is usually more natural to de-
scribe the features that make up the state rather than explicitly enumerating
the states.

The definitions of states and features are intertwined; we can describe either
in terms of the other.

• States can be defined in terms of features: features can be primitive and a
state corresponds to an assignment of a value to each feature.

• Features can be defined in terms of states: the states can be primitive and
a feature is a function of the states. Given a state, the function returns the
value of the feature on that state.

Each feature has a domain that is the set of values that it can take on. The
domain of the feature is the range of the function on the states.

Example 4.1 In the electrical environment of Figure 1.8 (page 34), there may
be a feature for the position of each switch that specifies whether the switch
is up or down. There may be a feature for each light that specifies whether the
light is lit or not. There may be a feature for each component specifying whether
it is working properly or if it is broken. A state consists of the position of every
switch, the status of every device, and so on.

If the features are primitive, a state is an assignment of a value to each fea-
ture. For example, a state may be described as switch 1 is up, switch 2 is down,
fuse 1 is okay, wire 3 is broken, and so on.

If the states are primitive, the functions may be, for example, the position of
switch 1. The position is a function of the state, and it may be up in some states
and down in other states.

One main advantage of reasoning in terms of features is the computational
savings. For a binary feature the domain has two values. Many states can be
described by a few features:

• 10 binary features can describe 210 = 1, 024 states.

• 20 binary features can describe 220 = 1, 048, 576 states.

• 30 binary features can describe 230 = 1, 073, 741, 824 states.

• 100 binary features can describe 2100 = 1, 267, 650, 600, 228, 229, 401, 496,
703, 205, 376 states.

Reasoning in terms of thirty features may be easier than reasoning in terms of
more than a billion states. One hundred features is not that many, but reasoning
in terms of more than 2100 states explicitly is not possible. Many problems have
thousands if not millions of features.

Typically the features are not independent, in that there may be constraints
on the values of different features. One problem is to determine what states are
possible given the features and the constraints.

4.2. Possible Worlds, Variables, and Constraints 113

4.2 Possible Worlds, Variables, and Constraints

To keep the formalism simple and general, we develop the notion of features
without considering time explicitly. Constraint satisfaction problems will be
described in terms of possible worlds.

When we are not modeling change, there is a direct one-to-one correspon-
dence between features and variables, and between states and possible worlds.

A possible world is a possible way the world (the real world or some imag-
inary world) could be. For example, when representing a crossword puzzle,
the possible worlds correspond to the ways the crossword could be filled out.
In the electrical environment, a possible world specifies the position of every
switch and the status of every component.

Possible worlds are described by algebraic variables. An algebraic variable
is a symbol used to denote features of possible worlds. Algebraic variables will
be written starting with an upper-case letter. Each algebraic variable V has an
associated domain, dom(V), which is the set of values the variable can take on.

For this chapter, we refer to an algebraic variable simply as a variable.
These algebraic variables are different from the variables used in logic, which
are discussed in Chapter 12. Algebraic variables are the same as the random
variables used in probability theory, which are discussed in Chapter 6.

A discrete variable is one whose domain is finite or countably infinite. One
particular case of a discrete variable is a Boolean variable, which is a variable
with domain {true, false}. If X is a Boolean variable, we write X = true as its
lower-case equivalent, x, and write X = false as x. We can also have variables
that are not discrete; for example, a variable whose domain corresponds to a
subset of the real line is a continuous variable.

Example 4.2 The variable Class time may denote the starting time for a partic-
ular class. The domain of Class time may be the following set of possible times:

dom(Class time) = {8, 9, 10, 11, 12, 1, 2, 3, 4, 5}.
The variable Height joe may refer to the height of a particular person at a par-
ticular time and have as its domain the set of real numbers, in some range, that
represent the height in centimeters. Raining may be a Boolean random variable
with value true if it is raining at a particular time.

Example 4.3 Consider the electrical domain depicted in Figure 1.8 (page 34).

• S1 pos may be a discrete binary variable denoting the position of switch s1
with domain {up, down}, where S1 pos = up means switch s1 is up, and
S1 pos = down means switch s1 is down.

• S1 st may be a variable denoting the status of switch s1 with domain {ok,
upside down, short, intermittent, broken}, where S1 st = ok means switch
s1 is working normally, S1 st = upside down means switch s1 is installed
upside down, S1 st = short means switch s1 is shorted and acting as a
wire, S1 st = intermittent means switch S1 is working intermittently, and
S1 st = broken means switch s1 is broken and does not allow electricity to
flow.

114 4. Features and Constraints

• Number of broken switches may be an integer-valued variable denoting the
number of switches that are broken.

• Current w1 may be a real-valued variable denoting the current, in amps,
flowing through wire w1. Current w1 = 1.3 means there are 1.3 amps flow-
ing through wire w1. We also allow inequalities between variables and
constants as Boolean features; for example, Current w1 ≥ 1.3 is true when
there are at least 1.3 amps flowing through wire w1.

Symbols and Semantics

Algebraic variables are symbols.
Internal to a computer, a symbol is just a sequence of bits that can be dis-

tinguished from other symbols. Some symbols have a fixed interpretation, for
example, symbols that represent numbers and symbols that represent charac-
ters. Symbols that do not have fixed meaning appear in many programming
languages. In Java, starting from Java 1.5, they are called enumeration types.
Lisp refers to them as atoms. Usually, they are implemented as indexes into a
symbol table that gives the name to print out. The only operation performed
on these symbols is equality to determine if two symbols are the same or not.

To a user of a computer, symbols have meanings. A person who inputs
constraints or interprets the output associates meanings with the symbols
that make up the constraints or the outputs. He or she associates a sym-
bol with some concept or object in the world. For example, the variable
HarrysHeight, to the computer, is just a sequence of bits. It has no relation-
ship to HarrysWeight or SuesHeight. To a person, this variable may mean the
height, in particular units, of a particular person at a particular time.

The meaning associated with a variable–value pair must satisfy the clarity
principle: an omniscient agent – a fictitious agent who knows the truth and
the meanings associated with all of the symbols – should be able to determine
the value of each variable. For example, the height of Harry only satisfies the
clarity principle if the particular person being referred to and the particular
time are specified as well as the units. For example, we may want to reason
about the height, in centimeters, of Harry Potter at the start of the second
movie of J. K. Rowling’s book. This is different from the height, in inches,
of Harry Potter at the end of the same movie (although they are, of course,
related). If you want to refer to Harry’s height at two different times, you
must have two different variables.

You should have a consistent meaning. When stating constraints, you
must have the same meaning for the same variable and the same values, and
you can use this meaning to interpret the output.

The bottom line is that symbols can have meanings because we give them
meanings. For this chapter, assume that the computer does not know what
the symbols mean. A computer can only know what a symbol means if it can
perceive and manipulate the environment.

4.2. Possible Worlds, Variables, and Constraints 115

Example 4.4 A classic example of a constraint satisfaction problem is a cross-
word puzzle. There are two different representations of crossword puzzles in
terms of variables:

1. In one representation, the variables are the numbered squares with the
direction of the word (down or across), and the domains are the set of
possible words that can be put in. A possible world corresponds to an
assignment of a word for each of the variables.

2. In another representation of a crossword, the variables are the individual
squares and the domain of each variable is the set of letters in the alphabet.
A possible world corresponds to an assignment of a letter to each square.

Possible worlds can be defined in terms of variables or variables can be
defined in terms of possible worlds:

• Variables can be primitive and a possible world corresponds to a total as-
signment of a value to each variable.

• Worlds can be primitive and a variable is a function from possible worlds
into the domain of the variable; given a possible world, the function returns
the value of that variable in that possible world.

Example 4.5 If there are two variables, A with domain {0, 1, 2} and B with do-
main {true, false}, there are six possible worlds, which you can name w0, . . . , w5.
One possible arrangement of variables and possible worlds is
• w0 : A = 0 and B = true
• w1 : A = 0 and B = false
• w2 : A = 1 and B = true
• w3 : A = 1 and B = false
• w4 : A = 2 and B = true
• w5 : A = 2 and B = false

Example 4.6 The trading agent, in planning a trip for a group of tourists, may
be required to schedule a given set of activities. There can be two variables for
each activity: one for the date, for which the domain is the set of possible days
for the activity, and one for the location, for which the domain is the set of pos-
sible towns where it may occur. A possible world corresponds to an assignment
of a date and a town for each activity.

4.2.1 Constraints

In many domains, not all possible assignments of values to variables are per-
missible. A hard constraint, or simply constraint, specifies legal combinations
of assignments of values to the variables.

A scope or scheme is a set of variables. A tuple on scope S is an assignment
of a value to each variable in S. A constraint c on a scope S is a set of tuples on
S. A constraint is said to involve each of the variables in its scope.

If S′ is a set of variables such that S ⊆ S′, and t is a tuple on S′, constraint c
is said to satisfy t if t, restricted to S, is in c.

116 4. Features and Constraints

Constraints can be defined using the terminology of relational databases
(page 635). The main difference between constraints and database relations is
that a constraint specifies legal values, whereas a database relation specifies
what happens to be true in some situation. Constraints are also often defined
intensionally, in terms of predicates (Boolean functions), to recognize legal as-
signments rather than extensionally by representing each assignment explic-
itly in a table. Extensional definitions can be implemented either by represent-
ing the legal assignments or by representing the illegal assignments.

Example 4.7 Consider a constraint on the possible dates for three activities.
Let A, B, and C be variables that represent the date of each activity. Suppose the
domain of each variable is {1, 2, 3, 4}.

The constraint could be written as a table that gives the legal combinations:

A B C
2 2 4
1 1 4
1 2 3
1 2 4

which has scope {A, B, C}. Each row is a tuple that specifies a legal assignment
of a value to each variable in the scope of the constraint. The first tuple is

{A = 2, B = 2, C = 4}.

This tuple, which assigns A the value of 2, B the value of 2, and C the value of
4, specifies one of the four legal assignments of the variables.

This constraint satisfies the tuple {A = 1, B = 2, C = 3, D = 3, E = 1},
because that tuple assigns legal values to the variables in the scope.

This constraint could also be described intensionally by using a predicate –
a logical formula – to specify the legal assignments. The preceding constraint
could be specified by

(A ≤ B) ∧ (B < 3) ∧ (B < C) ∧ ¬(A = B∧ C = 3),

where ∧ means and, and ¬ means not. This formula says that A is on the same
date or before B, and B is before 3, and B is before C, and it cannot be that A and
B are on the same date and C is on day 3.

A unary constraint is a constraint on a single variable (e.g., X �= 4). A
binary constraint is a constraint over a pair of variables (e.g., X �= Y). In gen-
eral, a k-ary constraint has a scope of size k.

A possible world w satisfies a set of constraints if, for every constraint,
the values assigned in w to the variables in the scope of the constraint satisfy
the constraint. In this case, we say that the possible world is a model of the
constraints. That is, a model is a possible world that satisfies all of the cons-
traints.

4.2. Possible Worlds, Variables, and Constraints 117

Example 4.8 Suppose the delivery robot must carry out a number of delivery
activities, a, b, c, d, and e. Suppose that each activity happens at any of times 1,
2, 3, or 4. Let A be the variable representing the time that activity a will occur,
and similarly for the other activities. The variable domains, which represent
possible times for each of the deliveries, are

dom(A) = {1, 2, 3, 4}, dom(B) = {1, 2, 3, 4}, dom(C) = {1, 2, 3, 4},
dom(D) = {1, 2, 3, 4}, dom(E) = {1, 2, 3, 4}.

Suppose the following constraints must be satisfied:

{(B �= 3), (C �= 2), (A �= B), (B �= C), (C < D), (A = D),

(E < A), (E < B), (E < C), (E < D), (B �= D)}
The aim is to find a model, an assignment of a value to each variable, such

that all the constraints are satisfied.

Example 4.9 Consider the constraints for the two representations of cross-
word puzzles of Example 4.4.

1. For the case in which the domains are words, the constraint is that the
letters where a pair of words intersect must be the same.

2. For the representation in which the domains are the letters, the constraint
is that contiguous sequences of letters must form legal words.

Example 4.10 In Example 4.6 (page 115), consider some typical constraints. It
may be that certain activities have to be on different days or that other activities
have to be in the same town on the same day. There may also be constraints that
some activities must occur before other activities, or that there must be a certain
number of days between two activities, or that there cannot be three activities
on three consecutive days.

4.2.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of

• a set of variables,
• a domain for each variable, and
• a set of constraints.

The aim is to choose a value for each variable so that the resulting possible
world satisfies the constraints; we want a model of the constraints.

A finite CSP has a finite set of variables and a finite domain for each vari-
able. Many of the methods considered in this chapter only work for finite CSPs,
although some are designed for infinite, even continuous, domains.

The multidimensional aspect of these problems, where each variable can be
seen as a separate dimension, makes them difficult to solve but also provides
structure that can be exploited.

118 4. Features and Constraints

Given a CSP, there are a number of tasks that can be performed:

• Determine whether or not there is a model.

• Find a model.

• Find all of the models or enumerate the models.

• Count the number of models.

• Find the best model, given a measure of how good models are; see Section
4.10 (page 144).

• Determine whether some statement holds in all models.

This chapter mostly considers the problem of finding a model. Some of the
methods can also determine if there is no solution. What may be more surpris-
ing is that some of the methods can find a model if one exists, but they cannot
tell us that there is no model if none exists.

CSPs are very common, so it is worth trying to find relatively efficient ways
to solve them. Determining whether there is a model for a CSP with finite do-
mains is NP-hard (see box on page 170) and no known algorithms exist to solve
such problems that do not use exponential time in the worst case. However, just
because a problem is NP-hard does not mean that all instances are difficult to
solve. Many instances have structure that can be exploited.

4.3 Generate-and-Test Algorithms

Any finite CSP can be solved by an exhaustive generate-and-test algorithm.
The assignment space, D, is the set of assignments of values to all of the vari-
ables; it corresponds to the set of all possible worlds. Each element of D is a
total assignment of a value to each variable. The algorithm returns those as-
signments that satisfy all of the constraints.

Thus, the generate-and-test algorithm is as follows: check each total as-
signment in turn; if an assignment is found that satisfies all of the constraints,
return that assignment.

Example 4.11 In Example 4.8 the assignment space is

D = { {A = 1, B = 1, C = 1, D = 1, E = 1},
{A = 1, B = 1, C = 1, D = 1, E = 2}, . . . ,
{A = 4, B = 4, C = 4, D = 4, E = 4}}.

In this case there are |D| = 45 = 1, 024 different assignments to be tested. In
the crossword example of Exercise 1 (page 152) there are 406 = 4, 096, 000, 000
possible assignments.

If each of the n variable domains has size d, then D has dn elements. If there
are e constraints, the total number of constraints tested is O(edn). As n becomes
large, this very quickly becomes intractable, and so we must find alternative
solution methods.

4.4. Solving CSPs Using Search 119

4.4 Solving CSPs Using Search

Generate-and-test algorithms assign values to all variables before checking the
constraints. Because individual constraints only involve a subset of the vari-
ables, some constraints can be tested before all of the variables have been as-
signed values. If a partial assignment is inconsistent with a constraint, any com-
plete assignment that extends the partial assignment will also be inconsistent.

Example 4.12 In the delivery scheduling problem of Example 4.8 (page 117),
the assignments A = 1 and B = 1 are inconsistent with the constraint A �= B
regardless of the values of the other variables. If the variables A and B are as-
signed values first, this inconsistency can be discovered before any values are
assigned to C, D, or E, thus saving a large amount of work.

An alternative to generate-and-test algorithms is to construct a search space
from which the search strategies of the previous chapter can be used. The
search problem can be defined as follows:

• The nodes are assignments of values to some subset of the variables.
• The neighbors of a node N are obtained by selecting a variable V that is not

assigned in node N and by having a neighbor for each assignment of a value
to V that does not violate any constraint.

Suppose that node N represents the assignment X1 = v1, . . . , Xk = vk. To
find the neighbors of N, select a variable Y that is not in the set {X1, . . . , Xk}.
For each value yi ∈ dom(Y), such that X1 = v1, . . . , Xk = vk, Y = yi is con-
sistent with the constraints, X1 = v1, . . . , Xk = vk, Y = yi is a neighbor of
N.

• The start node is the empty assignment that does not assign a value to any
variables.

• A goal node is a node that assigns a value to every variable. Note that this
only exists if the assignment is consistent with the constraints.

In this case, it is not the path that is of interest, but the goal nodes.

Example 4.13 Suppose you have a CSP with the variables A, B, and C, each
with domain {1, 2, 3, 4}. Suppose the constraints are A < B and B < C. A possi-
ble search tree is shown in Figure 4.1 (on the next page). In this figure, a node
corresponds to all of the assignments from the root to that node. The potential
nodes that are pruned because they violate constraints are labeled with ✘.

The leftmost ✘ corresponds to the assignment A = 1, B = 1. This violates
the A < B constraint, and so it is pruned.

This CSP has four solutions. The leftmost one is A = 1, B = 2, C = 3.
The size of the search tree, and thus the efficiency of the algorithm, depends
on which variable is selected at each time. A static ordering, such as always
splitting on A then B then C, is less efficient than the dynamic ordering used
here. The set of answers is the same regardless of the variable ordering.

In the preceding example, there would be 43 = 64 assignments tested in a
generate-and-test algorithm. For the search method, there are 22 assignments
generated.

120 4. Features and Constraints

A=1 A=2 A=3 A=4

B=1

A=1 A=2 A=3 A=4

B=2

C=1 C=2 C=3 C=4

B=3

C=1 C=2 C=3 C=4

B=4

C=1 C=2 C=3 C=4 A=1 A=2 A=3 A=4

Figure 4.1: Search tree for the CSP of Example 4.13

Searching with a depth-first search, typically called backtracking, can be
much more efficient than generate and test. Generate and test is equivalent to
not checking constraints until reaching the leaves. Checking constraints higher
in the tree can prune large subtrees that do not have to be searched.

4.5 Consistency Algorithms

Although depth-first search over the search space of assignments is usually a
substantial improvement over generate and test, it still has various inefficien-
cies that can be overcome.

Example 4.14 In Example 4.13, the variables A and B are related by the con-
straint A < B. The assignment A = 4 is inconsistent with each of the possible
assignments to B because dom(B) = {1, 2, 3, 4}. In the course of the backtrack
search (see Figure 4.1), this fact is rediscovered for different assignments to B
and C. This inefficiency can be avoided by the simple expedient of deleting 4
from dom(A), once and for all. This idea is the basis for the consistency algo-
rithms.

The consistency algorithms are best thought of as operating over the network
of constraints formed by the CSP:

• There is a node for each variable. These nodes are drawn as ovals.
• There is a node for each constraint. These nodes are drawn as rectangles.
• Associated with each variable, X, is a set DX of possible values. This set of

values is initially the domain of the variable.

4.5. Consistency Algorithms 121

A A<B B B<C C

Figure 4.2: Constraint network for the CSP of Example 4.15

• For every constraint c, and for every variable X in the scope of c, there is an
arc 〈X, c〉.

Such a network is called a constraint network.

Example 4.15 Consider Example 4.13 (page 119). There are three variables A,
B, and C, each with domain {1, 2, 3, 4}. The constraints are A < B and B < C. In
the constraint network, shown in Figure 4.2, there are four arcs:

〈A, A < B〉
〈B, A < B〉
〈B, B < C〉
〈C, B < C〉

Example 4.16 The constraint X �= 4 has one arc:

〈X, X �= 4〉
The constraint X + Y = Z has three arcs:

〈X, X + Y = Z〉
〈Y, X + Y = Z〉
〈Z, X + Y = Z〉

The simplest case is when the constraint has just one variable in its scope. In
this case, the arc is domain consistent if every value of the variable satisfies the
constraint.

Example 4.17 The constraint B �= 3 has scope {B}. With this constraint, and
with DB = {1, 2, 3, 4}, the arc 〈B, B �= 3〉 is not domain consistent because B = 3
violates the constraint. If the value 3 were removed from the domain of B, then
it would be domain consistent.

Suppose constraint c has scope {X, Y1, . . . , Yk}. Arc 〈X, c〉 is arc consistent
if, for each value x ∈ DX, there are values y1, . . . , yk where yi ∈ DYi , such that
c(X = x, Y1 = y1, . . . , Yk = yk) is satisfied. A network is arc consistent if all its
arcs are arc consistent.

Example 4.18 Consider the network of Example 4.15. None of the arcs are
arc consistent. The first arc is not arc consistent because for A = 4 there is
no corresponding value for B for which A < B. If 4 were removed from the
domain of A, then it would be arc consistent. The second arc is not arc consistent
because there is no corresponding value for A when B = 1.

122 4. Features and Constraints

1: procedure GAC(V, dom, C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output
7: arc-consistent domains for each variable
8: Local
9: DX is a set of values for each variable X

10: TDA is a set of arcs
11: for each variable X do
12: DX ← dom(X)
13: TDA← {〈X, c〉 |c ∈ C and X ∈ scope(c)}
14: while TDA �= {} do
15: select 〈X, c〉 ∈ TDA;
16: TDA← TDA \ {〈X, c〉};
17: NDX ← {x|x ∈ DX and some {X = x, Y1 = y1, . . . , Yk = yk} ∈ c

where yi ∈ DYi for all i}
18: if NDX �= DX then
19: TDA ← TDA ∪ {〈Z, c′〉 |X ∈ scope(c′), c′ is not c, Z ∈ scope(c′) \
{X}}

20: DX ← NDX

21: return {DX|X is a variable}

Figure 4.3: Generalized arc consistency algorithm

If an arc 〈X, c〉 is not arc consistent, there are some values of X for which
there are no values for Y1, . . . , Yk for which the constraint holds. In this case,
all values of X in DX for which there are no corresponding values for the other
variables can be deleted from DX to make the arc 〈X, c〉 consistent.

The generalized arc consistency algorithm is given in Figure 4.3. It makes
the entire network arc consistent by considering a set of potentially inconsistent
arcs, the to-do arcs, in the set TDA. TDA initially consists of all the arcs in the
graph. Although the set is not empty, an arc 〈X, c〉 is removed from the set
and considered. If the arc is not consistent, it is made consistent by pruning
the domain of variable X. All of the previously consistent arcs that could, as a
result of pruning X, have become inconsistent are placed back into the set TDA.
These are the arcs 〈Z, c′〉, where c′ is a constraint different from c that involves
X, and Z is a variable involved in c′ other than X.

Example 4.19 Consider the algorithm GAC operating on the network from
Example 4.15. Initially, all of the arcs are in the TDA set. Here is one possible
sequence of selections of arcs:
• Suppose the algorithm first selects the arc 〈A, A < B〉. For A = 4, there

is no value of B that satisfies the constraint. Thus, 4 is pruned from the

4.5. Consistency Algorithms 123

domain of A. Nothing is added to TDA because there is no other arc cur-
rently outside TDA.

• Suppose that 〈B, A < B〉 is selected next. The value 1 can be pruned from
the domain of B. Again no element is added to TDA.

• Suppose that 〈B, B < C〉 is selected next. The value 4 can be removed
from the domain of B. Because the domain of B has been reduced, the
arc 〈A, A < B〉 must be added back into the TDA set because the domain
of A could potentially be reduced further now that the domain of B is
smaller.

• If the arc 〈A, A < B〉 is selected next, the value A = 3 can be pruned from
the domain of A.

• The remaining arc on TDA is 〈C, B < C〉. The values 1 and 2 can be re-
moved from the domain of C. No arcs are added to TDA and TDA be-
comes empty.

The algorithm then terminates with DA = {1, 2}, DB = {2, 3}, DC = {3, 4}.
Although this has not fully solved the problem, it has greatly simplified it.

Example 4.20 Consider applying GAC to the scheduling problem of Example
4.8 (page 117). The network shown in Figure 4.4 (on the next page) has already
been made domain consistent (the value 3 has been removed from the domain
of B and 2 has been removed from the domain of C). Suppose arc 〈D, C < D〉
is considered first. The arc is not arc consistent because D = 1 is not consistent
with any value in DC, so 1 is deleted from DD. DD becomes {2, 3, 4} and arcs
〈A, A = D〉 , 〈B, B �= D〉, and 〈E, E < D〉 could be added to TDA but they are on
it already.

Suppose arc 〈C, E < C〉 is considered next; then DC is reduced to {3, 4} and
arc 〈D, C < D〉 goes back into the TDA set to be reconsidered.

Suppose arc 〈D, C < D〉 is next; then DD is further reduced to the singleton
{4}. Processing arc 〈C, C < D〉 prunes DC to {3}. Making arc 〈A, A = D〉 con-
sistent reduces DA to {4}. Processing 〈B, B �= D〉 reduces DB to {1, 2}. Then arc
〈B, E < B〉 reduces DB to {2}. Finally, arc 〈E, E < B〉 reduces DE to {1}. All arcs
remaining in the queue are consistent, and so the algorithm terminates with the
TDA set empty. The set of reduced variable domains is returned. In this case,
the domains all have size 1 and there is a unique solution: A = 4, B = 2, C = 3,
D = 4, E = 1.

Regardless of the order in which the arcs are considered, the algorithm will
terminate with the same result, namely, an arc-consistent network and the same
set of reduced domains. Three cases are possible, depending on the state of the
network upon termination:

• In the first case, one domain is empty, indicating there is no solution to the
CSP. Note that, as soon as any one domain becomes empty, all the domains
of connected nodes will become empty before the algorithm terminates.

• In the second case, each domain has a singleton value, indicating that there
is a unique solution to the CSP, as in Example 4.20.

• In the third case, every domain is non-empty and at least one has multiple
values left in it. In this case, we do not know whether there is a solution or

124 4. Features and Constraints

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

Figure 4.4: Domain-consistent constraint network. The variables are depicted as
circles or ovals with their corresponding domain. The constraints are represented as
rectangles. There is an arc between each variable and each constraint that involves
that variable.

what the solutions look like. We require some other methods to solve the
problem; some such methods are explored in the following sections.

The following example shows that it is possible for a network to be arc
consistent even though there is no solution.

Example 4.21 Suppose there are three variables, A, B and C, each with the
domain {1, 2, 3}. Consider the constraints A = B, B = C, and A �= C. This is
arc consistent: no domain can be pruned using any single constraint. However,
there are no solutions. There is no assignment to the three variables that satisfies
the constraints.

If each variable domain is of size d and there are e constraints to be tested,
then the algorithm GAC does O(ed3) consistency checks. For some CSPs, for
example, if the constraint graph is a tree, GAC alone solves the CSP and does it
in time linear in the number of variables.

Various extensions to the arc-consistency technique are also possible. The
domains need not be finite; they may be specified using descriptions, not just

4.6. Domain Splitting 125

lists of their values. It is also possible to prune the constraints if the constraints
are represented extensionally: if a value has been pruned for a variable X, this
value can be pruned from all constraints that involve X. Higher-order consis-
tency techniques, such as path consistency, consider k-tuples of variables at a
time, not just pairs of variables that are connected by a constraint. For example,
by considering all three variables, you can recognize that there is no solution
in Example 4.21. These higher-order methods are often less efficient for solving
a problem than using arc consistency augmented with the methods described
below.

4.6 Domain Splitting

Another method for simplifying the network is domain splitting or case anal-
ysis. The idea is to split a problem into a number of disjoint cases and solve
each case separately. The set of all solutions to the initial problem is the union
of the solutions to each case.

In the simplest case, suppose there is a binary variable X with domain {t, f}.
All of the solutions either have X = t or X = f . One way to find them is to set
X = t, find all of the solutions with this assignment, and then assign X = f and
find all solutions with this assignment. Assigning a value to a variable gives a
smaller reduced problem to solve.

If the domain of a variable has more than two elements, for example if the
domain of A is {1, 2, 3, 4}, there are a number of ways to split it:

• Split the domain into a case for each value. For example, split A into the
four cases A = 1, A = 2, A = 3, and A = 4.
• Always split the domain into two disjoint subsets. For example, split A

into the two cases A ∈ {1, 2} and the case A ∈ {3, 4}.
The first approach makes more progress with one split, but the second may
allow for more pruning with fewer steps. For example, if the same values for
B can be pruned whether A is 1 or 2, the second case allows this fact to be
discovered once and not have to be rediscovered for each element of A. This
saving depends on how the domains are split.

Recursively solving the cases using domain splitting, recognizing when
there is no solution based on the assignments, is equivalent to the search al-
gorithm of Section 4.4 (page 119). We can be more efficient by interleaving arc
consistency with the search.

One effective way to solve a CSP is to use arc consistency to simplify the
network before each step of domain splitting. That is, to solve a problem,

• simplify the problem using arc consistency; and,
• if the problem is not solved, select a variable whose domain has more

than one element, split it, and recursively solve each case.

One thing to notice about this algorithm is that it does not require a restart of
the arc consistency from scratch after domain splitting. If the variable X has its

126 4. Features and Constraints

domain split, TDA can start with just the arcs that are possibly no longer arc
consistent as a result of the split; these are only the arcs of the form 〈Y, r〉, where
X appears in r and Y is a variable, other than X, that appears in constraint r.

Example 4.22 In Example 4.19 (page 122), arc consistency simplified the net-
work, but did not solve the problem. After arc consistency had completed, there
were multiple elements in the domains. Suppose B is split. There are two cases:
• B = 2. In this case A = 2 is pruned. Splitting on C produces two of the

answers.
• B = 3. In this case C = 3 is pruned. Splitting on A produces the other two

answers.
This search tree should be contrasted with the search tree of Figure 4.1
(page 120). The search space with arc consistency is much smaller, and it was
not as sensitive to the selection of variable orderings. [Figure 4.1 (page 120)
would be much bigger with different variable orderings.]

One other enhancement can make domain splitting much more efficient.
If assigning values to the variables disconnects the graph, each disconnected
component can be solved separately. The solution to the complete problem is
the cross product of the solutions to each component. This can save much com-
putation when one is counting the number of solutions or finding all solutions.
For example, if one component has 100 solutions and the other component has
20 solutions, there are 2,000 solutions. This is a more efficient way to count than
finding each of the 2,000 solutions separately.

4.6.1 Exploiting Propositional Structure

A fundamental idea in AI is to exploit structure in a domain. One form of struc-
ture for CSPs arises from the exploitation of aspects of restricted classes of vari-
ables and constraints. One such class is the class of propositional satisfiability
problems. These problems are characterized by

• Boolean variables: a Boolean variable (page 113) is a variable with domain
{true, false}. Given a Boolean variable Happy, the proposition happy means
Happy = true, and happy means Happy = false.

• clausal constraints: a clause is an expression of the form l1 ∨ l2 ∨ · · · ∨ lk,
where each li is a literal. A literal is an assignment of a value to a Boolean
variable. A clause is satisfied, or true, in a possible world if and only if at
least one of the literals that makes up the clause is true in that possible world.

For example, the clause happy∨ sad∨ living is a constraint among the variables
Happy, Sad, and Living, which is true if Happy has value true, Sad has value true,
or Living has value false.

A clause is a constraint on a set of Boolean variables that removes one of the
assignments from consideration – the assignment that makes all literals false.
Thus, the clause happy ∨ sad ∨ living specifies that the assignment happy, sad,
living is not allowed.

4.7. Variable Elimination 127

When there are only two values, pruning a value from the domain is equiv-
alent to assigning the opposite value. Thus, if X has domain {true, false}, prun-
ing true from the domain of X is the same as assigning X to have value false.

Arc consistency can be used to prune the set of values and the set of con-
straints. Assigning a value to a Boolean variable can simplify the set of con-
straints:

• If X is assigned true, all of the clauses with X = true become redundant;
they are automatically satisfied. These clauses can be removed. Similarly,
assigning the X the value of false can remove the clauses containing X = false.

• If X is assigned the value of true, any clause with X = false can be simplified
by removing X = false from the clause. Similarly, if X is assigned the value
of false, then X = true can be removed from any clause it appears in. This
step is called unit resolution.

Following some steps of pruning the clauses, clauses may exist that contain
just one assignment, Y = v. In this case, the other value can be removed from
the domain of Y. The aforementioned procedure can be repeated for the as-
signment of Y = v. If all of the assignments are removed from a clause, the
constraints are unsatisfiable.

Example 4.23 Consider the clause x ∨ y ∨ z. When X is assigned to true, the
clause can be simplified to y ∨ z. If Y is then assigned to false, the clause can be
simplified to z. Thus, true can be pruned from the domain of Z.

If, instead, X is assigned to false, the preceding clause can be removed.

If a variable has the same value in all remaining clauses, and the algorithm
must only find one model, it can assign that value to that variable. For example,
if variable Y only appears as Y = true (i.e., y is not in any clause), then Y can
be assigned the value true. That assignment does not remove all of the models;
it only simplifies the problem because the set of clauses remaining after setting
Y = true is a subset of the clauses that would remain if Y were assigned the
value false. A variable that only has one value in all of the clauses is called a
pure symbol.

It turns out that pruning the domains and constraints, domain splitting, as-
signing pure symbols, and efficiently managing the constraints (i.e., determin-
ing when all but one of the disjuncts are false) turns out to be a very efficient
algorithm. It is called the DPLL algorithm, after its authors.

4.7 Variable Elimination

Arc consistency simplifies the network by removing values of variables. A
complementary method is variable elimination (VE), which simplifies the net-
work by removing variables.

The idea of VE is to remove the variables one by one. When removing a
variable X, VE constructs a new constraint on some of the remaining variables

128 4. Features and Constraints

reflecting the effects of X on all of the other variables. This new constraint re-
places all of the constraints that involve X, forming a reduced network that
does not involve X. The new constraint is constructed so that any solution to
the reduced CSP can be extended to a solution of the larger CSP that contains
X. In addition to creating the new constraint, VE provides a way to construct a
solution to the CSP that contains X from a solution to the reduced CSP.

The following algorithm is described using the relational algebra calcula-
tions of join and project (page 635).

When eliminating X, the influence of X on the remaining variables is
through the constraint relations that involve X. First, the algorithm collects all
of the constraints that involve X. Let the join of all of these relations be the re-
lation rX(X, Y), where Y is the set of other variables in the scope of rX. It then
projects rX onto Y; this relation can replace all of the relations that involve X. It
now has a reduced CSP that involves one less variable, which it can solve re-
cursively. Once it has a solution for the reduced CSP, it can extend that solution
to a solution for the original CSP by joining the solution with rX.

When only one variable is left, it returns those domain elements that are
consistent with the constraints on this variable.

Example 4.24 Consider a CSP that contains the variables A, B, and C, each
with domain {1, 2, 3, 4}. Suppose the constraints that involve B are A < B and
B < C. There may be many other variables, but if B does not have any con-
straints in common with these variables, eliminating B will not impose any
new constraints on these other variables. To remove B, first join on the relations
that involve B:

A B
1 2
1 3
1 4
2 3
2 4
3 4

��

B C
1 2
1 3
1 4
2 3
2 4
3 4

=

A B C
1 2 3
1 2 4
1 3 4
2 3 4

To get the relation on A and C induced by B, project this join onto A and C,
which gives

A C
1 3
1 4
2 4

This relation on A and C contains all of the information about the constraints
on B that affect the solutions of the rest of the network.

The original constraints on B are replaced with the new constraint on A and
C. It then solves the rest of the network, which is now simpler because it does
not involve the variable B. It must remember the joined relation to construct a
solution that involves B from a solution to the reduced network.

4.7. Variable Elimination 129

1: procedure VE CSP(V, C)
2: Inputs
3: V: a set of variables
4: C: a set of constraints on V
5: Output
6: a relation containing all of the consistent variable assignments
7: if V contains just one element then
8: return the join of all the relations in C
9: else

10: select variable X to eliminate
11: V′ := V \ {X}
12: CX := {TinC : T involves X}
13: let R be the join of all of the constraints in CX
14: let R′ be R projected onto the variables other than X
15: S := VE CSP(V′, (C \ CX) ∪ {R′})
16: return R �� S

Figure 4.5: Variable elimination for CSPs

Figure 4.5 gives a recursive algorithm for variable elimination, VE CSP, to
find all solutions for a CSP.

The base case of the recursion occurs when only one variable is left. In this
case (line 8), a solution exists if and only if there are rows in the join of the final
relations. Note that these relations are all relations on a single variable, and so
they are the sets of legal values for this variable. The join of these relations is
the intersection of these sets.

In the non-base case, a variable X is selected for elimination (line 10). Which
variable is selected does not affect the correctness of the algorithm, but it may
affect the efficiency. To eliminate variable X, the algorithm propagates the effect
of X onto those variables that X is directly related to. This is achieved by joining
all of the relations in which X is involved (line 13) and then projecting X out
of the resulting relation (line 14). Thus, a simplified problem (with one less
variable) has been created that can be solved recursively. To get the possible
values for X, the algorithm joins the solution of the simplified problem with
the relation R that defines the effect of X.

If you only wanted to find one solution, instead of returning R �� S, the
algorithm can return one element of the join. No matter which element it re-
turns, that element is guaranteed to be part of a solution. If any value of R in
this algorithm contains no tuples, there are no solutions.

The efficiency of the VE algorithm depends on the order in which variables
are selected. The intermediate structure – which variables the intermediate re-
lations are over – depends not on the actual content of relations but only on the
graph structure of the constraint network. The efficiency of this algorithm can
be determined by considering the graphical structure. In general, VE is efficient

130 4. Features and Constraints

when the constraint network is sparse. The number of variables in the largest
relation returned for a particular variable ordering is called the treewidth of
the graph for that variable ordering. The treewidth of a graph is the minimum
treewidth for any ordering. The complexity of VE is exponential in treewidth
and linear in the number of variables. This can be compared to searching [see
Section 4.4 (page 119)], which is exponential in the number of variables.

Finding an elimination ordering that results in the smallest treewidth is
NP-hard. However, some good heuristics exist. The two most common are

• min-factor: at each stage, select the variable that results in the smallest rela-
tion.

• minimum deficiency or minimum fill: at each stage, select the variable that
adds the smallest number of arcs to the remaining constraint network. The
deficiency of a variable X is the number of pairs of variables that are in a re-
lationship with X that are not in a relationship with each other. The intuition
is that it is okay to remove a variable that results in a large relation as long
as it does not make the network more complicated.

The minimum deficiency has usually been found empirically to give a smaller
treewidth than min-factor, but it is more difficult to compute.

VE can also be combined with arc consistency; whenever VE removes a
variable, arc consistency can be used to further simplify the problem. This ap-
proach can result in smaller intermediate tables.

4.8 Local Search

The previous sections have considered algorithms that systematically search
the space. If the space is finite, they will either find a solution or report that no
solution exists. Unfortunately, many search spaces are too big for systematic
search and are possibly even infinite. In any reasonable time, systematic search
will have failed to consider enough of the search space to give any meaningful
results. This section and the next consider methods intended to work in these
very large spaces. The methods do not systematically search the whole search
space but they are designed to find solutions quickly on average. They do not
guarantee that a solution will be found even if one exists, and so they are not
able to prove that no solution exists. They are often the method of choice for
applications where solutions are known to exist or are very likely to exist.

Local search methods start with a complete assignment of a value to each
variable and try to iteratively improve this assignment by improving steps,
by taking random steps, or by restarting with another complete assignment.
A wide variety of local search techniques has been proposed. Understanding
when these techniques work for different problems forms the focus of a num-
ber of research communities, including those from both operations research
and AI.

The generic local search algorithm for CSPs is given in Figure 4.6. A speci-
fies an assignment of a value to each variable. The first for each loop assigns a

4.8. Local Search 131

1: procedure Local-Search(V, dom, C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output
7: complete assignment that satisfies the constraints
8: Local
9: A[V] an array of values indexed by V

10: repeat
11: for each variable X do
12: A[X]← a random value in dom(X);
13: while stopping criterion not met & A is not a satisfying assignment

do
14: Select a variable Y and a value V ∈ dom(Y)
15: Set A[Y]← V

16: if A is a satisfying assignment then
17: return A
18: until termination

Figure 4.6: Local search for finding a solution to a CSP

random value to each variable. The first time it is executed is called a random
initialization. Each iteration of the outer loop is called a try. A common way
to implement a new try is to do a random restart. An alternative to random
initialization is to use a construction heuristic that guesses a solution, which is
then iteratively improved.

The while loop does a local search, or a walk, through the assignment
space. It maintains a current assignment S, considers a set of neighbors of the
current assignment, and selects one to be the next current assignment. In Fig-
ure 4.6, the neighbors of a total assignment are those assignments that differ
in the assignment of a single variable. Alternate sets of neighbors can also be
used and will result in different search algorithms.

This walk through assignments continues until either a satisfying assign-
ment is found and returned or some stopping criterion is satisfied. The stop-
ping criterion is used to decide when to stop the current local search and do
a random restart, starting again with a new assignment. A stopping criterion
could be as simple as stopping after a certain number of steps.

This algorithm is not guaranteed to halt. In particular, it goes on forever
if there is no solution, and it is possible to get trapped in some region of the
search space. An algorithm is complete if it finds an answer whenever there is
one. This algorithm is incomplete.

132 4. Features and Constraints

One instance of this algorithm is random sampling. In this algorithm, the
stopping criterion is always true so that the while loop is never executed. Ran-
dom sampling keeps picking random assignments until it finds one that satis-
fies the constraints, and otherwise it does not halt. Random sampling is com-
plete in the sense that, given enough time, it guarantees that a solution will be
found if one exists, but there is no upper bound on the time it may take. It is
very slow. The efficiency depends only on the product of the domain sizes and
how many solutions exist.

Another instance is a random walk. In this algorithm the while loop is only
exited when it has found a satisfying assignment (i.e., the stopping criterion
is always false and there are no random restarts). In the while loop it selects
a variable and a value at random. Random walk is also complete in the same
sense as random sampling. Each step takes less time than resampling all vari-
ables, but it can take more steps than random sampling, depending on how
the solutions are distributed. Variants of this algorithm are applicable when
the domain sizes of the variables differ; a random walk algorithm can either
select a variable at random and then a value at random, or select a variable–
value pair at random. The latter is more likely to select a variable when it has
a larger domain.

4.8.1 Iterative Best Improvement

In iterative best improvement, the neighbor of the current selected node is
one that optimizes some evaluation function. In greedy descent, a neighbor is
chosen to minimize an evaluation function. This is also called hill climbing or
greedy ascent when the aim is to maximize. We only consider minimization; if
you want to maximize a quantity, you can minimize its negation.

Iterative best improvement requires a way to evaluate each total assign-
ment. For constraint satisfaction problems, a common evaluation function is
the number of constraints that are violated by the total assignment that is to
be minimized. A violated constraint is called a conflict. With the evaluation
function being the number of conflicts, a solution is a total assignment with an
evaluation of zero. Sometimes this evaluation function is refined by weighting
some constraints more than others.

A local optimum is an assignment such that no neighbor improves the eval-
uation function. This is also called a local minimum in greedy descent, or a local
maximum in greedy ascent.

Example 4.25 Consider the delivery scheduling in Example 4.8 (page 117).
Suppose gradient descent starts with the assignment A = 2, B = 2, C = 3,
D = 2, E = 1. This assignment has an evaluation of 3, because it does not
satisfy A �= B, B �= D, and C < D. Its neighbor with the minimal evaluation
has B = 4 with an evaluation of 1 because only C < D is unsatisfied. This is
now a local minimum. A random walk can then change D to 4, which has an

4.8. Local Search 133

evaluation of 2. It can change A to 4, with an evaluation of 2, and then change
B to 2 with an evaluation of zero, and a solution is found.

The following gives a trace of the assignments through the walk:

A B C D E evaluation
2 2 3 2 1 3
2 4 3 2 1 1
2 4 3 4 1 2
4 4 3 4 1 2
4 2 3 4 1 0

Different initializations, or different choices when multiple assignments have
the same evaluation, give different results.

If the variables have small finite domains, a local search algorithm can con-
sider all other values of the variable when considering a neighbor. If the do-
mains are large, the cost of considering all other values may be too high. An
alternative is to consider only a few other values, often the close values, for one
of the variables. Sometimes quite sophisticated methods are used to select an
alternative value.

Local search typically considers the best neighboring assignment even if it
is equal to or even worse than the current assignment. It is often better to make
a quick choice than to spend a lot of time making the best choice. There are
many possible variants of which neighbor to choose:

• Select the value and variable together. Out of all of the different assignments
to any of the variables, select one of them that minimizes the evaluation
function. If more than one has the minimum value; pick one of them at
random.

• Select a variable, then select its value. To select a variable, there are a number
of possibilities:

– Maintain how many violated constraints each variable is involved in,
and pick one of the variables involved in the most violated constraints.

– Select randomly a variable involved in any violated constraint.

– Select a variable at random.

Once the variable has been selected, it can either select one of the values that
has the best evaluation or just select a value at random.

• Select a variable and/or value at random and accept the change if it im-
proves the evaluation.

Optimizing over all variable–value pairs makes bigger improvements than the
other methods but it is more computationally expensive. Although some theo-
retical results exist, deciding which method works better in practice is an em-
pirical question.

134 4. Features and Constraints

(a) (b)

Figure 4.7: Two search spaces; find the minimum

4.8.2 Randomized Algorithms

Iterative best improvement randomly picks one of the best neighbors of the
current assignment. Randomness can also be used to escape local minima that
are not global minima in two main ways:

• random restart, in which values for all variables are chosen at random. This
lets the search start from a completely different part of the search space.

• random walk, in which some random steps are taken interleaved with the
optimizing steps. With greedy descent, this process allows for upward steps
that may enable random walk to escape a local minimum that is not a global
minimum.

A random walk is a local random move, whereas a random restart is a global
random move. For problems involving a large number of variables, a random
restart can be quite expensive.

A mix of greedy descent with random moves is an instance of a class of
algorithms known as stochastic local search.

Unfortunately, it is very difficult to visualize the search space to under-
stand what algorithms you expect to work because there are often thousands
of dimensions, each with a discrete set of values. Some of the intuitions can be
gleaned from lower-dimensional problems. Consider the two one-dimensional
search spaces in Figure 4.7, where we try to find the minimum value. Suppose
that a neighbor is obtained by a small step, either left or right of the current po-
sition. To find the global minimum in the search space (a), we would expect the
greedy descent with random restart to find the optimal value quickly. Once a
random choice has found a point in the deepest valley, greedy descent quickly
leads to the global minimum. One would not expect a random walk to work
well in this example, because many random steps are required to exit one of the
local, but not global, minima. However, for search space (b), a random restart
quickly gets stuck on one of the jagged peaks and does not work very well.
However, a random walk combined with greedy descent enables it to escape

4.8. Local Search 135

these local minima. One or two random steps may be enough to escape a local
minimum. Thus, you would expect that a random walk would work better in
this search space.

As presented, the local search has no memory. It does not remember any-
thing about the search as it proceeds. A simple way to use memory to improve
a local search is a tabu list, which is a list of the most recently changed variable–
value assignments. The idea is, when selecting a new assignment, not to select
a variable–value pair that is on the tabu list. This prevents cycling among a few
assignments. A tabu list is typically of a small fixed size; the size of the tabu list
is one of the parameters that can be optimized. A tabu list of size 1 is equivalent
to not allowing the same assignment to be immediately revisited.

Algorithms can differ in how much work they require to guarantee the best
improvement step. At one extreme, an algorithm can guarantee to select a new
assignment that gives the best improvement out of all of the neighbors. At the
other extreme, an algorithm can select a new assignment at random and reject
the assignment if it makes the situation worse. The rest of this section gives
some typical algorithms that differ in how much computational effort they put
in to ensure that they make the best improvement. Which of these methods
works best is, typically, an empirical question.

Most Improving Step

The first method is to always select the variable–value pair that makes the best
improvement. The naive way of doing this is to linearly scan the variables;
for each value of each variable, determine how many fewer constraints would
be violated with this assignment compared to the current assignment to all
variables, then select one of the variable–value pairs that results in the best
improvement, even if that improvement is negative. The complexity of one
step is O(ndr), where n is the number of variables, d is the average domain
size, and r is the number of neighbors of an assignment.

A more sophisticated alternative is to have a priority queue of variable–
value pairs. For any variable X, and value v in the domain of X such that X
is not assigned to v in the current assignment, the pair 〈X, v〉 would be in the
priority queue; the weight of the pair is the evaluation of the current total as-
signment minus the evaluation of the total assignment if X, instead, had value
v. That is, it maintains the change in the evaluation for each alternate value. At
each stage, the algorithm selects a value with minimum weight, which is the
neighbor that gives the biggest improvement.

Once a variable X has been given a new value, the weights of all variables
that participate in a constraint that has been made satisfied or unsatisfied by the
new assignment to X must have their weights changed and must be reinserted
into the priority queue.

The complexity of one step of this algorithm is O(log nd + rd log nd), where
n is the number of variables, d is the average domain size, and r is the number
of neighbors of an assignment.

136 4. Features and Constraints

This algorithm spends much time maintaining the data structures to ensure
that the most improving step is taken at each time.

Two-Stage Choice

An alternative is to split the choice of a variable–value pair into first choosing
a variable to change and then choosing a value.

This algorithm maintains a priority queue of variables, where the weight of
a variable is the number of conflicts in which it participates. At each time, the
algorithm selects a variable with maximum weight. Once a variable has been
chosen, it can be assigned a value that minimizes the number of conflicts. For
each conflict that has its value changed as a result of this new assignment, the
other variables participating in the conflict must have their weight changed.

The complexity of one step of this algorithm is O(log n + r log n). Compared
to selecting the best variable–value pair, this does less work for each step and
so more steps are achievable for any fixed time period. However, the steps tend
to give less improvement, and so a trade-off exists between the number of steps
and the complexity per step that must be evaluated empirically.

Any Conflict

An even simpler alternative, instead of choosing the best step, is to select any
variable participating in a conflict and change its value. At each step, one of the
variables involved in a violated constraint is selected at random. The algorithm
assigns to that variable one of the values that minimizes the number of violated
constraints.

To implement this alternative, we require a data structure to represent the
set C of variables involved in a conflict. This data structure should be designed
for quick selection of a random member of C. When a variable X has its value
changed, each constraint in which X is involved is checked. For each such
constraint that has become violated, all of the variables involved in the con-
straint are added to C. For each such constraint that is no longer violated, those
variables involved in that constraint, but not involved in another violated con-
straint, are removed from C. One way to check whether a variable is involved
in another conflict is to maintain a count of the number of conflicts for each
variable, which is incremented when a constraint becomes violated and decre-
mented when a constraint is no longer violated.

Each of the preceding algorithms can be combined with random steps, ran-
dom restarts, and a tabu mechanism.

Simulated Annealing

The last method maintains no data structure of conflicts; instead it picks a
neighbor at random and either rejects or accepts the new assignment.

Annealing is a process in metallurgy where metals are slowly cooled to
make them reach a state of low energy where they are very strong. Simulated

4.8. Local Search 137

Temperature Probability of acceptance
1-worse 2-worse 3-worse

10 0.9 0.82 0.74
1 0.37 0.14 0.05
0.25 0.018 0.0003 0.000006
0.1 0.00005 2× 10−9 9× 10−14

Figure 4.8: Probability of simulated annealing accepting worsening steps

annealing is an analogous method for optimization. It is typically described in
terms of thermodynamics. The random movement corresponds to high tem-
perature; at low temperature, there is little randomness. Simulated annealing
is a process where the temperature is reduced slowly, starting from a random
search at high temperature eventually becoming pure greedy descent as it ap-
proaches zero temperature. The randomness should tend to jump out of local
minima and find regions that have a low heuristic value; greedy descent will
lead to local minima. At high temperatures, worsening steps are more likely
than at lower temperatures.

Simulated annealing maintains a current assignment of values to variables.
At each step, it picks a variable at random, then picks a value at random. If
assigning that value to the variable is an improvement or does not increase the
number of conflicts, the algorithm accepts the assignment and there is a new
current assignment. Otherwise, it accepts the assignment with some probabil-
ity, depending on the temperature and how much worse it is than the current
assignment. If the change is not accepted, the current assignment is unchanged.

To control how many worsening steps are accepted, there is a positive real-
valued temperature T. Suppose A is the current assignment of a value to each
variable. Suppose that h(A) is the evaluation of assignment A to be minimized.
For solving constraints, h is typically the number of conflicts. Simulated an-
nealing selects a neighbor at random, which gives a new assignment A′. If
h(A′) ≤ h(A), it accepts the assignment and A′ becomes the new assignment.
Otherwise, the assignment is only accepted randomly with probability

e(h(A)−h(A′))/T.

Thus, if h(A′) is close to h(A), the assignment is more likely to be accepted. If
the temperature is high, the exponent will be close to zero, and so the prob-
ability will be close to 1. As the temperature approaches zero, the exponent
approaches −∞, and the probability approaches zero.

Figure 4.8 shows the probability of accepting worsening steps at different
temperatures. In this figure, k-worse means that h(A′)− h(A) = k. For exam-
ple, if the temperature is 10 (i.e., T = 10), a change that is one worse (i.e., if
h(a)− h(a′) = −1) will be accepted with probability e−0.1 ≈ 0.9; a change that
is two worse will be accepted with probability e−0.2 ≈ 0.82. If the tempera-
ture T is 1, accepting a change that is one worse will happen with probability

138 4. Features and Constraints

e−1 ≈ 0.37. If the temperature is 0.1, a change that is one worse will be ac-
cepted with probability e−10 ≈ 0.00005. At this temperature, it is essentially
only performing steps that improve the value or leave it unchanged.

If the temperature is high, as in the T = 10 case, the algorithm tends to
accept steps that only worsen a small amount; it does not tend to accept very
large worsening steps. There is a slight preference for improving steps. As the
temperature is reduced (e.g., when T = 1), worsening steps, although still pos-
sible, become much less likely. When the temperature is low (e.g., 0.1), it is very
rare that it chooses a worsening step.

Simulated annealing requires an annealing schedule, which specifies how
the temperature is reduced as the search progresses. Geometric cooling is one
of the most widely used schedules. An example of a geometric cooling sched-
ule is to start with a temperature of 10 and multiply by 0.97 after each step;
this will have a temperature of 0.48 after 100 steps. Finding a good annealing
schedule is an art.

4.8.3 Evaluating Randomized Algorithms

It is difficult to compare randomized algorithms when they give a different re-
sult and a different run time each time they are run, even for the same problem.
It is especially difficult when the algorithms sometimes do not find an answer;
they either run forever or must be stopped at an arbitrary point.

Unfortunately, summary statistics, such as the mean or median run time,
are not very useful. For example, if you were to compare algorithms on the
mean run time, you must consider how to average in unsuccessful runs (where
no solution was found). If you were to ignore these unsuccessful runs in com-
puting the average, then an algorithm that picks a random assignment and
then stops would be the best algorithm; it does not succeed very often, but
when it does, it is very fast. If you were to treat the non-terminating runs as
having infinite time, then all algorithms that do not find a solution will have in-
finite averages. If you use the stopping time as the time for the non-terminating
runs, the average is more of a function of the stopping time than of the al-
gorithm itself, although this does allow for a crude trade-off between finding
some solutions fast versus finding more solutions.

If you were to compare algorithms using the median run time, you would
prefer an algorithm that solves the problem 51% of the time but very slowly
over one that solves the problem 49% of the time but very quickly, even though
the latter is more useful. The problem is that the median (the 50th percentile)
is just an arbitrary value; you could just as well consider the 47th percentile or
the 87th percentile.

One way to visualize the run time of an algorithm for a particular problem
is to use a run-time distribution, which shows the variability of the run time
of a randomized algorithm on a single problem instance. On the x-axis is either
the number of steps or the run time. The y-axis shows, for each value of x,
the number of runs or proportion of the runs solved within that run time or
number of steps. Thus, it provides a cumulative distribution of how often the

4.8. Local Search 139

problem was solved within some number of steps or run time. For example,
you can find the run time of the 30th percentile of the runs by finding the x-
value that maps to 30% on the y-scale. The run-time distribution can be plotted
(or approximated) by running the algorithm for a large number of times (say,
100 times for a rough approximation or 1,000 times for a reasonably accurate
plot) and then by sorting the runs by run time.

Example 4.26 Four empirically generated run-time distributions for a single
problem are shown in Figure 4.9 (on the next page). On the x-axis is the number
of steps, using a logarithmic scale. On the y-axis is the number of instances that
were successfully solved out of 1,000 runs. This shows four run-time distribu-
tions on the same problem instance. Algorithms 1 and 2 solved the problem
40% of the time in 10 or fewer steps. Algorithm 3 solved the problem in about
50% of the runs in 10 or fewer steps. Algorithm 4 found a solution in 10 or
fewer steps in about 12% of the runs. Algorithms 1 and 2 found a solution in
about 58% of the runs. Algorithm 3 could find a solution about 80% of the time.
Algorithm 4 always found a solution. This only compares the number of steps;
the time taken would be a better evaluation but is more difficult to measure for
small problems and depends on the details of the implementation.

One algorithm strictly dominates another for this problem if its run-time dis-
tribution is to the left (and above) the run-time distribution of the second al-
gorithm. Often two algorithms are incomparable under this measure. Which
algorithm is better depends on how much time you have or how important it
is to actually find a solution.

A run-time distribution allows us to predict how the algorithm will work
with random restart after a certain number of steps. Intuitively, a random
restart will repeat the lower left corner of the run-time distribution, suitably
scaled down, at the stage where the restart occurs. A random restart after a cer-
tain number of greedy descent steps will make any algorithm that sometimes
finds a solution into an algorithm that always finds a solution, given that one
exists, if it is run for long enough.

Example 4.27 In the run-time distributions of Figure 4.9 (on the next page),
Algorithm 3 dominates algorithms 1 and 2. Algorithms 1 and 2 are actually
different sets of runs of the same algorithm with the same settings. This shows
the errors that are typical of multiple runs of the same stochastic algorithm
on the same problem instance. Algorithm 3 is better than Algorithm 4 up to
60 steps, after which Algorithm 4 is better.

By looking at the graph, you can see that Algorithm 3 can often solve the
problem in its first four or five steps, after which it is not as effective. This may
lead you to try to suggest using Algorithm 3 with a random restart after five
steps and this does, indeed, dominate all of the algorithms for this problem
instance, at least in the number of steps (counting a restart as a single step).
However, because the random restart is an expensive operation, this algorithm
may not be the most efficient. This also does not necessarily predict how well
the algorithm will work in other problem instances.

140 4. Features and Constraints

1
2

3

4

Figure 4.9: Run-time distributions. These are empirical run-time distributions of
1,000 runs, with each run having a limit of 1,000 steps. On the x-axis is the num-
ber of steps (using a logarithmic scale), and on the y-axis is the number of successes
out of 1,000 runs. This is for the sample CSP, “Scheduling Problem 1,” of AIspace.
org. Distributions 1 and 2 are two separate runs for the two-stage greedy descent.
Distribution 3 is for the one-stage greedy descent. Distribution 4 is a greedy descent
with random walk, where first a random node that participates in a conflict (a red
node in AIspace.org) is chosen, then the best value for this variable is chosen with
a 50% chance and a random value is chosen otherwise.

4.8.4 Exploiting Propositional Structure in Local Search

Stochastic local search is simpler for CSPs that are in the form of propositional
satisfiability problems (page 126), with Boolean variables and constraints that
are clauses. Each local search step can be made more efficient for three main
reasons:

• Because only one alternative value exists for each assignment to a variable,
the algorithm does not have to search through the alternative values.

• Changing any value in an unsatisfied clause makes the clause satisfied. As a
result, it is easy to satisfy a clause, but this may make other clauses unsatis-
fied.

AIspace.org
AIspace.org
AIspace.org

4.9. Population-Based Methods 141

• If a variable is changed to be true, only those clauses where it appears neg-
atively can be made unsatisfied and similarly for variables becoming false.
This enables fast indexing of clauses.

It is possible to convert any finite CSP into a propositional satisfiable prob-
lem. A variable Y with domain {v1, . . . , vk} can be converted into k Boolean
variables {Y1, . . . , Yk}, where Yi is true when Y has value vi and is false oth-
erwise. Each Yi is called an indicator variable. There is a clause for each false
tuple in each constraint, which specifies which assignments to the Yi are not
allowed by the constraint. There are also constraints that specify that Yi and
Yj cannot both be true when i �= j. There is also a constraint that one of the
variables Yi must have value true. Converting a CSP into a propositional satis-
fiability problem has three potential advantages:

• Each local step can be simpler and therefore implemented more efficiently.

• The search space is expanded. In particular, before a solution has been
found, more than one Yi could be true (which corresponds to Y having mul-
tiple values) or all of the Yi variables could be false (which corresponds to
Y having no values). This can mean that some assignments that were local
minima in the original problem may not be local minima in the new repre-
sentation.

• Satisfiability has been studied much more extensively than most other types
of CSPs and more efficient solvers are currently known because more of the
space of potential algorithms has been explored by researchers.

Whether the conversion makes search performance better for a particular ex-
ample is, again, an empirical question.

4.9 Population-Based Methods

The preceding local search algorithms maintain a single current assignment.
This section considers algorithms that maintain multiple assignments. The first
method, beam search, maintains the best k assignments. The next algorithm,
stochastic beam search, selects which assignments to propagate stochastically.
In genetic algorithms, which are inspired by biological evolution, the k assign-
ments forming a population interact in various ways to produce the new pop-
ulation. In these algorithms, a total assignment of a value to each variable is
called an individual and the set of current individuals is a population.

Beam search is a method similar to iterative best improvement, but it main-
tains up to k assignments instead of just one. It reports success when it finds a
satisfying assignment. At each stage of the algorithm, it selects the k best neigh-
bors of the current individuals (or all of them if there are less than k) and picks
randomly in the case of ties. It repeats with this new set of k total assignments.

Beam search considers multiple assignments at the same time. Beam search
is useful for memory-bounded cases, where k can be selected depending on the
memory available.

142 4. Features and Constraints

Stochastic beam search is an alternative to beam search, which, instead
of choosing the best k individuals, selects k of the individuals at random;
the individuals with a better evaluation are more likely to be chosen. This is
done by making the probability of being chosen a function of the evaluation
function. A standard way to do this is to use a Gibbs distribution or Boltz-
mann distribution and to select an assignment A with probability propor-
tional to

e−h(A)/T,

where h(A) is the evaluation function and T is a temperature.
Stochastic beam search tends to allow more diversity in the k individuals

than does plain beam search. In terms of evolution in biology, the evaluation
function reflects the fitness of the individual; the fitter the individual, the more
likely it is to pass that part of its variable assignment that is good onto the next
generation. Stochastic beam search is like asexual reproduction; each individ-
ual gives slightly mutated children and then stochastic beam search proceeds
with survival of the fittest. Note that under stochastic beam search it is possible
for an individual to be selected multiple times at random.

Genetic algorithms further pursue the evolution analogy. Genetic algo-
rithms are like stochastic beam searches, but each new element of the popula-
tion is a combination of a pair of individuals – its parents. In particular, genetic
algorithms select pairs of individuals and then create new offspring by taking
some of the values for the offspring’s variables from one of the parents and the
rest from the other parent, loosely analogous to how DNA is spliced in sexual
reproduction.

The new operation that occurs in genetic algorithms is called crossover.
Uniform crossover selects two individuals (the parents) and creates two new
individuals, called the children. The value for each variable in a child comes
from one of the parents. A common method is one-point crossover, which as-
sumes a total ordering of the variables. An index i is selected at random. One
of the children is constructed by selecting the values for the variables before
i from one of the parents, and the values for variables after i from the other
parent. The other child gets the other values. The effectiveness of the crossover
depends on the total ordering of the variables. The ordering of the variables is
part of the design of the genetic algorithm.

Assume that you have a population of k individuals (where k is even). A
basic genetic algorithm proceeds by maintaining k individuals as a generation
and then using these individuals to generate a new generation via the follow-
ing steps:

• Randomly select pairs of individuals where the fitter individuals are more
likely to be chosen. How much more likely a fit individual is to be chosen
than a less fit individual depends on the difference in fitness levels and a
temperature parameter.

4.9. Population-Based Methods 143

1: procedure GeneticAlgorithm(V, dom, C, S, k)
2: Inputs
3: V: a set of variables
4: dom: a function; dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: S: a cooling schedule for the temperature
7: k: population size – an even integer

8: Output
9: complete assignment that satisfies the constraints

10: Local
11: Pop: a set of assignments
12: T: real
13: Pop← k complete random assignments
14: T is assigned a value according to S
15: repeat
16: if some A ∈ Pop satisfies all constraints in C then
17: return A
18: Npop← {}
19: repeat k/2 times
20: A1 ← RandomSelection(Pop, T)
21: A1 ← RandomSelection(Pop, T)
22: N1, N2 ← combine(A1, A2)
23: Npop← Npop∪ {mutate(N1), mutate(N2)}
24: Pop← Npop
25: T is updated according to S
26: until termination
27: procedure RandomSelection(Pop, T)
28: select A from Pop with probability proportional to e−h(A)/T

29: return A
30: procedure Combine(A1, A2)
31: select integer i, 1 ≤ i < |V| at random
32: Let N1 ← {(Xj = vj) ∈ A1 for j ≤ i} ∪ {(Xj = vj) ∈ A2 for j > i}
33: Let N2 ← {(Xj = vj) ∈ A2 for j ≤ i} ∪ {(Xj = vj) ∈ A1 for j > i}
34: return N1, N2

Figure 4.10: Genetic algorithm for finding a solution to a CSP

• For each pair, perform a crossover.

• Randomly mutate some (very few) values by choosing other values for some
randomly chosen variables. This is a random walk step.

It proceeds in this way until it has created k individuals, and then the operation
proceeds to the next generation. The algorithm is shown in Figure 4.10.

144 4. Features and Constraints

Example 4.28 Consider Example 4.8 (page 117). Suppose we use the same
evaluation function as in Example 4.25 (page 132), namely the number of un-
satisfied constraints. The individual A = 2, B = 2, C = 3, D = 1, E = 1 has
an evaluation of 4. It has a low value mainly because E = 1. Its offspring that
preserve this property will tend to have a lower evaluation than those that do
not and, thus, will be more likely to survive. Other individuals may have low
values for different reasons; for example, the individual A = 4, B = 2, C = 3,
D = 4, E = 4 also has an evaluation of 4. It is low mainly because of the as-
signment of values to the first four variables. Again, offspring that preserve this
property will be fitter and more likely to survive than those that do not. If these
two were to mate, some of the offspring would inherit the bad properties of
both and would die off. Some, by chance, would inherit the good properties of
both. These would then have a better chance of survival.

As in other stochastic local search algorithms, it is difficult to design features
and the evaluation function so that the algorithm does not get trapped in local
minima. Efficiency is very sensitive to the variables used to describe the prob-
lem and the ordering of the variables. Getting this to work is an art. As with
many other heuristic algorithms, evolutionary algorithms have many degrees
of freedom and, therefore, are difficult to configure or tune for good perfor-
mance. Also, analogies to natural evolution can be very misleading, because
what is at work in nature is not always the best strategy for solving combina-
torial decision or optimization problems.

A large community of researchers are working on genetic algorithms to
make them practical for real problems and there have been some impressive
results. What we have described here is only one of the possible genetic algo-
rithms.

4.10 Optimization

Instead of just having possible worlds satisfy constraints or not, we often have
a preference relation over possible worlds, and we want a best possible world
according to the preference. The preference is often to minimize some error.

An optimization problem is given

• a set of variables, each with an associated domain;

• an objective function that maps total assignments to real numbers; and

• an optimality criterion, which is typically to find a total assignment that
minimizes or maximizes the objective function.

The aim is to find a total assignment that is optimal according to the optimality
criterion. For concreteness, we assume that the optimality criterion is to mini-
mize the objective function.

A constrained optimization problem is an optimization problem that also
has hard constraints specifying which variable assignments are possible. The
aim is to find a best assignment that satisfies the hard constraints.

4.10. Optimization 145

A huge literature exists on optimization. There are many techniques for par-
ticular forms of constrained optimization problems. For example, linear pro-
gramming is the class of constrained optimization where the variables are real
valued, the objective function is a linear function of the variables, and the hard
constraints are linear inequalities. We do not cover these specific techniques.
Although they have many applications, they have limited applicability in the
space of all optimization problems. We do cover some general techniques that
allow more general objective functions. However, if the problem you are inter-
ested in solving falls into one of the classes for which there are more specific
algorithms, or can be transformed into one, it is generally better to use those
techniques than the general algorithms presented here.

In a constraint optimization problem, the objective function is factored
into a set of functions of subsets of the variables called soft constraints. A soft
constraint assigns a cost for each assignment of values to some subset of the
variables. The value of the objective function on a total assignment is the sum
of the costs given by the soft constraints on that total assignment. A typical
optimality criterion is to minimize the objective function.

Like a hard constraint (page 115), a soft constraint has a scope that is a
set of variables. A soft constraint is a function from the domains of the vari-
ables in its scope into a real number, called its evaluation. Thus, given an as-
signment of a value to each variable in its scope, this function returns a real
number.

Example 4.29 Suppose a number of delivery activities must be scheduled,
similar to Example 4.8 (page 117), but, instead of hard constraints, there are
preferences on times for the activities. The soft constraints are costs associated
with combinations of times. The aim is to find a schedule with the minimum
total sum of the costs.

Suppose variables A, C, D, and E have domain {1, 2}, and variable B has
domain {1, 2, 3}. The soft constraints are

c1: A B Cost
1 1 5
1 2 2
1 3 2
2 1 0
2 2 4
2 3 3

c2: B C Cost
1 1 5
1 2 2
2 1 0
2 2 4
3 1 2
3 2 0

c3: B D Cost
1 1 3
1 2 0
2 1 2
2 2 2
3 1 2
3 2 4

Thus, the scope of c1 is {A, B}, the scope of c2 is {B, C}, and the scope of c3
is {B, D}. Suppose there are also constraints c4(C, E) and c5(D, E).

An assignment to some of the variables in a soft constraint results in a soft
constraint that is a function of the other variables. In the preceding example,
c1(A=1) is a function of B, which when applied to B=2 evaluates to 2.

Given a total assignment, the evaluation of the total assignment is the
sum of the evaluations of the soft constraints applied to the total assignment.

146 4. Features and Constraints

One way to formalize this is to define operations on the soft constraints. Soft
constraints can be added pointwise. The sum of two soft constraints is a soft
constraint with scope that is the union of their scopes. The value of any assign-
ment to the scope is the sum of the two functions on that assignment.

Example 4.30 Consider functions c1 and c2 in the previous example. c1 + c2 is
a function with scope {A, B, C}, given by

c1 + c2: A B C Cost
1 1 1 10
1 1 2 7
1 2 1 2
.

The second value is computed as follows:

(c1 + c2)(A=1, B=1, C=2)
= c1(A=1, B=1) + c2(B=1, C=2)
= 5 + 2
= 7

One way to find the optimal assignment, corresponding to generate and
test (page 118), is to compute the sum of the soft constraints and to choose
an assignment with minimum value. Later we consider other, more efficient,
algorithms for optimization.

Hard constraints can be modeled as having a cost of infinity for violating a
constraint. As long as the cost of an assignment is finite, it does not violate a
hard constraint. An alternative is to use a large number – larger than the sum
of the soft constraints could be – as the cost of violating a hard constraint. Then
optimization can be used to find a solution with the fewest number of violated
hard constraints and, among those, one with the lowest cost.

Optimization problems have one difficulty that goes beyond constraint sat-
isfaction problems. It is difficult to know whether an assignment is optimal.
Whereas, for a CSP, an algorithm can check whether an assignment is a solu-
tion by just considering the assignment and the constraints, in optimization
problems an algorithm can only determine if an assignment is optimal by com-
paring it to other assignments.

Many of the methods for solving hard constraints can be extended to opti-
mization problems, as outlined in the following sections.

4.10.1 Systematic Methods for Optimization

Arc consistency (page 121) can be generalized to optimization problems by al-
lowing pruning of dominated assignments. Suppose c1, . . . , ck are the soft con-
straints that involve X. Let soft constraint c = c1 + · · · + ck. Suppose Y are
the variables, other than X, that are involved in c. A value v for variable X is

4.10. Optimization 147

strictly dominated if, for all values y of Y, some value v′ of X exists such that
c(X = v′, Y = y) < c(X = v, Y = y). Pruning strictly dominated values does
not remove an optimal solution. The pruning of domains can be done repeat-
edly, as in the GAC algorithm (page 122).

Weakly dominated has the same definition as strictly dominated, but with
“less than” replaced by “less than or equal to.” If only one solution is required,
weakly dominated values can be pruned sequentially. Which weakly domi-
nated values are removed may affect which optimal solution is found, but re-
moving a weakly dominated value does not remove all optimal solutions. As
with arc consistency for hard constraints, pruning (strictly or weakly) domi-
nated values can greatly simplify the problem but does not, by itself, always
solve the problem.

Domain splitting (page 125) can be used to build a search tree. Domain
splitting picks some variable X and considers each value of X. Assigning a
value to X allows the constraints that involve X to be simplified and values for
other variables to be pruned. In particular, pruning weakly dominated values
means that, when there is only one variable left, a best value for that variable
can be computed. Repeated domain splitting can build a search tree, as in Fig-
ure 4.1 (page 120), but with values at the leaves. By assigning costs when they
can be determined, search algorithms such as A∗ or branch-and-bound can be
used to find an optimal solution.

Domain splitting can be improved via two techniques. First, if, under a split
on X, an assignment to another variable does not depend on the value of X, the
computation for that variable can be shared among the subtrees for the val-
ues of X; the value can be computed once and cached. Second, if removing a
set of variables would disconnect the constraint graph, then when those vari-
ables have been assigned values, the disconnected components can be solved
independently.

Variable elimination is the dynamic programming variant of domain split-
ting. The variables are eliminated one at a time. A variable X is eliminated as
follows. Let R be the set of constraints that involve X. T is a new constraint
whose scope is the union of the scopes of the constraints in R and whose value
is the sum of the values of R. Let V = scope(T) \ {X}. For each value of the
variables in V, select a value of X that minimizes T, resulting in a new soft con-
straint, N, with scope V. The constraint N replaces the constraints in R. This
results in a new problem, with fewer variables and a new set of constraints,
which can be solved recursively. A solution, S, to the reduced problem is an
assignment to the variables in V. Thus, T(S), the constraint T under the assign-
ment S, is a function of X. An optimal value for X is obtained by choosing a
value that results in the minimum value of T(S).

Figure 4.11 (on the next page) gives pseudocode for the VE algorithm. The
elimination ordering can be given a priori or can be computed on the fly,
for example, using the elimination ordering heuristics discussed for CSP VE
(page 130). It is possible to implement this without storing T and only by con-
structing an extensional representation of N.

148 4. Features and Constraints

1: procedure VE SC(Vs, Fs)
2: Inputs
3: Vs: set of variables
4: Fs: set of constraints
5: Output
6: an optimal assignment to Vs.
7: if Vs contains a single element or Fs contains a single constraint then
8: let F be the sum of the constraints in Fs
9: return assignment with minimum value in F

10: else
11: select X ∈ Vs according to some elimination ordering
12: R = {F ∈ Fs : F involves X}
13: let T be the sum of the constraints in R
14: N := minX T
15: S := VE SC(Vs \ {X}, Fs \ R∪ {N})
16: Xopt := arg minX T(S)
17: return S∪ {X = Xopt}

Figure 4.11: Variable elimination for optimizing with soft constraints

Example 4.31 Consider Example 4.29 (page 145). First consider eliminating
A. It appears in only one constraint, c1(A, B). Eliminating A gives

c6(B) = arg minA c1(A, B): B Cost
1 0
2 2
3 2

The constraint c1(A, B) is replaced by c6(B).
Suppose B is eliminated next. B appears in three constraints: c2(B, C),

c3(B, D), and c6(B). These three constraints are added, giving

c2(B, C) + c3(B, D) + c6(B): B C D Cost
1 1 1 8
1 1 2 5

. . .
2 1 1 4
2 1 2 4

. . .
3 1 1 6
3 1 2 8

The constraints c2, c3, and c6 are replaced by

c7(C, D) = minB (c2(B, C) + c3(B, D) + c6(B)): C D Cost
1 1 4
1 2 4

. . .

4.10. Optimization 149

There are now three remaining constraints: c4(C, E), C5(D, E), and c7(C, D).
These can be optimized recursively.

Suppose the recursive call returns the solution C = 1, D = 2, E = 2. An
optimal value for B is the value that gives the minimum in c2(B, C = 1) +
c3(B, D = 2) + c6(B), which is B = 2.

From c1(A, B), the value of A that minimizes c1(A, B = 2) is A = 1. Thus, an
optimal solution is A = 1, B = 2, C = 1, D = 2, E = 2.

The complexity of VE depends on the structure of the constraint graph, as
it does with hard constraints (page 129). Sparse graphs may result in small in-
termediate constraints in VE algorithms, including VE SC. Densely connected
graphs result in large intermediate constraints.

4.10.2 Local Search for Optimization

Local search is directly applicable to optimization problems, using the objective
function of the optimization problem as the evaluation function of the local
search. The algorithm runs for a certain amount of time (perhaps including
random restarts to explore other parts of the search space), always keeping the
best assignment found thus far, and returning this as its answer.

Local search for optimization has one extra complication that does not arise
with only hard constraints: it is difficult to determine whether a total assign-
ment is the best possible solution. A local minimum is a total assignment that
is at least as good, according to the optimality criterion, as any of its neigh-
bors. A global minimum is a total assignment that is at least as good as all of
the other total assignments. Without systematically searching the other assign-
ments, the algorithm may not know whether the best assignment found so far
is a global optimum or whether a better solution exists in a different part of the
search space.

When solving constrained optimization problems, with both hard and soft
constraints, there could be a trade-off between violating hard constraints and
making the evaluation function worse. We typically do not treat a violated con-
straint as having a cost of infinity, because then the algorithms would not dis-
tinguish violating one hard constraint from violating many. It is sometimes
good to allow hard constraints to be temporarily violated in the search.

Continuous Domains

For optimization where the domains are continuous, a local search becomes
more complicated because it is not obvious what the neighbors of a total as-
signment are. This problem does not arise with hard constraint satisfaction
problems because the constraints implicitly discretize the space.

For optimization, gradient descent can be used to find a minimum value,
and gradient ascent can be used to find a maximum value. Gradient descent is
like walking downhill and always taking a step in the direction that goes down
the most. The general idea is that the neighbor of a total assignment is to step
downhill in proportion to the slope of the evaluation function h. Thus, gradient

150 4. Features and Constraints

2 3 4 1

Figure 4.12: Gradient descent

descent takes steps in each direction proportional to the negative of the partial
derivative in that direction.

In one dimension, if X is a real-valued variable with the current value of v,
the next value should be

v− η ×
(

dh
dX

)
(v),

where

• η, the step size, is the constant of proportionality that determines how fast
gradient descent approaches the minimum. If η is too large, the algorithm
can overshoot the minimum; if η is too small, progress becomes very slow.

• dh
dX , the derivative of h with respect to X, is a function of X and is evaluated
for X = v.

Example 4.32 Figure 4.12 shows a typical one-dimensional example for
finding a local minimum of a one-dimensional function. It starts at a position
marked as 1. The derivative is a big positive value, so it takes a step to the left
to position 2. Here the derivative is negative, and closer to zero, so it takes a
smaller step to the right to position 3. At position 3, the derivative is negative
and closer to zero, so it takes a smaller step to the right. As it approaches the lo-
cal minimum value, the slope becomes closer to zero and it takes smaller steps.

For multidimensional optimization, when there are many variables, gradi-
ent descent takes a step in each dimension proportional to the partial derivative
of that dimension. If 〈X1, . . . , Xn〉 are the variables that have to be assigned val-
ues, a total assignment corresponds to a tuple of values 〈v1, . . . , vn〉. Assume
that the evaluation function, h, is differentiable. The next neighbor of the total
assignment 〈v1, . . . , vn〉 is obtained by moving in each direction in proportion
to the slope of h in that direction. The new value for Xi is

vi − η ×
(

∂h
∂Xi

)
(v1, . . . , vn),

4.12. References and Further Reading 151

where η is the step size. The partial derivative, ∂h
∂Xi

, is a function of X1, . . . , Xn.
Applying it to the point (v1, . . . , vn) gives(

∂h
∂Xi

)
(v1, . . . , vn) = lim

ε→∞

h(v1, . . . , vi + ε, . . . , vn)− h(v1, . . . , vi, . . . , vn)
ε

.

If the partial derivative of h can be computed analytically, it is usually good to
do so. If not, it can be estimated using a small value of ε.

Gradient descent is used for parameter learning (page 304), in which there
may be thousands of real-valued parameters to be optimized. There are many
variants of this algorithm that we do not discuss. For example, instead of using
a constant step size, the algorithm could do a binary search to determine a
locally optimal step size.

4.11 Review

The following are the main points you should have learned from this chapter:

• Instead of reasoning explicitly in terms of states, it is almost always much
more efficient for an agent solving realistic problems to reason in terms of a
set of features that characterize a state.

• Many problems can be represented as a set of variables, corresponding to
the set of features, domains of possible values for the variables, and a set of
hard and/or soft constraints. A solution is an assignment of a value to each
variable that satisfies a set of hard constraints or optimizes some function.

• Arc consistency and search can often be combined to find assignments that
satisfy some constraints or to show that there is no assignment.

• Stochastic local search can be used to find satisfying assignments, but not
to show there are no satisfying assignments. The efficiency depends on the
trade-off between the time taken for each improvement and how much
the value is improved at each step. Some method must be used to allow
the search to escape local minima that are not solutions.

• Optimization can use systematic methods when the constraint graph is
sparse. Local search can also be used, but the added problem exists of not
knowing when the search is at a global optimum.

4.12 References and Further Reading

Constraint satisfaction techniques are described in Dechter [2003] and Freuder
and Mackworth [2006]. The GAC algorithm was invented by Mackworth
[1977].

The DPLL algorithm (page 127) was invented by Davis, Logemann, and
Loveland [1962].

VE for propositional satisfiability was proposed by Davis and Putnam
[1960]. VE for optimization has been called non-serial dynamic programming
and was invented by Bertelè and Brioschi [1972].

152 4. Features and Constraints

A1,D1 D2 D3

A2

A3

Word list:
add, ado, age, ago, aid,
ail, aim, air, and, any,
ape, apt, arc, are, ark,
arm, art, ash, ask, auk,
awe, awl, aye, bad, bag,
ban, bat, bee, boa, ear,
eel, eft, far, fat, fit,
lee, oaf, rat, tar, tie.

Figure 4.13: A crossword puzzle to be solved with six words

Stochastic local search is described by Spall [2003] and Hoos and Stützle
[2004]. The any-conflict heuristic is based on the min-conflict heuristic of
Minton, Johnston, Philips, and Laird [1992]. Simulated annealing was invented
by Kirkpatrick, Gelatt, and Vecchi [1983].

Genetic algorithms were pioneered by Holland [1975]. A huge literature
exists on genetic algorithms; for overviews see Goldberg [1989], Koza [1992],
Mitchell [1996], Bäck [1996], Whitley [2001], and Goldberg [2002].

4.13 Exercises

Exercise 4.1 Consider the crossword puzzle shown in Figure 4.13. You must find
six three-letter words: three words read across (A1, A2, and A3) and three words
read down (D1, D2, and D3). Each word must be chosen from the list of forty
possible words shown. Try to solve it yourself, first by intuition, then by hand
using first domain consistency and then arc consistency.

There are at least two ways to represent the crossword puzzle shown in
Figure 4.13 as a constraint satisfaction problem.

The first is to represent the word positions (A1, A2, A3, D1, D2, and D3) as
variables, with the set of words as possible values. The constraints are that the
letter is the same where the words intersect.

The second is to represent the nine squares as variables. The domain of each
variable is the set of letters of the alphabet, {a, b, . . . , z}. The constraints are that
there is a word in the word list that contains the corresponding letters. For exam-
ple, the top-left square and the center-top square cannot both have the value a,
because there is no word starting with aa.

(a) Give an example of pruning due to domain consistency using the first rep-
resentation (if one exists).

(b) Give an example of pruning due to arc consistency using the first represen-
tation (if one exists).

(c) Are domain consistency plus arc consistency adequate to solve this problem
using the first representation? Explain.

4.13. Exercises 153

Figure 4.14: A crossword puzzle to be solved with seven words

(d) Give an example of pruning due to domain consistency using the second
representation (if one exists).

(e) Give an example of pruning due to arc consistency using the second repre-
sentation (if one exists).

(f) Are domain consistency plus arc consistency adequate to solve this problem
using the second representation?

(g) Which representation leads to a more efficient solution using consistency-
based techniques? Give the evidence on which you are basing your answer.

Exercise 4.2 Suppose you have a relation v(N, W) that is true if there is a vowel
(one of: a, e, i, o, u) as the N-th letter of word W. For example, v(2, cat) is true
because there is a vowel (“a”) as the second letter of the word “cat”;v(3, cat) is
false, because the third letter of “cat” is “t”, which is not a vowel; and v(5, cat) is
also false because there is no fifth letter in “cat”.

Suppose the domain of N is {1, 3, 5} and the domain of W is {added, blue, fever,
green, stare}.

(a) Is the arc 〈N, v〉 arc consistent? If so, explain why. If not, show what ele-
ment(s) can be removed from a domain to make it arc consistent.

(b) Is the arc 〈W, v〉 arc consistent? If so, explain why. If not, show what ele-
ment(s) can be removed from a domain to make it arc consistent.

Exercise 4.3 Consider the crossword puzzle shown in Figure 4.14 . The available
words that can be used are

at, eta, be, hat, he, her, it, him, on, one, desk, dance, usage, easy, dove,
first, else, loses, fuels, help, haste, given, kind, sense, soon, sound, this,
think.

154 4. Features and Constraints

(a) Given the representation with nodes for the positions (1-across, 2-down, etc.)
and words for the domains, specify the network after domain consistency
and arc consistency have halted.

(b) Consider the dual representation, in which the squares on the intersection
of words are the variables and their domains are the letters that could go
in these positions. Give the domains after this network has been made arc
consistent. Does the result after arc consistency in this representation corre-
spond to the result in part (a)?

(c) Show how variable elimination can be used to solve the crossword problem.
Start from the arc-consistent network from part (a).

(d) Does a different elimination ordering affect the efficiency? Explain.

Exercise 4.4 Consider how stochastic local search can solve Exercise 4.3. You
should use the “stochastic local search” AIspace.org applet to answer this ques-
tion. Start with the arc-consistent network.

(a) How well does random walking work?

(b) How well does hill climbing work?

(c) How well does the combination work?

(d) Give a set of parameter settings that works best.

Exercise 4.5 Consider a scheduling problem, where there are five activities to be
scheduled in four time slots. Suppose we represent the activities by the variables A,
B, C, D, and E, where the domain of each variable is {1, 2, 3, 4} and the constraints
are A > D, D > E, C �= A, C > E, C �= D, B ≥ A, B �= C, and C �= D + 1.

[Before you start this, try to find the legal schedule(s) using your own intu-
tions.]

(a) Show how backtracking can be used to solve this problem. To do this,
you should draw the search tree generated to find all answers. Indicate
clearly the valid schedule(s). Make sure you choose a reasonable variable
ordering.

To indicate the search tree, write it in text form with each branch on one
line. For example, suppose we had variables X, Y, and Z with domains t, f
and constraints X �= Y and Y �= Z. The corresponding search tree can be
written as:

X=t Y=t failure
Y=f Z=t solution

Z=f failure
X=f Y=t Z=t failure

Z=f solution
Y=f failure

[Hint: It may be easier to write a program to generate such a tree for a par-
ticular problem than to do it by hand.]

(b) Show how arc consistency can be used to solve this problem. To do this you
must

AIspace.org

4.13. Exercises 155

A B D

C E F

G

r1

r2

r3

r4 r5

r6 r7

r8
r9 r10

Figure 4.15: Abstract constraint network

• draw the constraint graph;

• show which elements of a domain are deleted at each step, and which
arc is responsible for removing the element;

• show explicitly the constraint graph after arc consistency has stopped;
and

• show how splitting a domain can be used to sove this problem.

Exercise 4.6 Which of the following methods can

(a) determine that there is no model, if there is not one?

(b) find a model if one exists?

(c) guarantee to find all models?

The methods to consider are

i) arc consistency with domain splitting.

ii) variable elimination.

iii) stochastic local search.

iv) genetic algorithms.

Exercise 4.7 Explain how arc consistency with domain splitting can be used to
return all of the models and not just one. Give the algorithm.

Exercise 4.8 Explain how VE can be used to return one of the models rather than
all of them. Give the algorithm. How is finding one easier than finding all?

Exercise 4.9 Explain how arc consistency with domain splitting can be used to
count the number of models.

Exercise 4.10 Explain how VE can be used to count the number of models, with-
out enumerating them all. [Hint: You do not need the backward pass, but instead
you can pass forward the number of solutions there would be.]

Exercise 4.11 Consider the constraint graph of Figure 4.15 with named binary
constraints [e.g., r1 is a relation on A and B, which we can write as r1(A, B)].
Consider solving this network using VE.

156 4. Features and Constraints

(a) Suppose you were to eliminate variable A. Which constraints are removed?
A constraint is created on which variables? (You can call this r11).

(b) Suppose you were to subsequently eliminate B (i.e., after eliminating A).
Which relations are removed? A constraint is created on which variables?

Exercise 4.12 Pose and solve the crypt-arithmetic problem SEND + MORE =
MONEY as a CSP. In a crypt-arithmetic problem, each letter represents a dif-
ferent digit, the leftmost digit cannot be zero (because then it would not be
there), and the sum must be correct considering each sequence of letters as a
base ten numeral. In this example, you know that Y = (D + E) mod 10 and that
E = (N + R + ((D + E)÷ 10)) mod 10, and so on.

Chapter 5

Propositions and Inference

For when I am presented with a false theorem, I do not need to exam-
ine or even to know the demonstration, since I shall discover its falsity a
posteriori by means of an easy experiment, that is, by a calculation, cost-
ing no more than paper and ink, which will show the error no matter how
small it is . . .

And if someone would doubt my results, I should say to him: ”Let us
calculate, Sir,” and thus by taking to pen and ink, we should soon settle
the question.

– Gottfried Wilhelm Leibniz [1677]

This chapter considers a simple form of a knowledge base that is told facts
about what is true in the world. An agent can use such a knowledge base, to-
gether with its observations, to determine what else must be true in the world.
When an agent is queried about what is true given a knowledge base, it can an-
swer the query without enumerating the possible worlds, or even generating
any possible worlds. This chapter presents a number of reasoning formalisms
that use propositions. They differ in what is being proved, what background
knowledge must be provided, and how the observations that the agent receives
online are handled.

5.1 Propositions

Writing constraints extensionally as tables of legal values for variables is not
very intuitive. It is difficult to see what the tables are saying. It is also diffi-
cult to debug the knowledge, and small changes in the problem can mean big
changes to the tables. One way to write constraints intensionally is in terms of
propositions.

157

158 5. Propositions and Inference

There are a number of reasons for using propositions for specifying con-
straints and queries:

• It is often more concise and readable to give a logical statement about the
relationship between some variables than to use an extensional representa-
tion.

• The kind of queries an agent may have to answer may be richer than single
assignments of values to variables.

• This language is extended to reason about individuals and relations in Chap-
ter 12.

We first give the syntax and the semantics of a language called proposi-
tional calculus.

5.1.1 Syntax of Propositional Calculus

A proposition is a sentence, written in a language, that has a truth value (i.e.,
it is true or false) in a world. A proposition is built from atomic propositions
using logical connectives.

An atomic proposition, or just an atom, is a symbol (page 114) that starts
with a lower-case letter. Intuitively, an atom is something that is true or false.

For example, ai is fun, lit l1, live outside, and sunny can all be atoms.
In terms of the algebraic variables of the preceding chapter, an atom can

be seen as a statement that a variable has a particular value or that the value
is in a set of values. For example, the proposition classtimeAfter3 may mean
ClassTime > 3, which is true when the variable ClassTime has value greater than
3 and is false otherwise. It is traditional in propositional calculus not to make
the variable explicit and we follow that tradition. A direct connection exists to
Boolean variables (page 113), which are variables with domain {true, false}. An
assignment X = true is written as the proposition x, using the variable name,
but in lower case. So the proposition happy can mean there exists a Boolean
variable Happy, where happy means Happy = true.

Propositions can be built from simpler propositions using logical connec-
tives. A proposition is either

• an atomic proposition or
• a compound proposition of the form

¬p (read “not p”)—the negation of p
p∧ q (read “p and q”)—the conjunction of p and q
p∨ q (read “p or q”)—the disjunction of p and q
p→ q (read “p implies q”)—the implication of q from p
p← q (read “p if q”)—the implication of p from q
p↔ q (read “p if and only if q” or “p is equivalent to q”)

where p and q are propositions.

The precedence of the operators is in the order they are given above. That
is, a compound proposition can be disambiguated by adding parentheses to

5.1. Propositions 159

p q ¬p p∧ q p∨ q p← q p→ q p↔ q
true true false true true true true true
true false false false true true false false
false true true false true false true false
false false true false false true true true

Figure 5.1: Truth table defining ¬, ∧, ∨, ← , →, and ↔

the subexpressions in the order the operations are defined above. Thus, for
example,

¬a∨ b∧ c→ d∧ ¬e∨ f

is an abbreviation for

((¬a) ∨ (b∧ c))→ ((d∧ (¬e)) ∨ f).

5.1.2 Semantics of the Propositional Calculus

Semantics specifies how to put symbols of the language into correspondence
with the world. Semantics can be used to understand sentences of the lan-
guage. The semantics of propositional calculus is defined below.

An interpretation consists of a function π that maps atoms to {true, false}.
If π(a) = true, we say atom a is true in the interpretation, or that the interpre-
tation assigns true to a. If π(a) = false, we say a is false in the interpretation.
Sometimes it is useful to think of π as the set of atoms that map to true, and
that the rest of the atoms map to false.

The interpretation maps each proposition to a truth value. Each proposi-
tion is either true in the interpretation or false in the interpretation. An atomic
proposition a is true in the interpretation if π(a) = true; otherwise, it is false
in the interpretation. The truth value of a compound proposition is built using
the truth table of Figure 5.1.

Note that we only talk about the truth value in an interpretation. Proposi-
tions may have different truth values in different interpretations.

Example 5.1 Suppose there are three atoms: ai is fun, happy, and light on.
Suppose interpretation I1 assigns true to ai is fun, false to happy, and true to

light on. That is, I1 is defined by the function π1 defined by π1(ai is fun) = true,
π1(happy) = false, and π1(light on) = true. Then
• ai is fun is true in I1.
• ¬ai is fun is false in I1.
• happy is false in I1.
• ¬happy is true in I1.
• ai is fun∨ happy is true in I1.
• ai is fun← happy is true in I1.

160 5. Propositions and Inference

• happy← ai is fun is false in I1.
• ai is fun← happy∧ light on is true in I1.

Suppose interpretation I2 assigns false to ai is fun, true to happy, and false to
light on:
• ai is fun is false in I2.
• ¬ai is fun is true in I2.
• happy is true in I2.
• ¬happy is false in I2.
• ai is fun∨ happy is true in I2.
• ai is fun← happy is false in I2.
• ai is fun← light on is true in I2.
• ai is fun← happy∧ light on is true in I2.

A knowledge base is a set of propositions that the agent is given as being
true. An element of the knowledge base is an axiom.

A model of a set of propositions is an interpretation in which all the propo-
sitions are true.

If KB is a knowledge base and g is a proposition, g is a logical consequence
of KB, written as

KB |= g

if g is true in every model of KB.
That is, no interpretation exists in which KB is true and g is false. The defi-

nition of logical consequence places no constraints on the truth value of g in an
interpretation where KB is false.

If KB |= g we also say g logically follows from KB, or KB entails g.

Example 5.2 Suppose KB is the following knowledge base:

sam is happy.
ai is fun.
worms live underground.
night time.
bird eats apple.
apple is eaten← bird eats apple.
switch 1 is up← sam is in room∧ night time.

Given this knowledge base,

KB |= bird eats apple.
KB |= apple is eaten.

KB does not entail switch 1 is up as there is a model of the knowledge base
where switch 1 is up is false. Note that sam is in room must be false in that in-
terpretation.

5.1. Propositions 161

Humans’ View of Semantics

The description of semantics does not tell us why semantics is interesting or
how it can be used as a basis to build intelligent systems. The basic idea behind
the use of logic is that, when a knowledge base designer has a particular world
to characterize, the designer can choose that world as an intended interpre-
tation, choose meaning for the symbols with respect to that world, and write
propositions about what is true in that world. When the system computes a log-
ical consequence of a knowledge base, the designer can interpret this answer
with respect to the intended interpretation. A designer should communicate
this meaning to other designers and users so that they can also interpret the
answer with respect to the meaning of the symbols.

The logical entailment “KB |= g” is a semantic relation between a set of
propositions (KB) and a proposition it entails, g. Both KB and g are symbolic,
and so they can be represented in the computer. The meaning may be with
reference to the world, which need not be syntactic. The |= relation is not about
computation or proofs; it simply provides the specification of what follows
from some statements about what is true.

The methodology used by a knowledge base designer to represent a world
can be expressed as follows:

Step 1 A knowledge base designer chooses a task domain or world to represent,
which is the intended interpretation. This could be some aspect of the real
world (for example, the structure of courses and students at a university,
or a laboratory environment at a particular point in time), some imaginary
world (such as the world of Alice in Wonderland, or the state of the electrical
environment if a switch breaks), or an abstract world (for example, the world
of numbers and sets). The designer also must choose which propositions are
of interest.

Step 2 The knowledge base designer selects atoms to represent some aspects of
the world. Each atom has a precise meaning with respect to the intended
interpretation.

Step 3 The knowledge base designer tells the system propositions that are true
in the intended interpretation. This is often called axiomatizing the domain,
where the given propositions are the axioms of the domain.

Step 4 The KB designer can now ask questions about the intended interpretation.
The system can answer these questions. The designer is able to interpret the
answers using the meaning assigned to the symbols.

Within this methodology, the designer does not actually tell the computer any-
thing until step 3. The first two steps are carried out in the head of the designer.

Designers should document the meanings of the symbols so that they can
make their representations understandable to other people, so that they re-
member what each symbol means, and so that they can check the truth of
the given propositions. A specification of meaning of the symbols is called an
ontology. Ontologies can be informally specified in comments, but they are

162 5. Propositions and Inference

increasingly specified in formal languages to enable semantic interoperability –
the ability to use symbols from different knowledge bases together so the same
symbol means the same thing. Ontologies are discussed in detail in Chapter 13.

Step 4 can be carried out by other people as long as they understand the
ontology. Other people who know the meaning of the symbols in the question
and the answer, and who trust the knowledge base designer to have told the
truth, can interpret answers to their questions as being true in the world under
consideration.

The Computer’s View of Semantics

The knowledge base designer who provides information to the system has an
intended interpretation and interprets symbols according to that intended in-
terpretation. The designer states knowledge, in terms of propositions, about
what is true in the intended interpretation. The computer does not have ac-
cess to the intended interpretation – only to the propositions in the knowledge
base. As will be shown, the computer is able to tell if some statement is a log-
ical consequence of a knowledge base. The intended interpretation is a model
of the axioms if the knowledge base designer has been truthful according to
the meaning assigned to the symbols. Assuming the intended interpretation is
a model of the knowledge base, if a proposition is a logical consequence of the
knowledge base, it is true in the intended interpretation because it is true in all
models of the knowledge base.

The concept of logical consequence seems like exactly the right tool to de-
rive implicit information from an axiomatization of a world. Suppose KB repre-
sents the knowledge about the intended interpretation; that is, the intended in-
terpretation is a model of the knowledge base, and that is all the system knows
about the intended interpretation. If KB |= g, then g must be true in the in-
tended interpretation, because it is true in all models of the knowledge base.
If KB �|= g – that is, if g is not a logical consequence of KB – a model of KB
exists in which g is false. As far as the computer is concerned, the intended
interpretation may be the model of KB in which g is false, and so it does not
know whether g is true in the intended interpretation.

Given a knowledge base, the models of the knowledge base correspond to
all of the ways that the world could be, given that the knowledge base is true.

Example 5.3 Consider the knowledge base of Example 5.2 (page 160). The
user could interpret these symbols as having some meaning. The computer
does not know the meaning of the symbols, but it can still make conclusions
based on what it has been told. It can conclude that apple is eaten is true in the
intended interpretation. It cannot conclude switch 1 is up because it does not
know if sam is in room is true or false in the intended interpretation.

If the knowledge base designer tells lies – some axioms are false in the in-
tended interpretation – the computer’s answers are not guaranteed to be true
in the intended interpretation.

5.2. Propositional Definite Clauses 163

It is very important to understand that, until we consider computers with
perception and the ability to act in the world, the computer does not know the
meaning of the symbols. It is the human that gives the symbols meaning. All
the computer knows about the world is what it is told about the world. How-
ever, because the computer can provide logical consequences of the knowledge
base, it can make conclusions that are true in the intended interpretation.

5.2 Propositional Definite Clauses

The language of propositional definite clauses is a sublanguage of proposi-
tional calculus that does not allow uncertainty or ambiguity. In this language,
propositions have the same meaning as in propositional calculus, but not all
compound propositions are allowed in a knowledge base.

The syntax of propositional definite clauses is defined as follows:

• An atomic proposition or atom is the same as in propositional calculus.

• A body is an atom or a conjunction of atoms. Defined recursively, a body is
either an atom or of the form a∧ b, where a is an atom and b is a body.

• A definite clause is either an atom a, called an atomic clause, or of the form
a← b, called a rule, where a, the head, is an atom and b is a body.

• A knowledge base is a set of definite clauses.

Example 5.4 The elements of the knowledge base in Example 5.2 (page 160)
are all definite clauses.

The following are not definite clauses:

apple is eaten∧ bird eats apple.
sam is in room∧ night time← switch 1 is up.
Apple is eaten← Bird eats apple.
happy∨ sad∨ ¬alive.

The third proposition is not a definite clause because an atom must start with a
lower-case letter.

Note that a definite clause is a restricted form of a clause (page 126). For
example, the definite clause

a← b∧ c∧ d.

is equivalent to the clause

a∨ ¬b∨ ¬c∨ ¬d.

In general, a definite clause is equivalent to a clause with exactly one positive
literal (non-negated atom). Propositional definite clauses cannot represent dis-
junctions of atoms (e.g., a∨ b) or disjunctions of negated atoms (e.g., ¬c∨ ¬d).

164 5. Propositions and Inference

light

two-way
switch

switch

off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1

s2 w2

w0

l1

w3

s3

w4

l2

p1

w5

cb2

w6

p2

Figure 5.2: An electrical environment with components named

Example 5.5 Consider how to axiomatize the electrical environment of Fig-
ure 5.2 following the methodology for the user’s view of semantics (page 161).
This axiomatization will allow us to simulate the electrical system. It will be ex-
panded in later sections to let us diagnose faults based on observed symptoms.

Assume the representation will be used to determine whether lights are on
or off, based on switch positions and the status of circuit breakers, and, even-
tually, to be able to diagnose what is wrong with wires, switches, and circuit
breakers if something unexpected is observed. Assume you are not concerned
here with the color of the wires, the design of the switches, the length or weight
of the wire, the date of manufacture of the lights and the wires, or any of the
other myriad of detail one could imagine about the domain.

We must choose a level of abstraction. The aim is to represent the domain
at the most general level that will enable the diagnostic assistant to solve the
problems it must solve. We also want to represent the domain at a level that the
agent will have information about. For example, we could represent the actual
voltages and currents, but exactly the same reasoning would be done if this
were a 12-volt DC system or a 120-volt AC system; the voltages and frequen-
cies are irrelevant for questions about how switches affect whether lights are on.

5.2. Propositional Definite Clauses 165

Instead, we represent this domain at a commonsense level that non-electricians
may use to describe the domain, in terms of wires being live and currents flow-
ing from the outside through wires to the lights, and that circuit breakers and
light switches connect wires if they are turned on and working.

We have to choose what to represent. Suppose we want to represent propo-
sitions about whether lights are lit, whether wires are live, whether switches
are up or down, and whether components are broken.

We then choose atoms with a specific meaning in the world. We can use
descriptive names for these, such as up s2 to represent whether switch s2 is up
and live l1 to represent whether light l1 is live (i.e., has power coming into it).
The computer does not know the meaning of these names and does not have
access to the components of the atom’s name.

At this stage, we have not told the computer anything. It does not know
what the atoms are, let alone what they mean.

Once we have decided which symbols to use and what they mean, we tell
the system, using definite clauses, background knowledge about what is true
in the world. The simplest forms of definite clauses are those without bodies –
the atomic clauses – such as

light l1.
light l2.
ok l1.
ok l2.
ok cb1.
ok cb2.
live outside.

The designer may look at part of the domain and know that light l1 is live if
wire w0 is live, because they are connected together, but may not know if w0 is
live. Such knowledge is expressible in terms of rules:

live l1 ← live w0.
live w0 ← live w1 ∧ up s2.
live w0 ← live w2 ∧ down s2.
live w1 ← live w3 ∧ up s1.
live w2 ← live w3 ∧ down s1.
live l2 ← live w4.
live w4 ← live w3 ∧ up s3.
live p1 ← live w3.
live w3 ← live w5 ∧ ok cb1.
live p2 ← live w6.
live w6 ← live w5 ∧ ok cb2.
live w5 ← live outside.
lit l1 ← light l1 ∧ live l1 ∧ ok l1.
lit l2 ← light l2 ∧ live l2 ∧ ok l2.

166 5. Propositions and Inference

At run time, the user is able to input the observations of the current switch
positions, such as

down s1.
up s2.
up s3.

The knowledge base consists of all of the definite clauses, whether specified as
background knowledge or as observations.

5.2.1 Questions and Answers

One reason to build a description of a world is to be able to determine what
else must be true in that world. After the computer is given a knowledge base
about a particular domain, a user might like to ask the computer questions
about that domain. The computer can answer whether or not a proposition is
a logical consequence of the knowledge base. If the user knows the meaning of
the atoms, the user can interpret the answer in terms of the domain.

A query is a way of asking whether a proposition is a logical consequence
of a knowledge base. Once the system has been provided with a knowledge
base, a query is used to ask whether a formula is a logical consequence of the
knowledge base. Queries have the form

ask b.

where b is a body (page 163).
A query is a question that has the answer “yes” if the body is a logical con-

sequence of the knowledge base, or the answer “no” if the body is not a conse-
quence of the knowledge base. The latter does not mean that body is false in the
intended interpretation but rather that it is impossible to determine whether it
is true or false based on the knowledge provided.

Example 5.6 Once the computer has been told the knowledge base of Exam-
ple 5.5 (page 164), it can answer queries such as

ask light l1.

for which the answer is yes. The query

ask light l6.

has answer no. The computer does not have enough information to know
whether or not l6 is a light. The query

ask lit l2.

has answer yes. This atom is true in all models.
The user can interpret this answer with respect to the intended interpreta-

tion.

5.2. Propositional Definite Clauses 167

5.2.2 Proofs

So far, we have specified what an answer is, but not how it can be computed.
The definition of |= specifies what propositions should be logical consequences
of a knowledge base but not how to compute them. The problem of deduction
is to determine if some proposition is a logical consequence of a knowledge
base. Deduction is a specific form of inference.

A proof is a mechanically derivable demonstration that a proposition log-
ically follows from a knowledge base. A theorem is a provable proposition.
A proof procedure is a – possibly non-deterministic – algorithm for deriving
consequences of a knowledge base. See the box on page 170 for a description
of non-deterministic choice.

Given a proof procedure, KB � g means g can be proved or derived from
knowledge base KB.

A proof procedure’s quality can be judged by whether it computes what it
is meant to compute.

A proof procedure is sound with respect to a semantics if everything that
can be derived from a knowledge base is a logical consequence of the knowl-
edge base. That is, if KB � g, then KB |= g.

A proof procedure is complete with respect to a semantics if there is a proof
of each logical consequence of the knowledge base. That is, if KB |= g, then
KB � g.

We present two ways to construct proofs for propositional definite clauses:
a bottom-up procedure and a top-down procedure.

Bottom-Up Proof Procedure

The first proof procedure is a bottom-up proof procedure to derive logical con-
sequences. It is called bottom-up as an analogy to building a house, where we
build on top of the structure we already have. The bottom-up proof procedure
builds on atoms that have already been established. It should be contrasted
with a top-down approach (page 169), which starts from a query and tries to
find definite clauses that support the query. Sometimes we say that a bottom-
up procedure is forward chaining on the definite clauses, in the sense of going
forward from what is known rather than going backward from the query.

The general idea is based on one rule of derivation, a generalized form of
the rule of inference called modus ponens:

If “h ← b1 ∧ . . . ∧ bm” is a definite clause in the knowledge base,
and each bi has been derived, then h can be derived.

This rule also covers the case when m = 0; the bottom-up proof procedure can
always immediately derive the atom at the head of a definite clause with no
body.

Figure 5.3 (on the next page) gives a procedure for computing the conse-
quence set C of a set KB of definite clauses. Under this proof procedure, if g is

168 5. Propositions and Inference

1: procedure DCDeductionBU(KB)
2: Inputs
3: KB: a set of definite clauses
4: Output
5: Set of all atoms that are logical consequences of KB
6: Local
7: C is a set of atoms
8: C := {}
9: repeat

10: select “h← b1 ∧ . . . ∧ bm” in KB where bi ∈ C for all i, and h /∈ C
11: C := C∪ {h}
12: until no more definite clauses can be selected
13: return C

Figure 5.3: Bottom-up proof procedure for computing consequences of KB

an atom, KB � g if g ∈ C at the end of the DCDeductionBU procedure. For a
conjunction, KB � g1 ∧ · · · ∧ gk, if gi ∈ C for each i such that 0 < i ≤ k.

Example 5.7 Suppose the system is given the knowledge base KB:

a← b∧ c.
b← d∧ e.
b← g∧ e.
c← e.
d.
e.
f ← a∧ g.

One trace of the value assigned to C in the bottom-up procedure is

{}
{d}
{e, d}
{c, e, d}
{b, c, e, d}
{a, b, c, e, d}.

The algorithm terminates with C = {a, b, c, e, d}. Thus, KB � a, KB � b, and so
on.

The last rule in KB is never used. The bottom-up proof procedure cannot
derive f or g. This is as it should be because a model of the knowledge base
exists in which f and g are both false.

There are a number of properties that can be established for the proof pro-
cedure of Figure 5.3:

5.2. Propositional Definite Clauses 169

Soundness Every atom in C is a logical consequence of KB. That is, if KB � g then
KB |= g. To show this, assume that an atom exists in C that is not a logical
consequence of KB. If such an element exists, there must be a first element
added to C that is not true in every model of KB. Suppose this is h, and
suppose it is not true in model I of KB; h must be the first element generated
that is false in I. Because h has been generated, there must be some definite
clause in KB of the form h ← b1 ∧ . . . ∧ bm such that b1 . . . bm are all in C
(which includes the case where h is an atomic clause and so m = 0). The bi
are generated before h and so are all true in I. This clause’s head is false in I,
and its body is true in I; therefore, by the definition of truth of clauses, this
clause is false in I. This is a contradiction to the fact that I is a model of KB.
Thus, every element of C is a logical consequence of KB.

Complexity The algorithm of Figure 5.3 halts, and the number of times the loop
is repeated is bounded by the number of definite clauses in KB. This can be
seen easily because each definite clause can only be used once. Thus, the time
complexity of the preceding algorithm is linear in the size of the knowledge
base if it can index the definite clauses so that the inner loop can be carried
out in constant time.

Fixed Point The final C generated in the algorithm of Figure 5.3 is called a fixed
point because any further application of the rule of derivation does not
change C. C is the minimum fixed point because there is no smaller fixed
point.

Let I be the interpretation in which every atom in the minimum fixed
point is true and every atom not in the minimum fixed point is false. To
show that I must be a model of KB, suppose “h ← b1 ∧ . . . ∧ bm” ∈ KB is
false in I. The only way this could occur is if b1, . . . , bm are in the fixed point,
and h is not in the fixed point. By construction, the rule of derivation can be
used to add h to the fixed point, a contradiction to it being the fixed point.
Thus, there can be no definite clause in KB that is false in an interpretation
defined by a fixed point. Thus, I is a model of KB.

Completeness Suppose KB |= g. Then g is true in every model of KB, so it is true
in the model I defined by the minimum fixed point, and so it is in C, and so
KB � g.

The model I defined above by the minimum fixed point is a minimum model
in the sense that it has the fewest true propositions. Every other model must
also assign the atoms in I to be true.

Top-Down Proof Procedure

An alternative proof method is to search backward or top-down from a query to
determine if it is a logical consequence of the given definite clauses. This pro-
cedure is called propositional definite clause resolution or SLD resolution,
where SL stands for Selecting an atom using a Linear strategy, and D stands
for Definite clauses. It is an instance of the more general resolution method.

170 5. Propositions and Inference

Non-deterministic Choice

In many AI programs, we want to separate the definition of a solution from
how it is computed. Usually, the algorithms are non-deterministic, which
means that there are choices in the program that are left unspecified. There
are two sorts of non-determinism:

• Don’t-care non-determinism is exemplified by the “select” in Figure 5.3
(page 168). In this form of non-determinism, if one selection does not lead
to a solution there is no point in trying any other alternatives. Don’t-care
non-determinism is used in resource allocation, where a number of re-
quests occur for a limited number of resources, and a scheduling algorithm
has to select who gets which resource at each time. The correctness is not af-
fected by the selection, but efficiency and termination may be. When there
is an infinite sequence of selections, a selection mechanism is fair if a re-
quest that is repeatedly available to be selected will eventually be selected.
The problem of an element being repeatedly not selected is called starva-
tion. We want to make sure that any selection is fair.

• Don’t-know non-determinism is exemplified by the “choose” in Figure
5.4 (page 172). Just because one choice did not lead to a solution does not
mean that other choices will not work. Often we speak of an oracle that
can specify, at each point, which choice will lead to a solution. Because our
agent does not have such an oracle, it has to search through the space of
alternate choices. Chapter 3 presents algorithms to search the space.

Don’t-know non-determinism plays a large role in computational com-
plexity theory. The class of P problems contains the problems solvable with
time complexity polynomial in the size of the problem. The class of NP
problems contains the problems that could be solved in polynomial time
with an oracle that chooses the correct value at each time or, equivalently,
if a solution is verifiable in polynomial time. It is widely conjectured that
P �= NP, which would mean that no such oracle can exist. One great result
of complexity theory is that the hardest problems in the NP class of prob-
lems are all equally complex; if one can be solved in polynomial time, they
all can. These problems are NP-complete. A problem is NP-hard if it is at
least as hard as an NP-complete problem.

In this book, we consistently use the term select for don’t-care non-
determinism and choose for don’t-know non-determinism. In a non-
deterministic procedure, we assume that an oracle makes an appropriate
choice at each time. Thus, a choose statement will result in a choice that will
led to success, or will fail if there are no such choices. A non-deterministic
procedure may have multiple answers, where there are multiple choices that
succeed, and will fail if there are no applicable choices. We can also explicitly
fail a choice that should not succeed. The oracle is implemented by search.

5.2. Propositional Definite Clauses 171

The top-down proof procedure can be understood in terms of answer
clauses. An answer clause is of the form

yes← a1 ∧ a2 ∧ . . . ∧ am.

where yes is a special atom. Intuitively, yes is going to be true exactly when the
answer to the query is “yes.”

If the query is

ask q1 ∧ . . . ∧ qm.

the initial answer clause is

yes← q1 ∧ . . . ∧ qm.

Given an answer clause, the top-down algorithm selects an atom in the
body of the answer clause. Suppose it selects ai. The atom selected is called
a goal. The algorithm proceeds by doing steps of resolution. In one step of
resolution, it chooses a definite clause in KB with ai as the head. If there is no
such clause, it fails. The resolvent of the above answer clause on the selection
ai with the definite clause

ai ← b1 ∧ . . . ∧ bp.

is the answer clause

yes← a1 ∧ . . . ∧ ai−1 ∧ b1 ∧ . . . ∧ bp ∧ ai+1 ∧ . . . ∧ am.

That is, the goal in the answer clause is replaced by the body of the chosen
definite clause.

An answer is an answer clause with an empty body (m = 0). That is, it is
the answer clause yes← .

An SLD derivation of a query “ask q1 ∧ . . . ∧ qk” from knowledge base KB
is a sequence of answer clauses γ0, γ1, . . . , γn such that

• γ0 is the answer clause corresponding to the original query, namely the
answer clause yes← q1 ∧ . . . ∧ qk;

• γi is the resolvent of γi−1 with a definite clause in KB; and

• γn is an answer.

Another way to think about the algorithm is that the top-down algorithm
maintains a collection G of atoms to prove. Each atom that must be proved is
a goal. Initially, G is the set of atoms in the query. A clause a ← b1 ∧ . . . ∧ bp

means goal a can be replaced by goals b1, . . . , bp. Each bi is a subgoal of a. The
G to be proved corresponds to the answer clause yes← G.

The procedure in Figure 5.4 (on the next page) specifies a procedure for
solving a query. It follows the definition of a derivation. In this procedure, G
is the set of atoms in the body of the answer clause. The procedure is non-
deterministic in that a point exists in the algorithm where it has to choose a

172 5. Propositions and Inference

1: non-deterministic procedure DCDeductionTD(KB,Query)
2: Inputs
3: KB: a set definite clauses
4: Query: a set of atoms to prove

5: Output
6: yes if KB |= Query and the procedure fails otherwise
7: Local
8: G is a set of atoms
9: G := Query

10: repeat
11: select an atom a in G
12: choose definite clause “a← B” in KB with a as head
13: replace a with B in G
14: until G = {}
15: return yes

Figure 5.4: Top-down definite clause proof procedure

definite clause to resolve against. If there are choices that result in G being the
empty set, it returns yes; otherwise it fails.

This algorithm treats the body of a clause as a set of atoms; G is also a
set of atoms. It can be implemented by treating G as a set, where duplicates
are removed. It can also be implemented with G as an ordered list of atoms,
perhaps with an atom appearing a number of times.

Note that the algorithm requires a selection strategy of which atom to select
at each time. It does not have to search over the different selections, but the
selections affect the efficiency. One common selection strategy is to select the
leftmost atom in some ordering of the atoms. This is not a fair strategy; it is
possible for it to get into an infinite loop, when a different strategy would fail.
The best selection strategy is to select the atom that is most likely to fail.

Example 5.8 Suppose the system is given the knowledge base

a← b∧ c.
b← d∧ e.
b← g∧ e.
c← e.
d.
e.
f ← a∧ g.

It is asked the following query:

ask a.

The following shows a derivation that corresponds to the sequence of assign-
ments to G in the repeat loop of Figure 5.4. We assume that G is represented as

5.2. Propositional Definite Clauses 173

an ordered list, and it always selects the leftmost atom in G:

yes← a.
yes← b∧ c.
yes← d∧ e∧ c.
yes← e∧ c.
yes← c.
yes← e.
yes← .

The following shows a sequence of choices, where the second definite clause
for b was chosen, which fails to provide a proof:

yes← a.
yes← b∧ c.
yes← g∧ e∧ c.

If g is selected, there are no rules that can be chosen. This proof attempt is said
to fail.

When the top-down procedure has derived the answer, the rules used in
the derivation can be used in a bottom-up proof procedure to infer the query.
Similarly, a bottom-up proof of an atom can be used to construct a correspond-
ing top-down derivation. This equivalence can be used to show the soundness
and completeness of the top-down proof procedure. As defined, the top-down
proof procedure may spend extra time re-proving the same atom multiple
times, whereas the bottom-up procedure proves each atom only once. How-
ever, the bottom-up procedure proves every atom, but the top-down procedure
proves only atoms that are relevant to the query.

The non-deterministic top-down algorithm of Figure 5.4 together with a
selection strategy induces a search graph, which is a tree. Each node in the
search graph represents an answer clause. The neighbors of a node yes← a1 ∧
. . . ∧ am, where ai is the selected atom, represent all of the possible answer
clauses obtained by resolving on ai. There is a neighbor for each definite clause
whose head is ai. The goal nodes of the search are of the form yes← .

Example 5.9 Given the knowledge base

a← b∧ c. a← g. a← h.
b← j. b← k. d← m.
d← p. f ← m. f ← p.
g← m. g← f . k← m.
h← m. p.

and the query

ask a∧ d.

The search graph for an SLD derivation, assuming the leftmost atom is selected
in each answer clause, is shown in Figure 5.5 (on the next page).

174 5. Propositions and Inference

Figure 5.5: A search graph for a top-down derivation

For most problems, the search graph is not given statically, because this
would entail anticipating every possible query. More realistically, the search
graph is dynamically constructed as needed. All that is required is a way to
generate the neighbors of a node. Selecting an atom in the answer clause de-
fines a set of neighbors. A neighbor exists for each rule with the selected atom
as its head.

Any of the search methods of Chapter 3 can be used to search the search
space. Because we are only interested in whether the query is a logical conse-
quence, we just require a path to a goal node; an optimal path is not necessary.
There is a different search space for each query. A different selection of which
atom to resolve at each step will result in a different search space.

5.3 Knowledge Representation Issues

5.3.1 Background Knowledge and Observations

An observation (page 17) is a piece of information received online from users,
sensors, or other knowledge sources. For this chapter, we assume an observa-
tion is an atomic proposition. Observations are implicitly conjoined, so a set
of observations is a conjunction of atoms. Neither users nor sensors provide
rules directly from observing the world. The background knowledge allows
the agent to do something useful with these observations.

In many reasoning frameworks, the observations are added to the back-
ground knowledge. But in other reasoning frameworks (e.g, in abduction,
probabilistic reasoning, and learning), observations are treated separately from
background knowledge.

5.3. Knowledge Representation Issues 175

Users (page 64) cannot be expected to tell us everything that is true. First,
they do not know what is relevant, and second, they do not know what vocab-
ulary to use. An ontology (page 61) that specifies the meaning of the symbols,
and a graphical user interface to allow the user to click on what is true, may
help to solve the vocabulary problem. However, many problems are too big;
what is relevant depends on other things that are true, and there are too many
possibly relevant truths to expect the user to specify everything that is true,
even with a sophisticated graphical user interface.

Similarly, passive sensors (page 64) are able to provide direct observa-
tions of conjunctions of atomic propositions, but active sensors may have to
be queried by the agent for the information that is necessary for a task.

5.3.2 Querying the User

At design time or offline, there is typically no information about particular
cases. This information arrives online (page 64) from users, sensors, and exter-
nal knowledge sources. For example, a medical-diagnosis program may have
knowledge represented as definite clauses about the possible diseases and
symptoms but it would not have knowledge about the actual symptoms man-
ifested by a particular patient. You would not expect that the user would want
to, or even be able to, volunteer all of the information about a particular case
because often the user does not know what information is relevant or know
the syntax of the representation language. The user would prefer to answer ex-
plicit questions put to them in a more natural language. The idea of querying
the user is that the system can treat the user as a source of information and
ask the user specific questions about a particular case. The proof procedure can
determine what information is relevant and will help to prove a query.

The simplest way to get information from a user is to incorporate an ask-
the-user mechanism into the top-down proof procedure (page 169). In such a
mechanism, an atom is askable if the user would know the truth value at run
time. The top-down proof procedure, when it has selected an atom to prove,
either can use a clause in the knowledge base to prove it, or, if the atom is
askable, can ask the user whether or not the atom is true. The user is thus only
asked about atoms that are relevant for the query. There are three classes of
atoms that can be selected:

• atoms for which the user is not expected to know the answer, so the system
never asks.

• askable atoms for which the user has not already provided an answer. In
this case, the user should be asked for the answer, and the answer should be
recorded.

• askable atoms for which the user has already provided an answer. In this
case, that answer should be used, and the user should not be asked again
about this atom.

A bottom-up proof procedure can also be adapted to ask a user, but it should
avoid asking about all askable atoms; see Exercise 5.5 (page 210).

176 5. Propositions and Inference

It is important to note that a symmetry exists between roles of the user and
roles of the system. They can both ask questions and give answers. At the top
level, the user asks the system a question, and at each step the system asks a
question, which is answered either by finding the relevant definite clauses or
by asking the user. The whole system can be characterized by a protocol of
questions and answers.

Example 5.10 In the electrical domain of Example 5.5 (page 164), one would
not expect the designer of the house to know the switch positions or expect
the user to know which switches are connected to which wires. It is reasonable
that all of the definite clauses of Example 5.5 (page 164), except for the switch
positions, should be given by the designer. The switch positions can then be
made askable.

Here is a possible dialog, where the user asks a query and answers yes or no.
The user interface here is minimal to show the basic idea; a real system would
use a more sophisticated user-friendly interface.

ailog: ask lit l1.
Is up s1 true? [yes,no,unknown,why,help]: no.
Is down s1 true? [yes,no,unknown,why,help]: yes.
Is down s2 true? [yes,no,unknown,why,help]: yes.
Answer: lit l1.

The system only asks the user questions that the user is able to answer and that
are relevant to the task at hand.

Instead of answering questions, it is sometimes preferable for a user to be
able to specify if there is something strange or unusual going on. For example,
a patient may not be able to specify everything that is true about them but
can specify what is unusual. For example, a patient may come in and say that
their left knee hurts; it is unreasonable to expect them to volunteer that their
left elbow doesn’t hurt and, similarly, for every other part that does not hurt. It
may be possible for a sensor to specify that something has changed in a scene,
even though it may not be able to recognize what is in a scene.

Given that a user specified everything that is exceptional, an agent can often
infer something from the lack of knowledge. The normality will be a default
that can be overridden with exceptional information. This idea of allowing for
defaults and exceptions to the defaults is explored in Section 5.5 (page 193).

5.3.3 Knowledge-Level Explanation

The explicit use of semantics allows explanation and debugging at the knowl-
edge level (page 16). To make a system usable by people, the system cannot just
give an answer and expect the user to believe it. Consider the case of a system
advising doctors who are legally responsible for the treatment that they carry
out based on the diagnosis. The doctors must be convinced that the diagnosis
is appropriate. The system must be able to justify that its answer is correct. The

5.3. Knowledge Representation Issues 177

same features are used to explain how the system found a result and to debug
the knowledge base.

Three complementary means of interrogation are used to explain the rel-
evant knowledge: (1) a how question is used to explain how an answer was
derived, (2) a why question is used to ask the system why it is asking the user
a question, and (3) a whynot question is used to ask why an atom was not able
to be proved.

To explain how an answer was derived, a “how” question can be asked by a
user when the system has returned the answer. The system provides the defi-
nite clause used to deduce the answer. For any atom in the body of the definite
clause, the user can ask how the system derived that atom.

The user can ask “why” in response to being asked a question. The system
replies by giving the rule that produced the question. The user can then ask
why the head of that rule was being proved. Together these rules allow the
user to traverse a proof or a partial proof of the top-level query.

A “whynot” question can be used to ask why a particular atom was not able
to be proved.

How Did the System Prove a Goal?

The first explanation procedure allows the user to ask “how” a goal was de-
rived. If there is a proof for g, either g must be an atomic clause or there must
be a rule

g← a1 ∧ . . . ∧ ak.

such that a proof exists for each ai.
If the system has derived g, and the user asks how in response, the system

can display the clause that was used to prove g. If this clause was a rule, the
user can then ask

how i.

which will give the rule that was used to prove ai. The user can continue using
the how command to explore how g was derived.

Example 5.11 In the axiomatization of Example 5.5 (page 164), the user can
ask the query ask lit l2. In response to the system proving this query, the user
can ask how. The system would reply:

lit l2 ←
light l2 ∧
live l2 ∧
ok l2.

This is the top-level rule used to prove lit l2. To find out how live l2 was proved,
the user can ask

how 2.

178 5. Propositions and Inference

The system can return the rule used to prove live l2, namely,

live l2 ←
live w4.

To find how live w4 was proved, the user can ask

how 1.

The system presents the rule

live w4 ←
live w3 ∧
up s3.

To find how first atom in the body was proved, the user can ask

how 1.

The first atom, live w3, was proved using the following rule:

live w3 ←
live w5 ∧
ok cb1.

To find how the second atom in the body was proved, the user can ask

how 2.

The system will report that ok cb1 is explicitly given.
Notice that the explanation here was only in terms of the knowledge level,

and it only gave the relevant definite clauses it has been told. The user does not
have to know anything about the proof procedure or the actual computation.

Why Did the System Ask a Question?

Another useful explanation is for why a question was asked. This is useful
because

• We want the system to appear intelligent. Knowing why a question was
asked will increase a user’s confidence that the system is working sensibly.

• One of the main measures of complexity of an interactive system is the num-
ber of questions asked of a user; you want to keep this to a minimum. Know-
ing why a question was asked will help the knowledge designer reduce this
complexity.

• An irrelevant question is usually a symptom of a deeper problem.
• The user may learn something from the system by knowing why the system

is doing something. This learning is much like an apprentice asking a master
why the master is doing something.

When the system asks the user a question (q), there must be a rule used by
the system that contains q in the body. The user can ask

why.

5.3. Knowledge Representation Issues 179

This is read as “Why did you ask me that question?” The answer can be simply
the rule that contains q in the body. If the user asks why again, the system should
explain why the goal at the head of the rule was asked, and so forth. Repeatedly
asking why will eventually give the path of goals to the top-level query. If all of
these rules are reasonable, this justifies why the system’s question to the user
is reasonable.

Example 5.12 Consider the dialog of Example 5.10 (page 176). The following
shows how repeated use of why can repeatedly find higher-level goals. The
following dialog is for the query ask lit l1, with user asking the initial query,
and responding with “why”:

ailog: ask lit l1.
Is up s1 true? why.
up s1 is used in the rule live w1 ← live w3 ∧ up s1: why.
live w1 is used in the rule live w0 ← live w1 ∧ up s2: why.
live w0 is used in the rule live l1 ← live w0: why.
live l1 is used in the rule lit l1 ← light l1 ∧ live l1 ∧ ok l1: why.
Because that is what you asked me!

Typically, how and why are used together; how moves from higher-level to
lower-level goals, and why moves from lower-level to higher-level goals. To-
gether they let the user traverse a proof tree, where nodes are atoms, and a
node together with its children corresponds to a clause in the knowledge base.

Example 5.13 As an example of the need to combine how and why, consider
the previous example where the user asked why up s1. The system gave the
following rule:

live w1 ← live w3 ∧ up s1.

This means that up s1 was asked because the system wants to know live w1 and
is using this rule to try to prove up s1. The user may think it is reasonable that
the system wants to know live w1 but may think it is inappropriate that up s1
be asked because the user may doubt that live w3 should have succeeded. In
this case it is useful for the user to ask how live w3 was derived.

5.3.4 Knowledge-Level Debugging

Just as in other software, there can be errors and omissions in knowledge bases.
Domain experts and knowledge engineers must be able to debug a knowledge
base and add knowledge. In knowledge-based systems, debugging is difficult
because the domain experts and users who have the domain knowledge re-
quired to detect a bug do not necessarily know anything about the internal
working of the system, nor do they want to. Standard debugging tools, such
as providing traces of the execution, are useless because they require a knowl-
edge of the mechanism by which the answer was produced. In this section, we

180 5. Propositions and Inference

show how the idea of semantics (page 159) can be exploited to provide power-
ful debugging facilities for knowledge-based systems. Whoever is debugging
the system is required only to know the meaning of the symbols and whether
specific atoms are true or not. This is the kind of knowledge that a domain
expert and a user may have.

Knowledge-level debugging is the act of finding errors in knowledge bases
with reference only to what the symbols mean. One of the goals of building
knowledge-based systems that are usable by a range of domain experts is that
a discussion about the correctness of a knowledge base should be a discussion
about the knowledge domain. For example, debugging a medical knowledge
base should be a question of medicine that medical experts, who are not experts
in AI, can answer. Similarly, debugging a knowledge base about house wiring
should be with reference to the particular house, not about the internals of the
system reasoning with the knowledge base.

Four types of non-syntactic errors can arise in rule-based systems:

• An incorrect answer is produced; that is, some atom that is false in the
intended interpretation was derived.

• Some answer was not produced; that is, the proof failed when it should
have succeeded (some particular true atom was not derived).

• The program gets into an infinite loop.

• The system asks irrelevant questions.

Ways to debug the first three types of error are examined below. Irrelevant
questions can be investigated using the why questions as described earlier.

Incorrect Answers

An incorrect answer is an answer that has been proved yet is false in the in-
tended interpretation. It is also called a false-positive error. An incorrect an-
swer can only be produced by a sound proof procedure if an incorrect definite
clause was used in the proof.

Assume that whoever is debugging the knowledge base, such as a domain
expert or a user, knows the intended interpretation of the symbols of the lan-
guage and can determine whether a particular proposition is true or false in
the intended interpretation. The person does not have to know how the an-
swer was derived. To debug an incorrect answer, a domain expert needs only
to answer yes-or-no questions.

Suppose there is an atom g that was proved yet is false in the intended
interpretation. Then there must be a rule g ← a1 ∧ . . . ∧ ak in the knowledge
base that was used to prove g. Either

• one of the ai is false in the intended interpretation, in which case it can be
debugged in the same way, or

• all of the ai are true in the intended interpretation. In this case, the definite
clause g← a1 ∧ . . . ∧ ak must be incorrect.

5.3. Knowledge Representation Issues 181

1: procedure Debug(g, KB)
2: Inputs
3: KB a knowledge base
4: g an atom: KB � g and g is false in intended interpretation

5: Output
6: clause in KB that is false
7: Find definite clause g← a1 ∧ . . . ∧ ak ∈ KB used to prove g
8: for each ai do
9: ask user whether ai is true

10: if user specifies ai is false then
11: return Debug(ai, KB)
12: return g← a1 ∧ . . . ∧ ak

Figure 5.6: An algorithm to debug incorrect answers

This leads to an algorithm, presented in Figure 5.6, to debug a knowledge base
when an atom that is false in the intended interpretation is derived. This only
requires the person debugging the knowledge base to be able to answer yes-
or-no questions.

This procedure can also be carried out by the use of the how command
(page 177). Given a proof for g that is false in the intended interpretation, a
user can ask how that atom was proved. This will return the definite clause that
was used in the proof. If the clause was a rule, the user could use how to ask
about an atom in the body that was false in the intended interpretation. This
will return the rule that was used to prove that atom. The user can repeat this
until a definite clause is found where all of the elements of the body are true
(or there are no elements in the body). This is the incorrect definite clause. The
method of debugging assumes that the user can determine whether an atom is
true or false in the intended interpretation. The user does not have to know the
proof procedure used.

Example 5.14 Consider Example 5.5 (page 164), involving the electrical do-
main, but assume there is a bug in the program. Suppose that the domain expert
or user had inadvertently said that whether w1 is connected to w3 depends on
the status of s3 instead of s1 (see Figure 1.8 (page 34)). Thus, the knowledge
includes the following incorrect rule:

live w1 ← live w3 ∧ up s3.

All of the other axioms are the same as in Example 5.5. Given this axiom set,
the atom lit l1 can be derived, which is false in the intended interpretation.
Consider how a user would go about finding this incorrect definite clause when
they detected this incorrect answer.

Given that lit l1 is false in the intended interpretation, they ask how it was
derived, which will give the following rule:

lit l1 ← light l1 ∧ live l1 ∧ ok l1.

182 5. Propositions and Inference

They check the atoms in the body of this rule. light l1 and ok l1 are true in the
intended interpretation, but live l1 is false in the intended interpretation. So
they ask

how 2.

The system presents the rule

live l1 ← live w0.

live w0 is false in the intended interpretation, so they ask

how 1.

The system presents the rule

live w0 ← live w1 ∧ up s2.

live w1 is false in the intended interpretation, so they ask

how 1.

The system presents the rule

live w1 ← live w3 ∧ up s3.

Both elements of the body are true in the intended interpretation, so this is
the buggy rule.

The user or domain expert can find the buggy definite clause without having
to know the internal workings of the system or how the proof was found. They
only require knowledge about the intended interpretation and the disciplined
use of how.

Missing Answers

The second type of error occurs when an expected answer is not produced.
This manifests itself by a failure when an answer is expected. A goal g that is
true in the domain, but is not a consequence of the knowledge base, is called a
false-negative error.

The preceding algorithm does not work in this case. There is no proof. We
must look for why there is no proof for g.

An appropriate answer is not produced only if a definite clause or clauses
are missing from the knowledge base. By knowing the intended interpretation
of the symbols and by knowing what queries should succeed (i.e, what is true
in the intended interpretation), a domain expert can debug a missing answer.
Given an atom that failed when it should have succeeded, Figure 5.7 shows
how to find an atom for which there is a missing definite clause.

Suppose g is an atom that should have a proof, but which fails. Because the
proof for g fails, the bodies of all of the definite clauses with g in the head fail.

• Suppose one of these definite clauses for g should have resulted in a
proof; this means all of the atoms in the body must be true in the in-
tended interpretation. Because the body failed, there must be an atom in

5.3. Knowledge Representation Issues 183

1: procedure DebugMissing(g, KB)
2: Inputs
3: KB a knowledge base
4: g an atom: KB �� g and g is true in the intended interpretation

5: Output
6: atom for which there is a clause missing
7: if there is a definite clause g← a1 ∧ . . . ∧ ak ∈ KB such that all ai are

true in the intended interpretation then
8: select ai that cannot be proved
9: DebugMissing(ai, KB)

10: else
11: return g

Figure 5.7: An algorithm for debugging missing answers

the body that fails. This atom is then true in the intended interpretation,
but fails. So we can recursively debug it.

• Otherwise, there is no definite clause applicable to proving g, so the user
must add a definite clause for g.

Example 5.15 Suppose that, for the axiomatization of the electrical domain
in Example 5.5 (page 164), the world of Figure 1.8 (page 34) actually had s2
down. Thus, it is missing the definite clause specifying that s2 is down. The
axiomatization of Example 5.5 fails to prove lit l1 when it should succeed. Let’s
find the bug.

lit l1 failed, so we find all of the rules with lit l1 in the head. There is one
such rule:

lit l1 ← light l1 ∧ live l1 ∧ ok l1.

The user can then verify that all of the elements of the body are true. light l1
and ok l1 can both be derived, but live l1 fails, so we debug this atom. There is
one rule with live l1 in the head:

live l1 ← live w0.

The atom live w0 cannot be proved, but the user verifies that it is true in the
intended interpretation. So we find the rules for live w0:

live w0 ← live w1 ∧ up s2.
live w0 ← live w2 ∧ down s2.

The user can say that the body of the second rule is true. A proof exists for
live w2, but there are no definite clauses for down s2, so this atom is returned.
The correction is to add the appropriate atomic clause or rule for it.

184 5. Propositions and Inference

Infinite Loops

There is an infinite loop in the top-down derivation if there is an atom a that
is being proved as a subgoal of a. (Here we assume that being a subgoal is
transitive; a subgoal of a subgoal is a subgoal). Thus, there can be an infinite
loop only if the knowledge base is cyclic. A knowledge base is cyclic if there is
an atom a such that there is a sequence of definite clauses of the form

a← . . . a1 . . .

a1 ← . . . a2 . . .

. . .

an ← . . . a . . .

(where if n = 0 there is a single definite clause with a in the head and body).
A knowledge base is acyclic if there is an assignment of natural numbers

(non-negative integers) to the atoms so that the atoms in the body of a defi-
nite clause are assigned a lower number than the atom in the head. All of the
knowledge bases given previously in this chapter are acyclic. There cannot be
an infinite loop in an acyclic knowledge base.

To detect a cyclic knowledge base, the top-down proof procedure can be
modified to maintain the set of all ancestors for each atom in the proof. In the
procedure in Figure 5.4 (page 172), the set A can contain pairs of an atom and
its set of ancestors.

Initially the set of ancestors of each atom is empty. When the rule

a← a1 ∧ . . . ∧ ak

is used to prove a, the ancestors of ai will be the ancestors of a together with a.
That is,

ancestors(ai) = ancestors(a) ∪ {a}.

The proof can fail if an atom is in its set of ancestors. This failure only occurs
if the knowledge base is cyclic. Note that this is a more refined version of cycle
checking (page 93), where each atom has its own set of ancestors.

A cyclic knowledge base is often a sign of a bug. When writing a knowl-
edge base, it is often useful to ensure an acyclic knowledge base by identifying
a value that is being reduced at each iteration. For example, in the electrical
domain, the number of steps away from the outside of the house is meant to
be reduced by one each time through the loop. Disciplined and explicit use
of a well-founded ordering can be used to prevent infinite loops in the same
way that programs in traditional languages must be carefully programmed to
prevent infinite looping.

Note that the bottom-up proof procedure does not get into an infinite loop,
because it selects a rule only when the head has not been derived.

5.4. Proving by Contradictions 185

5.4 Proving by Contradictions

Definite clauses can be used in a proof by contradiction by allowing rules that
give contradictions. For example, in the electrical wiring domain (page 164),
it is useful to be able to specify that some prediction, such as light l2 is on, is
not true. This will enable diagnostic reasoning to deduce that some switches,
lights, or circuit breakers are broken.

5.4.1 Horn Clauses

The definite clause language does not allow a contradiction to be stated. How-
ever, a simple expansion of the language can allow proof by contradiction.

An integrity constraint is a clause of the form

false← a1 ∧ . . . ∧ ak.

where the ai are atoms and false is a special atom that is false in all interpreta-
tions.

A Horn clause is either a definite clause (page 163) or an integrity con-
straint. That is, a Horn clause has either false or a normal atom as its head.

Integrity constraints allow the system to prove that some conjunction of
atoms is false in all models of a knowledge base – that is, to prove disjunctions
of negations of atoms. Recall (page 158) that ¬p is the negation of p, which is
true in an interpretation when p is false in that interpretation, and p ∨ q is the
disjunction of p and q, which is true in an interpretation if p is true or q is true or
both are true in the interpretation. The integrity constraint false← a1 ∧ . . . ∧ ak
is logically equivalent to ¬a1 ∨ . . . ∨ ¬ak.

A Horn clause knowledge base can imply negations of atoms, as shown in
Example 5.16.

Example 5.16 Consider the knowledge base KB1:

false← a∧ b.
a← c.
b← c.

The atom c is false in all models of KB1. If c were true in model I of KB1, then
a and b would both be true in I (otherwise I would not be a model of KB1).
Because false is false in I and a and b are true in I, the first clause is false in I,
a contradiction to I being a model of KB1. Thus, c is false in all models of KB1.
This is expressed as

KB1 |= ¬c

which means that ¬c is true in all models of KB1, and so c is false in all models
of KB1.

Although the language of Horn clauses does not allow disjunctions and
negations to be input, disjunctions of negations of atoms can be derived, as
Example 5.17 (on the next page) shows.

186 5. Propositions and Inference

Example 5.17 Consider the knowledge base KB2:

false← a∧ b.
a← c.
b← d.
b← e.

Either c is false or d is false in every model of KB2. If they were both true in
some model I of KB2, both a and b would be true in I, so the first clause would
be false in I, a contradiction to I being a model of KB2. Similarly, either c is false
or e is false in every model of KB2. Thus,

KB2 |= ¬c∨ ¬d.
KB2 |= ¬c∨ ¬e.

A set of clauses is unsatisfiable if it has no models. A set of clauses is prov-
ably inconsistent with respect to a proof procedure if false can be derived from
the clauses using that proof procedure. If a proof procedure is sound and com-
plete, a set of clauses is provably inconsistent if and only if it is unsatisfiable.

It is always possible to find a model for a set of definite clauses. The inter-
pretation with all atoms true is a model of any set of definite clauses. Thus, a
definite-clause knowledge base is always satisfiable. However, a set of Horn
clauses can be unsatisfiable.

Example 5.18 The set of clauses {a, false ← a} is unsatisfiable. There is no
interpretation that satisfies both clauses. Both a and false ← a cannot be true in
any interpretation.

Both the top-down and the bottom-up proof procedures can be used to
prove inconsistency, by using false as the query. That is, a Horn clause knowl-
edge base is inconsistent if and only if false can be derived.

5.4.2 Assumables and Conflicts

Reasoning from contradictions is a very useful tool. For many activities it is
useful to know that some combination of assumptions is incompatible. For ex-
ample, it is useful in planning to know that some combination of actions an
agent is trying to do is impossible. It is useful in design to know that some
combination of components cannot work together.

In a diagnostic application it is useful to be able to prove that some com-
ponents working normally is inconsistent with the observations of the system.
Consider a system that has a description of how it is supposed to work and
some observations. If the system does not work according to its specification, a
diagnostic agent must identify which components could be faulty.

To carry out these tasks it is useful to be able to make assumptions that can
be proved to be false.

5.4. Proving by Contradictions 187

An assumable is an atom that can be assumed in a proof by contradiction. A
proof by contradiction derives a disjunction of the negation of the assumables.

With a Horn clause knowledge base and explicit assumabes, if the system
can prove a contradiction from some assumptions, it can extract combinations
of assumptions that cannot all be true.

In a definite-clause knowledge base, a query (page 166) is used to ask if a
proposition is a consequence of the knowledge base. Given a query, the system
tries to construct a proof for the query. With a proof by contradiction, the sys-
tem tries to prove false. The user must specify what is allowable as part of an
answer.

If KB is a set of Horn clauses, a conflict of KB is a set of assumables that,
given KB, implies false. That is, C = {c1, . . . , cr} is a conflict of KB if

KB∪ {c1, . . . , cr} |= false.

In this case, an answer is

KB |= ¬c1 ∨ . . . ∨ ¬cr.

A minimal conflict is a conflict such that no strict subset is also a conflict.

Example 5.19 In Example 5.17, if {c, d, e, f , g, h} is the set of assumables, then
{c, d} and {c, e} are minimal conflicts of KB2; {c, d, e, h} is also a conflict, but not
a minimal conflict.

In the examples that follow, the assumables are specified using the assum-
able keyword followed by one or more assumable atoms separated by commas.

5.4.3 Consistency-Based Diagnosis

Making assumptions about what is working normally, and deriving what com-
ponents could be abnormal, is the basis of consistency-based diagnosis. Sup-
pose a fault is something that is wrong with a system. The aim of consistency-
based diagnosis is to determine the possible faults based on a model of the
system and observations of the system. By making the absence of faults as-
sumable, conflicts can be used to prove what is wrong with the system.

Example 5.20 Consider the house wiring example depicted in Figure 5.2
(page 164) and represented in Example 5.5 (page 164). A background knowl-
edge base suitable for consistency-based diagnosis is given in Figure 5.8 (on
the next page). Normality assumptions are added to the clauses to make ex-
plicit the assumption that the components work. We have added conditions
that switches, circuit breakers, and lights must be okay to work as expected.
There are no clauses for the ok atoms, but they are made assumable.

The user is able to observe the switch positions and whether a light is lit or
dark.

188 5. Propositions and Inference

light l1.

light l2.

live outside.

live l1 ← live w0.

live w0 ← live w1 ∧ up s2 ∧ ok s2.

live w0 ← live w2 ∧ down s2 ∧ ok s2.

live w1 ← live w3 ∧ up s1 ∧ ok s1.

live w2 ← live w3 ∧ down s1 ∧ ok s1.

live l2 ← live w4.

live w4 ← live w3 ∧ up s3 ∧ ok s3.

live p1 ← live w3.

live w3 ← live w5 ∧ ok cb1.

live p2 ← live w6.

live w6 ← live w5 ∧ ok cb2.

live w5 ← live outside.

lit l1 ← light l1 ∧ live l1 ∧ ok l1.

lit l2 ← light l2 ∧ live l2 ∧ ok l2.

false← dark l1 ∧ lit l1.

false← dark l2 ∧ lit l2.

assumable ok cb1, ok cb2, ok s1, ok s2, ok s3, ok l1, ok l2.

Figure 5.8: Knowledge for Example 5.20

A light cannot be both lit and dark. This knowledge is stated in the follow-
ing integrity constraints:

false← dark l1 ∧ lit l1.
false← dark l2 ∧ lit l2.

Suppose the user observes that all three switches are up, and that l1 and l2
are both dark. This is represented by the atomic clauses

up s1.
up s2.
up s3.
dark l1.
dark l2.

5.4. Proving by Contradictions 189

Given the knowledge of Figure 5.8 together with the observations, two minimal
conflicts exist, namely

{ok cb1, ok s1, ok s2, ok l1} and
{ok cb1, ok s3, ok l2}.

Thus, it follows that

KB |= ¬ok cb1 ∨ ¬ok s1 ∨ ¬ok s2 ∨ ¬ok l1
KB |= ¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2,

which means that at least one of the components cb1, s1, s2, or l1 must not be
okay, and least one of the components cb1, s3, or l2 must not be okay.

Given the set of all conflicts, a user can determine what may be wrong with
the system being diagnosed. However, given a set of conflicts, it is often diffi-
cult to determine if all of the conflicts could be explained by a few faults. Some
of the questions that a user may want to know are whether all of the conflicts
could be accounted for a by a single fault or a pair of faults.

Given a set of conflicts, a consistency-based diagnosis is a set of assum-
ables that has at least one element in each conflict. A minimal diagnosis is a
diagnosis such that no subset is also a diagnosis. For one of the diagnoses, all
of its elements must be false in the world being modeled.

Example 5.21 Let’s continue Example 5.20 (page 187). Because the disjunc-
tion of the negation of the two conflicts is a logical consequence of the clauses,
the conjunction

(¬ok cb1 ∨ ¬ok s1 ∨ ¬ok s2 ∨ ¬ok l1)
∧ (¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2)

follows from the knowledge base. This conjunction of disjunctions can be dis-
tributed into disjunctive normal form (DNF), a disjunction of conjunctions of
negated atoms:

¬ok cb1 ∨
(¬ok s1 ∧ ¬ok s3) ∨ (¬ok s1 ∧ ¬ok l2) ∨
(¬ok s2 ∧ ¬ok s3) ∨ (¬ok s2 ∧ ¬ok l2) ∨
(¬ok l1 ∧ ¬ok s3) ∨ (¬ok l1 ∧ ¬ok l2).

Thus, either cb1 is broken or there is at least one of six double faults.
The propositions that are disjoined together correspond to the seven

minimal diagnoses: {ok cb1}, {ok s1, ok s3}, {ok s1, ok l2}, {ok s2, ok s3},
{ok s2, ok l2}, {ok l1, ok s3}, {ok l1, ok l2}. The system has proved that one of
these combinations must be faulty.

190 5. Propositions and Inference

1: procedure ConflictBU(KB, Assumables)
2: Inputs
3: KB: a set Horn clauses
4: Assumables: a set of atoms that can be assumed
5: Output
6: set of conflicts
7: Local
8: C is a set of pairs of an atom and a set of assumables

9: C := {〈a, {a}〉 : a is assumable}
10: repeat
11: select clause “h← b1 ∧ . . . ∧ bm” in KB such that
12: 〈bi, Ai〉 ∈ C for all i and
13: 〈h, A〉 /∈ C where A = A1 ∪ . . . ∪Am

14: C := C∪ {〈h, A〉}
15: until no more selections are possible
16: return {A : 〈false, A〉 ∈ C}

Figure 5.9: Bottom-up proof procedure for computing conflicts

5.4.4 Reasoning with Assumptions and Horn Clauses

This section presents a bottom-up implementation and a top-down implemen-
tation for finding conflicts in Horn clause knowledge bases.

Bottom-Up Implementation

The bottom-up implementation is an augmented version of the bottom-up al-
gorithm for definite clauses presented in Section 5.2.2 (page 167).

The modification to that algorithm is that the conclusions are pairs 〈a, A〉,
where a is an atom and A is a set of assumables that imply a in the context of
Horn clause knowledge base KB.

Initially, the conclusion set C is {〈a, {a}〉 : a is assumable}. Clauses can be
used to derive new conclusions. If there is a clause h← b1 ∧ . . . ∧ bm such that
for each bi there is some Ai such that 〈bi, Ai〉 ∈ C, then 〈h, A1 ∪ . . . ∪Am〉 can be
added to C. Note that this covers the case of atomic clauses, with m = 0, where
〈h, {}〉 is added to C. Figure 5.9 gives code for the algorithm.

When the pair 〈false, A〉 is generated, the assumptions A form a conflict.
One refinement of this program is to prune supersets of assumptions. If

〈a, A1〉 and 〈a, A2〉 are in C, where A1 ⊂ A2, then 〈a, A2〉 can be removed from C
or not added to C. There is no reason to use the extra assumptions to imply a.
Similarly, if 〈false, A1〉 and 〈a, A2〉 are in C, where A1 ⊆ A2, then 〈a, A2〉 can be

5.4. Proving by Contradictions 191

removed from C because A1 and any superset – including A2 – are inconsistent
with the clauses given, and so nothing more can be learned from considering
such sets of assumables.

Example 5.22 Consider the axiomatization of Figure 5.8 (page 188), discussed
in Example 5.20 (page 187).

Initially, in the algorithm of Figure 5.9, C has the value

{〈ok l1, {ok l1}〉 , 〈ok l2, {ok l2}〉 , 〈ok s1, {ok s1}〉 , 〈ok s2, {ok s2}〉 ,

〈ok s3, {ok s3}〉 , 〈ok cb1, {ok cb1}〉 , 〈ok cb2, {ok cb2}〉}.

The following shows a sequence of values added to C under one sequence of
selections:

〈live outside, {}〉
〈connected to w5, outside, {}〉
〈live w5, {}〉
〈connected to w3, w5, {ok cb1}〉
〈live w3, {ok cb1}〉
〈up s3, {}〉
〈connected to w4, w3, {ok s3}〉
〈live w4, {ok cb1, ok s3}〉
〈connected to l2, w4, {}〉
〈live l2, {ok cb1, ok s3}〉
〈light l2, {}〉
〈lit l2, {ok cb1, ok s3, ok l2}〉
〈dark l2, {}〉
〈false, {ok cb1, ok s3, ok l2}〉 .

Thus, the knowledge base entails

¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2.

The other conflict can be found by continuing the algorithm.

Top-Down Implementation

The top-down implementation is similar to the top-down definite clause in-
terpreter described in Figure 5.4 (page 172), except the top-level goal is to
prove false, and the assumables encountered in a proof are not proved but
collected.

192 5. Propositions and Inference

1: non-deterministic procedure ConflictTD(KB,Assumables)
2: Inputs
3: KB: a set Horn clauses
4: Assumables: a set of atoms that can be assumed
5: Output
6: A conflict
7: Local
8: G is a set of atoms (that implies false)

9: G := {false}
10: repeat
11: select an atom ai from G such that ai /∈ Assumables
12: choose clause C in KB with ai as head
13: replace ai in G by the atoms in the body of C
14: until G ⊆ Assumables
15: return G

Figure 5.10: Top-down Horn clause interpreter to find conflicts

The algorithm is shown in Figure 5.10. Different choices can lead to differ-
ent conflicts being found. If no choices are available, the algorithm fails.

Example 5.23 Consider the representation of the circuit in Example 5.20
(page 187). The following is a sequence of the values of G for one sequence
of selections and choices that leads to a conflict:

{false}
{dark l1, lit l1}
{lit l1}
{light l1, live l1, ok l1}
{live l1, ok l1}
{live w0, ok l1}
{live w1, up s2, ok s2, ok l1}
{live w3, up s1, ok s1, up s2, ok s2, ok l1}
{live w5, ok cb1, up s1, ok s1, up s2, ok s2, ok l1}
{live outside, ok cb1, up s1, ok s1, up s2, ok s2, ok l1}
{ok cb1, up s1, ok s1, up s2, ok s2, ok l1}
{ok cb1, ok s1, up s2, ok s2, ok l1}
{ok cb1, ok s1, ok s2, ok l1}.

The set {ok cb1, ok s1, ok s2, ok l1} is returned as a conflict. Different choices of
the clause to use can lead to another answer.

5.5. Complete Knowledge Assumption 193

5.5 Complete Knowledge Assumption

A database is often complete in the sense that anything not stated is false.

Example 5.24 You may want the user to specify which switches are up and
which circuit breakers are broken so that the system can conclude that any
switch not mentioned as up is down and any circuit breaker not specified as
broken is okay. Thus, down is the default value of switches, and okay is the
default value for circuit breakers. It is easier for users to communicate using
defaults than it is to specify the seemingly redundant information about which
switches are down and which circuit breakers are okay. To reason with such
defaults, an agent must assume it has complete knowledge; a switch’s posi-
tion is not mentioned because it is down, not because the agent does not know
whether it is up or down.

The given definite-clause logic does not allow the derivation of a conclusion
from a lack of knowledge or a failure to prove. It does not assume that the
knowledge is complete. In particular, the negation of an atom can never be a
logical consequence of a definite-clause knowledge base.

The complete knowledge assumption assumes that, for every atom, the
clauses with the atom as the head cover all the cases when the atom is true.
Under this assumption, an agent can conclude that an atom is false if it cannot
derive that the atom is true. This is also called the closed-world assumption.
It can be contrasted with the open-world assumption, which is that the agent
does not know everything and so cannot make any conclusions from a lack
of knowledge. The closed-world assumption requires that everything relevant
about the world be known to the agent.

When there are rules for an atom, the assumption is that the rules for each
atom cover all of the cases where the atom is true. In particular, suppose the
rules for atom a are

a← b1.
...

a← bn.

where an atomic clause a is the rule a ← true. The complete knowledge as-
sumption says that if a is true in some interpretation then one of the bi must be
true in that interpretation; that is,

a→ b1 ∨ . . . ∨ bn.

Because the clauses defining a are equivalent to

a← b1 ∨ . . . ∨ bn,

the meaning of the clauses can be seen as the conjunction of these two propo-
sitions, namely, the equivalence:

a↔ b1 ∨ . . . ∨ bn,

194 5. Propositions and Inference

where ↔ is read as “if and only if” (see Figure 5.1 (page 159)). This equiva-
lence is called Clark’s completion of the clauses for a. Clark’s completion of a
knowledge base is the completion for each atom in the knowledge base.

Clark’s completion means that if there are no rules for an atom a, the com-
pletion of this atom is a↔ false, which means that a is false.

Example 5.25 Consider the following clauses from Example 5.5 (page 164):

down s1.
up s2.
live l1 ← live w0.
live w0 ← live w1 ∧ up s2.
live w0 ← live w2 ∧ down s2.
live w1 ← live w3 ∧ up s1.

Suppose that these are the only clauses for the atoms in the heads of these
clauses, and there are no clauses for up s1 or down s2. The completion of these
atoms is

down s1 ↔ true.
up s1 ↔ false.
up s2 ↔ true.
down s2 ↔ false.
live l1 ↔ live w0.
live w0 ↔ (live w1 ∧ up s2) ∨ (live w2 ∧ down s2).
live w1 ↔ live w3 ∧ up s1.

This implies that up s1 is false, and live w1 is false.

With the completion, the system can derive negations, and so it is useful
to extend the language to allow negations in the body of clauses. A literal is
either an atom or the negation of an atom. The definition of a definite clause
(page 163) can be extended to allow literals in the body rather than just atoms.
We write the negation of atom a under the complete knowledge assumption as
∼a to distinguish it from classical negation that does not assume the comple-
tion. This negation is often called negation as failure.

Under negation as failure, body g is a consequence of the knowledge base
KB if KB′ |= g, where KB′ is Clark’s completion of KB. A negation ∼a in the
body of a clause or the query becomes ¬a in the completion. That is, a query
following from a knowledge base under the complete knowledge assumption
means that the query is a logical consequence of the completion of the knowl-
edge base.

Example 5.26 Consider the axiomatization of Example 5.5 (page 164). Repre-
senting a domain can be made simpler by expecting the user to tell the system
only what switches are up and by the system concluding that a switch is down

5.5. Complete Knowledge Assumption 195

if it has not been told the switch is up. This can be done by adding the following
rules:

down s1 ← ∼up s1.
down s2 ← ∼up s2.
down s3 ← ∼up s3.

Similarly, the system may conclude that the circuit breakers are okay unless it
has been told they are broken:

ok cb1 ← ∼broken cb1.
ok cb2 ← ∼broken cb2.

Although this may look more complicated than the previous representation, it
means that is it easier for the user to specify what is occurring in a particular
situation. The user has to specify only what is up and what is broken. This may
save time if being down is normal for switches and being okay is normal for
circuit breakers.

To represent the state of Figure 5.2 (page 164), the user specifies

up s2.
up s3.

The system can infer that s1 must be down and both circuit breakers are okay.
The completion of the knowledge base is

down s1 ↔ ¬up s1.
down s2 ↔ ¬up s2.
down s3 ↔ ¬up s3.
ok cb1 ↔ ¬broken cb1.
ok cb2 ↔ ¬broken cb2.
up s1 ↔ false.
up s2 ↔ true.
up s3 ↔ true.
broken cb1 ↔ false.
broken cb2 ↔ false.

Notice that atoms in bodies of clauses but not in the head of any clauses are
false in the completion.

Recall that a knowledge base is acyclic (page 184) if there is an assignment
of natural numbers (non-negative integers) to the atoms so that the atoms in
the body of a clause are assigned a lower number than the atom in the head.
With negation as failure, non-acyclic knowledge bases become semantically
problematic.

The following knowledge base is not acyclic:

a← ∼b.

b← ∼a.

196 5. Propositions and Inference

Clark’s completion of this knowledge base is equivalent to a↔ ¬b, which just
specifies that a and b have different truth values but not which one is true.

The following knowledge base is not acyclic:

a← ∼a.

Clark’s completion of this knowledge base is a↔ ¬a, which is logically incon-
sistent.

Clark’s completion of an acyclic knowledge base is always consistent and
always gives a truth value to each atom. For the rest of this chapter, we assume
that the knowledge bases are acyclic.

5.5.1 Non-monotonic Reasoning

The definite clause logic is monotonic in the sense that anything that could
be concluded before a clause is added can still be concluded after it is
added; adding knowledge does not reduce the set of propositions that can be
derived.

A logic is non-monotonic if some conclusions can be invalidated by adding
more knowledge. The logic of definite clauses with negation as failure is non-
monotonic. Non-monotonic reasoning is useful for representing defaults. A de-
fault is a rule that can be used unless it overridden by an exception.

For example, to say that b is normally true if c is true, a knowledge base
designer can write a rule of the form

b← c∧∼aba.

where aba is an atom that means abnormal with respect to some aspect a. Given
c, the agent can infer b unless it is told aba. Adding aba to the knowledge base
can prevent the conclusion of b. Rules that imply aba can be used to prevent the
default under the conditions of the body of the rule.

Example 5.27 Suppose the purchasing agent is investigating purchasing hol-
idays. A resort may be adjacent to a beach or away from a beach. This is not
symmetric; if the resort was adjacent to a beach, the knowledge provider would
specify this. Thus, it is reasonable to have the clause

away from beach← ∼on beach.

This clause enables an agent to infer that a resort is away from the beach if the
agent is not told it is adjacent to a beach.

A cooperative system tries to not mislead. If we are told the resort is on
the beach, we would expect that resort users would have access to the beach.
If they have access to a beach, we would expect them to be able to swim at the
beach. Thus, we would expect the following defaults:

beach access← on beach∧∼abbeach access.
swim at beach← beach access∧∼abswim at beach.

5.5. Complete Knowledge Assumption 197

A cooperative system would tell us if a resort on the beach has no beach access
or if there is no swimming. We could also specify that, if there is an enclosed
bay and a big city, then there is no swimming, by default:

abswim at beach ← enclosed bay∧ big city∧∼abno swimming near city.

We could say that British Columbia is abnormal with respect to swimming near
cities:

abno swimming near city ← in BC∧∼abBC beaches.

Given only the preceding rules, an agent infers away from beach. If it is then told
on beach, it can no longer infer away from beach, but it can now infer beach access
and swim at beach. If it is also told enclosed bay and big city, it can no longer infer
swim at beach. However, if it is then told in BC, it can then infer swim at beach.

By having defaults of what is normal, a user can interact with the system by
telling it what is abnormal, which allows for economy in communication. The
user does not have to state the obvious.

One way to think about non-monotonic reasoning is in terms of arguments.
The rules can be used as components of arguments, in which the negated ab-
normality gives a way to undermine arguments. Note that, in the language
presented, only positive arguments exist that can be undermined. In more gen-
eral theories, there can be positive and negative arguments that attack each
other.

5.5.2 Proof Procedures for Complete Knowledge

Bottom-Up Procedure

The bottom-up procedure for negation as failure is a modification of the
bottom-up procedure for definite clauses (page 167). The difference is that it
can add literals of the form ∼p to the set C of consequences that have been
derived; ∼p is added to C when it can determine that p must fail.

Failure can be defined recursively: p fails when every body of a clause with
p as the head fails. A body fails if one of the literals in the body fails. An atom
bi in a body fails if∼bi has been derived. A negation ∼bi in a body fails if bi has
been derived.

Figure 5.11 (on the next page) gives a bottom-up negation-as-failure inter-
preter for computing consequents of a ground KB. Note that this includes the
case of a clause with an empty body (in which case m = 0, and the atom at the
head is added to C) and the case of an atom that does not appear in the head of
any clause (in which case its negation is added to C).

198 5. Propositions and Inference

1: procedure NAFBU(KB)
2: Inputs
3: KB: a set of clauses that can include negation as failure

4: Output
5: set of literals that follow from the completion of KB
6: Local
7: C is a set of literals
8: C := {}
9: repeat

10: either
11: select r ∈ KB such that
12: r is “h← b1 ∧ . . . ∧ bm”
13: bi ∈ C for all i, and
14: h /∈ C;
15: C := C∪ {h}
16: or
17: select h such that ∼h /∈ C and
18: where for every clause “h← b1 ∧ . . . ∧ bm” ∈ KB
19: either for some bi,∼bi ∈ C
20: or some bi = ∼g and g ∈ C
21: C := C∪ {∼h}
22: until no more selections are possible

Figure 5.11: Bottom-up negation as failure proof procedure

Example 5.28 Consider the following clauses:

p← q∧∼r.
p← s.
q← ∼s.
r← ∼t.
t.
s← w.

The following is a possible sequence of literals added to C:

t,
∼r,
∼w,
∼s,
q,
p,

5.6. Abduction 199

where t is derived trivially because it is given as an atomic clause;∼r is derived
because t ∈ C;∼w is derived as there are no clauses for w, and so the “for every
clause” condition of line 18 of Figure 5.11 trivially holds. Literal ∼s is derived
as ∼w ∈ C; and q and p are derived as the bodies are all proved.

Top-Down Negation-as-Failure Procedure

The top-down procedure for the complete knowledge assumption proceeds by
negation as failure. It is similar to the top-down definite-clause proof proce-
dure of Figure 5.4 (page 172). This is a non-deterministic procedure (see the box
on page 170) that can be implemented by searching over choices that succeed.
When a negated atom ∼a is selected, a new proof for atom a is started. If the
proof for a fails,∼a succeeds. If the proof for a succeeds, the algorithm fails and
must make other choices. The algorithm is shown in Figure 5.12.

Example 5.29 Consider the clauses from Example 5.28. Suppose the query is
ask p.

Initially G = {p}.
Using the first rule for p, G becomes {q,∼r}.
Selecting q, and replacing it with the body of the third rule, G becomes

{∼s,∼r}.
It then selects ∼s and starts a proof for s. This proof for s fails, and thus G

becomes {∼r}.
It then selects ∼r and tries to prove r. In the proof for r, there is the subgoal

∼t, and thus it tries to prove t. This proof for t succeeds. Thus, the proof for ∼t
fails and, because there are no more rules for r, the proof for r fails. Thus, the
proof for ∼r succeeds.

G is empty and so it returns yes as the answer to the top-level query.

Note that this implements finite failure, because it makes no conclusion if
the proof procedure does not halt. For example, suppose there is just the rule
p← p. The algorithm does not halt for the query ask p. The completion, p↔ p,
gives no information. Even though there may be a way to conclude that there
will never be a proof for p, a sound proof procedure should not conclude ∼p,
as it does not follow from the completion.

5.6 Abduction

Abduction is a form of reasoning where assumptions are made to explain ob-
servations. For example, if an agent were to observe that some light was not
working, it can hypothesize what is happening in the world to explain why
the light was not working. An intelligent tutoring system could try to explain
why a student gives some answer in terms of what the student understands
and does not understand.

200 5. Propositions and Inference

1: non-deterministic procedure NAFTD(KB,Query)
2: Inputs
3: KB: a set of clauses that can include negation as failure
4: Query: a set of literals to prove

5: Output
6: yes if completion of KB entails Query and no otherwise
7: Local
8: G is a set of literals
9: G := Query

10: repeat
11: select literal l ∈ G
12: if l is of the form ∼a then
13: if NAFTD(KB, a) fails then
14: G := G \ {l}
15: else
16: fail
17: else
18: choose clause l← B from KB
19: replace l with B in G

20: until G = {}
21: return yes

Figure 5.12: Top-down negation-as-failure interpreter

The term abduction was coined by Peirce (1839–1914) to differentiate this
type of reasoning from deduction, which involves determining what logically
follows from a set of axioms, and induction, which involves inferring general
relationships from examples.

In abduction, an agent hypothesizes what may be true about an observed
case. An agent determines what implies its observations – what could be true
to make the observations true. Observations are trivially implied by contradic-
tions (as a contradiction logically implies everything), so we want to exclude
contradictions from our explanation of the observations.

To formalize abduction, we use the language of Horn clauses and as-
sumables (the same input that was used for proving from contradictions
(page 185)). The system is given

• a knowledge base, KB, which is a set of of Horn clauses, and

• a set A of atoms, called the assumables; the assumables are the building
blocks of hypotheses.

Instead of adding observations to the knowledge base, observations must be
explained.

5.6. Abduction 201

A scenario of 〈KB, A〉 is a subset H of A such that KB ∪ H is satisfiable.
KB ∪H is satisfiable if a model exists in which every element of KB and every
element H is true. This happens if no subset of H is a conflict of KB.

An explanation of proposition g from 〈KB, A〉 is a scenario that, together
with KB, implies g.

That is, an explanation of proposition g is a set H, H ⊆ A such that

KB∪H |= g and

KB∪H �|= false.

A minimal explanation of g from 〈KB, A〉 is an explanation H of g from
〈KB, A〉 such that no strict subset of H is also an explanation of g from 〈KB, A〉.

Example 5.30 Consider the following simplistic knowledge base and assum-
ables for a diagnostic assistant:

bronchitis← influenza.
bronchitis← smokes.
coughing← bronchitis.
wheezing← bronchitis.
fever← influenza.
soreThroat← influenza.
false← smokes∧ nonsmoker.
assumable smokes, nonsmoker, influenza.

If the agent observes wheezing, there are two minimal explanations:

{influenza} and {smokes}

These explanations imply bronchitis and coughing.
If wheezing ∧ fever is observed, there is one minimal explanation:

{influenza}.

The other explanation is no longer needed in a minimal explanation.
Notice how, when wheezing is observed, the agent reasons that it must be

bronchitis, and so influenza and smokes are the hypothesized culprits. However,
if fever were also observed, the patient must have influenza, so there is no need
for the hypothesis of smokes; it has been explained away.

If wheezing ∧ nonsmoker was observed instead, there is one minimal expla-
nation:

{influenza, nonsmoker}

The other explanation of wheezing is inconsistent with being a non-smoker.

Determining what is going on inside a system based on observations about
the behavior is the problem of diagnosis or recognition. In abductive diag-
nosis, the agent hypothesizes diseases and malfunctions, as well as that some

202 5. Propositions and Inference

parts are working normally, to explain the observed symptoms. This differs
from consistency-based diagnosis (page 187) in that the designer models faulty
behavior in addition to normal behavior, and the observations are explained
rather than added to the knowledge base. Abductive diagnosis requires more
detailed modeling and gives more detailed diagnoses, because the knowledge
base has to be able to actually prove the observations. It also allows an agent
to diagnose systems in which there is no normal behavior. For example, in an
intelligent tutoring system, by observing what a student does, the tutoring sys-
tem can hypothesize what the student understands and does not understand,
which can guide the action of the tutoring system.

Abduction can also be used for design, in which what is to be explained is
a design goal and the assumables are the building blocks of the designs. The
explanation is the design. Consistency means that the design is possible. The
implication of the design goal means that the design provably achieved the
design goal.

Example 5.31 Consider the electrical domain of Figure 5.2 (page 164). Similar
to the representation of the example for consistency-based diagnosis in Exam-
ple 5.20 (page 187), we axiomatize what follows from the assumptions of what
may be happening in the system. In abductive diagnosis, we must axiomatize
what follows both from faults and from normality assumptions. For each atom
that could be observed, we axiomatize how it could be produced. In the follow-
ing example, the assumable atoms are declared in-line using the “assumable”
keyword.

A user could observe that l1 is lit or is dark. We must write rules that axiom-
atize how the system must be to make these true. Light l1 is lit if it is okay and
there is power coming in. The light is dark if it is broken or there is no power.
The system can assume l1 is ok or broken, but not both:

lit l1 ← live w0 ∧ ok l1.
dark l1 ← broken l1.
dark l1 ← dead w0.
assumable ok l1.
assumable broken l1.
false← ok l1 ∧ broken l1.

Wire w0 is live or dead depending on the switch positions and whether the
wires coming in are alive or dead:

live w0 ← live w1 ∧ up s2 ∧ ok s2.
live w0 ← live w2 ∧ down s2 ∧ ok s2.
dead w0 ← broken s2.
dead w0 ← up s2 ∧ dead w1.
dead w0 ← down s2 ∧ dead w2.
assumable ok s2.
assumable broken s2.
false← ok s2 ∧ broken s2.

5.6. Abduction 203

The other wires are axiomatized similarly. Some of the wires depend on
whether the circuit breakers are okay or broken:

live w3 ← live w5 ∧ ok cb1.
dead w3 ← broken cb1.
dead w3 ← dead w5.
assumable ok cb1.
assumable broken cb1.
false← ok cb1 ∧ broken cb1.

For the rest of this question, we assume that the other light and wires are rep-
resented analogously.

The outside power can be live or the power can be down:

live w5 ← live outside.
dead w5 ← outside power down.
assumable live outside.
assumable outside power down.
false← live outside∧ outside power down.

The switches can be assumed to be up or down:

assumable up s1.
assumable down s1.
false← up s1 ∧ down s1.

There are two minimal explanations of lit l1:

{live outside, ok cb1, ok l1, ok s1, ok s2, up s1, up s2}.
{down s1, down s2, live outside, ok cb1, ok l1, ok s1, ok s2}.

This could be seen in design terms as a way to make sure the light is on: put
both switches up or both switches down, and ensure the switches all work. It
could also be seen as a way to determine what is going on if the agent observed
that l1 is lit; one of these two scenarios must hold.

There are ten minimal explanations of dark l1:

{broken l1}
{broken s2}
{down s1, up s2}
{broken s1, up s2}
{broken cb1, up s1, up s2}
{outside power down, up s1, up s2}
{down s2, up s1}
{broken s1, down s2}
{broken cb1, down s1, down s2}
{down s1, down s2, outside power down}

204 5. Propositions and Inference

There are six minimal explanations of dark l1 ∧ lit l2:

{broken l1, live outside, ok cb1, ok l2, ok s3, up s3}
{broken s2, live outside, ok cb1, ok l2, ok s3, up s3}
{down s1, live outside, ok cb1, ok l2, ok s3, up s2, up s3}
{broken s1, live outside, ok cb1, ok l2, ok s3, up s2, up s3}
{down s2, live outside, ok cb1, ok l2, ok s3, up s1, up s3}
{broken s1, down s2, live outside, ok cb1, ok l2, ok s3, up s3}

Notice how the explanations cannot include outside power down or broken cb1
because they are inconsistent with the explanation of l2 being lit.

The bottom-up and top-down implementations for assumption-based rea-
soning with Horn clauses (page 190) can both be used for abduction. The
bottom-up implementation of Figure 5.9 (page 190) computes, in C, the min-
imal explanations for each atom. The pruning discussed in the text can also
be used. The top-down implementation can be used to find the explanations
of any g by generating the conflicts and, using the same code and knowledge
base, proving g instead of false. The minimal explanations of g are the minimal
sets of assumables collected to prove g that are not subsets of conflicts.

5.7 Causal Models

A primitive atom is an atom that is stated as an atomic clause when it is true.
A derived atom is one that uses rules to define when it is true. Typically the
designer writes axioms for the derived atoms and then expects a user to specify
which primitive atoms are true. Thus, the derived atoms will be inferred as
necessary from the primitive atoms and other atoms that can be derived.

The designer of an agent must make many decisions when designing a
knowledge base for a domain. For example, consider two propositions, a and
b, both of which are true. There are many choices of how to write this. A de-
signer could specify both a and b as atomic clauses, treating both as primitive.
A designer could have a as primitive and b as derived, stating a as an atomic
clause and giving the rule b ← a. Alternatively, the designer could specify the
atomic clause b and the rule a ← b, treating b as primitive and a as derived.
These representations are logically equivalent; they cannot be distinguished
logically. However, they have different effects when the knowledge base is
changed. Suppose a was no longer true for some reason. In the first and third
representations, b would still be true, and in the second representation b would
no longer true.

A causal model, or a model of causality, is a representation of a domain that
predicts the results of interventions. An intervention is an action that forces a
variable to have a particular value; that is, it changes the value in some way
other than manipulating other variables in the model.

5.7. Causal Models 205

To predict the effect of interventions, a causal model represents how the
cause implies its effect. When the cause is changed, its effect should be
changed. An evidential model represents a domain in the other direction –
from effect to cause. Note that we do not assume that there is “the cause” of an
effect; rather there are many propositions, which together make the effect true.

Example 5.32 Consider the electrical domain depicted in Figure 1.8 (page 34).
In this domain, switch s3 is up and light l2 is lit. There are many different ways
to axiomatize this domain. Example 5.5 (page 164) contains causal rules such
as

lit l2 ← up s3 ∧ live w3.

Alternatively, we could specify in the evidential direction:

up s3 ← lit l2.
live w3 ← lit l2.

These are all statements that are true of the domain.
Suppose that wire w3 was live and someone put switch s3 up; we would

expect that l2 would become lit. However, if someone was to make s3 lit by
some mechanism outside of the model (and not by flipping the switch), we
would not expect the switch to go up as a side effect.

Example 5.33 Consider the electrical domain depicted in Figure 1.8 (page 34).
The following proposition describes an invariant on the relationship between
switches s1 and s2 and light l1, assuming all components are working properly:

up s1 ↔ (lit l1 ↔ up s2). (5.1)

This formula is symmetric between the three propositions; it is true if and only
if an odd number of the propositions are true. However, in the world, the rela-
tionship between these propositions is not symmetric. Suppose all three atoms
were true in some state. Putting s1 down does not make s2 go down to pre-
serve lit l1. Instead, putting s1 down makes lit l1 false, and up s2 remains true
to preserve this invariant. Thus, to predict the result of interventions, we re-
quire more than proposition (5.1) above.

A causal model is

lit l1 ← up s1 ∧ up s2.
lit l1 ← ∼up s1 ∧∼up s2.

The completion of this is equivalent to proposition (5.1); however, it makes
reasonable predictions when one of the values is changed.

An evidential model is

up s1 ← lit l1 ∧ up s2.
up s1 ← ∼lit l1 ∧∼up s2.

This can be used to answer questions about whether s1 is up based on the posi-
tion of s2 and whether l1 is lit. Its completion is also equivalent to formula (5.1).
However, it does not accurately predict the effect of interventions.

206 5. Propositions and Inference

A causal model consists of

• a set of background variables, sometimes called exogenous variables,
which are determined by factors outside of the model;

• a set of endogenous variables, which are determined as part of the model;
and

• a set of functions, one for each endogenous variable, that specifies how the
endogenous variable can be determined from other endogenous variables
and background variables. The function for a variable X is called the causal
mechanism for X. The entire set of functions must have a unique solution
for each assignment of values to the background variables.

When the variables are propositions, the function for a proposition can be
specified as a set of clauses with the proposition as their head (under the com-
plete knowledge assumption). One way to ensure a unique solution is for the
knowledge base to be acyclic.

Example 5.34 In Example 5.33, Equation (5.1) can be the causal mechanism
for lit l1. This can be expressed as the rules with lit l1 in the head specified
in this model. There would be other causal mechanisms for up s1 and up s2,
or perhaps these could be background variables that are not controlled in the
model.

An intervention is an action to force a variable X to have a particular value
v by some mechanism other than changing one of the other variables in the
model. The effect of an intervention can be obtained by replacing the clausal
mechanism for X by X = v. To intervene to force a proposition p to be true
involves replacing the clauses for p with the atomic clause p. To intervene to
force a proposition p to be false involves removing the clauses for p.

If the values of the background variables are not known, the background
variables can be represented by assumables. An observation can implemented
by two stages:

1. abduction to explain the observation in terms of the background variables
and

2. prediction to see what follows from the explanations.

Intuitively, abduction tells us what the world is like, given the observations.
The prediction tells us the consequence of the action, given how the world is.

5.8 Review

The following are the main points you should have learned from this chapter:

• A definite clause knowledge base can be used to specify atomic clauses and
rules about a domain when there is no uncertainty or ambiguity.

• Given a set of facts about a domain, the logical consequences characterize
what else must be true.

5.9. References and Further Reading 207

• A sound and complete proof procedure can be used to determine the logical
consequences of a knowledge base.

• Proof by contradiction can be used to make inference from a Horn clause
knowledge base.

• Negation as failure can be used when the knowledge is complete (i.e., under
the complete knowledge assumption).

• Abduction can be used to explain observations.

• A causal model predicts the effect of an intervention.

5.9 References and Further Reading

The semantics for propositional logic presented here was invented by Tarski
[1956]. For introductions to logic see Copi [1982] for an informal overview, En-
derton [1972] and Mendelson [1987] for more formal approaches, and Bell and
Machover [1977] for advanced topics. For in-depth discussion of the use of
logic in AI see the multivolume Handbook of Logic in Artificial Intelligence and
Logic Programming [Gabbay, Hogger, and Robinson, 1993].

The tell-ask notion of a knowledge base is described by Levesque [1984].
Consistency-based diagnosis was formalized by de Kleer, Mackworth, and

Reiter [1992].
Much of the foundation of definite and Horn clause reasoning was devel-

oped in the context of a richer logic that is presented in Chapter 12 and is
studied under the umbrella of logic programming. Resolution was developed
by Robinson [1965]. SLD resolution was pioneered by Kowalski [1974] and
Colmerauer, Kanoui, Roussel, and Pasero [1973], building on previous work
by Green [1969], Hayes [1973], and Hewitt [1969]. The fixed point semantics
was developed by van Emden and Kowalski [1976]. For more detail on the
semantics and properties of logic programs see Lloyd [1987].

The work on negation as failure (page 193) is based on the work of Clark
[1978]. Apt and Bol [1994] provide a survey of different techniques and se-
mantics for handling negation as failure. The bottom-up negation-as-failure
proof procedure is based on the truth maintenance system of Doyle [1979],
who also considered incremental addition and removal of clauses; see Exercise
5.15 (page 216). The use of abnormality for default reasoning was advocated
by McCarthy [1986].

The abduction framework presented here is based on the assumption-
based truth maintenance system (ATMS) of de Kleer [1986] and on Theorist
[Poole, Goebel, and Aleliunas, 1987]. Abduction has been used for diagnosis
[Peng and Reggia, 1990], natural language understanding [Hobbs, Stickel,
Appelt, and Martin, 1993], and temporal reasoning [Shanahan, 1989]. Kakas,
Kowalski, and Toni [1993] and Kakas and Denecker [2002] review abductive
reasoning. For an overview of the work of Peirce, see Burch [2008].

Dung [1995] presents an abstract framework for arguments that provides
a foundation for much of the work in this area. Dung, Mancarella, and Toni

208 5. Propositions and Inference

[2007] present a recent argumentation framework. Chesnevar, Maguitman, and
Loui [2000] and Besnard and Hunter [2008] survey work on arguments.

The bottom-up Horn implementation for finding explanations is based on
the ATMS [de Kleer, 1986]. The ATMS is more sophisticated in that it consid-
ers the problem of incremental addition of clauses and assumables, which we
ignored (see Exercise 5.16 (page 216)).

Causal models are discussed by Pearl [2000] and Spirtes, Glymour, and
Scheines [2000].

5.10 Exercises

These exercises use AILog, a simple logical reasoning system that implements
all of the reasoning discussed in this chapter. It is available from the book web
site.

Exercise 5.1 Suppose we want to be able to reason about an electric kettle
plugged into a power outlet for the electrical domain. Suppose a kettle must be
plugged into a working power outlet, it must be turned on, and it must be filled
with water, in order to heat.

Using AILog syntax, write axioms that let the system determine whether ket-
tles are heating. AILog code for the electrical environment is available from the
web.

You must

• Give the intended interpretation of all symbols used.

• Write the clauses so they can be loaded into AILog.

• Show that the resulting knowledge base runs in AILog.

Exercise 5.2 Consider the domain of house plumbing represented in the diagram
of Figure 5.13.

In this example, p1, p2, and p3 denote cold water pipes; t1, t2, and t3 denote
taps; d1, d2, and d3 denote drainage pipes; shower denotes a shower; bath denotes
a bath; sink denotes a sink; and floor denotes the floor. Figure 5.13 is intended to
give the denotation for the symbols.

Suppose we have the following atoms:

• pressurized pi is true if pipe pi has mains pressure in it.
• on ti is true if tap ti is on.
• off ti is true if tap ti is off.
• wet b is true if b is wet (b is either the sink, bath or floor).
• flow pi is true if water is flowing through pi.
• plugged sink is true if the sink has the plug in.
• plugged bath is true if the bath has the plug in.
• unplugged sink is true if the sink does not have the plug in.
• unplugged bath is true if the bath does not have the plug in.

5.10. Exercises 209

t1

t2

t3

floor

p1

d1

d2d3

p2

bath

shower

sink

p3

Figure 5.13: The plumbing domain

A definite-clause axiomatization for how water can flow down drain d1 if taps
t1 and t2 are on and the bath is unplugged is

pressurized p1.
pressurized p2← on t1∧ pressurized p1.
flow shower← on t2∧ pressurized p2.
wet bath← flow shower.
flow d2← wet bath∧ unplugged bath.
flow d1← flow d2.
on t1.
on t2.
unplugged bath.

(a) Finish the axiomatization for the sink in the same manner as the axiomati-
zation for the bath. Test it in AILog.

(b) What information would you expect the user to be able to provide that the
plumber, who is not at the house, cannot? Change the axiomatization so that
questions about this information are asked of the user.

(c) Axiomatize how the floor is wet if the sink overflows or the bath overflows.
They overflow if the plug is in and water is flowing in. You may invent
new atomic propositions as long as you give their intended interpretation.
(Assume that the taps and plugs have been in the same positions for one
hour; you do not have to axiomatize the dynamics of turning on the taps
and inserting and removing plugs.) Test it in AILog.

(d) Suppose a hot water system is installed to the left of tap t1. This has another
tap in the pipe leading into it and supplies hot water to the shower and the
sink (there are separate hot and cold water taps for each). Add this to your

210 5. Propositions and Inference

axiomatization. Give the denotation for all propositions you invent. Test it
in AILog.

Exercise 5.3 You are given the following knowledge base:

a← b∧ c.
a← e∧ f .
b← d.
b← f ∧ h.
c← e.
d← h.
e.
f ← g.
g← c.

(a) Give a model of the knowledge base.
(b) Give an interpretation that is not a model of the knowledge base.
(c) Give two atoms that are logical consequences of the knowledge base.
(d) Give two atoms that are not logical consequences of the knowledge base.

Exercise 5.4 You are given the knowledge base KB containing the following
clauses:

a← b∧ c.
b← d.
b← e.
c.
d← h.
e.
f ← g∧ b.
g← c∧ k.
j← a∧ b.

(a) Show how the bottom-up proof procedure works for this example. Give all
logical consequences of KB.

(b) f is not a logical consequence of KB. Give a model of KB in which f is false.
(c) a is a logical consequence of KB. Give a top-down derivation for the query

ask a.

Exercise 5.5 A bottom-up proof procedure can incorporate an ask-the-user mech-
anism by asking the user about every askable atom. How can a bottom-up proof
procedure still guarantee proof of all (non-askable) atoms that are a logical conse-
quence of a definite-clause knowledge base without asking the user about every
askable atom?

5.10. Exercises 211

Exercise 5.6 This question explores how having an explicit semantics can be
used to debug programs. The file elect_bug2.ail in the AILog distribution
on the book web site is an axiomatization of the electrical wiring domain of
Figure 5.2 (page 164), but it contains a buggy clause (one that is false in the in-
tended interpretation shown in the figure). The aim of this exercise is to use AILog
to find the buggy clause, given the denotation of the symbols given in Example 5.5
(page 164). To find the buggy rule, you won’t even need to look at the knowledge
base! (You can look at the knowledge base to find the buggy clause if you like,
but that won’t help you in this exercise.) All you must know is the meaning of the
symbols in the program and what is true in the intended interpretation.

The query lit l1 can be proved, but it is false in the intended interpretation. Use
the how questions of AILog to find a clause whose head is false in the intended
interpretation and whose body is true. This is a buggy rule.

Exercise 5.7 Consider the following knowledge base and assumables aimed to
explain why people are acting suspiciously:

goto forest← walking.
get gun← hunting.
goto forest← hunting.
get gun← robbing.
goto bank← robbing.
goto bank← banking.
fill withdrawal form← banking.
false← banking∧ robbing.
false← wearing good shoes∧ goto forest.
assumable walking, hunting, robbing, banking.

(a) Suppose get gun is observed. What are all of the minimal explanations for
this observation?

(b) Suppose get gun ∧ goto bank is observed. What are all of the minimal expla-
nations for this observation?

(c) Is there something that could be observed to remove one of these as a mini-
mal explanation? What must be added to be able to explain this?

(d) What are the minimal explanations of goto bank?
(e) What are the minimal explanations of goto bank ∧ get gun ∧ fill withdrawal

form?

Exercise 5.8 Suppose there are four possible diseases a particular patient may
have: p, q, r, and s. p causes spots. q causes spots. Fever could be caused by one (or
more) of q, r, or s. The patient has spots and fever. Suppose you have decided to
use abduction to diagnose this patient based on the symptoms.

(a) Show how to represent this knowledge using Horn clauses and assumables.
(b) Show how to diagnose this patient using abduction. Show clearly the query

and the resulting answer(s).

212 5. Propositions and Inference

(c) Suppose also that p and s cannot occur together. Show how that changes
your knowledge base from part (a). Show how to diagnose the patient using
abduction with the new knowledge base. Show clearly the query and the
resulting answer(s).

Exercise 5.9 Consider the following clauses and integrity constraints:

false← a∧ b.
false← c.
a← d.
a← e.
b← d.
b← g.
b← h.
c← h.

Suppose the assumables are {d, e, f , g, h, i}. What are the minimal conflicts?

Exercise 5.10 Deep Space One (http://nmp.jpl.nasa.gov/ds1/), a spacecraft
launched by NASA in October 1998, used AI technology for its diagnosis and con-
trol. For more details, see Muscettola, Nayak, Pell, and Williams [1998] or http://
ic.arc.nasa.gov/projects/remote-agent/ (although these references are not neces-
sary to complete this question).

Figure 5.14 depicts a part of the actual DS1 engine design. To achieve thrust
in an engine, fuel and oxidizer must be injected. The whole design is highly re-
dundant to ensure its operation even in the presence of multiple failures (mainly
stuck or inoperative valves). Note that whether the valves are black or white, and
whether or not they have a bar are irrelevant for this assignment.

Each valve can be okay (or not) and can be open (or not). The aim of this as-
signment is to axiomatize the domain so that we can do two tasks:

(a) Given an observation of the lack of thrust in an engine and given which
valves are open, using consistency-based diagnosis, determine what could
be wrong.

(b) Given the goal of having thrust and given the knowledge that some valves
are okay, determine which valves should be opened.

For each of these tasks, you must think about what the clauses are in the knowl-
edge base and what is assumable.

The atoms should be of the following forms:

• open V is true if valve V is open. This the atoms should be open v1, open v2,
and so on.

• ok V is true if valve V is working properly.

• pressurized V is true if the output of valve V is pressurized with gas. You
should assume that pressurized t1 and pressurized t2 are true.

http://nmp.jpl.nasa.gov/ds1/
http://ic.arc.nasa.gov/projects/remote-agent/
http://ic.arc.nasa.gov/projects/remote-agent/

5.10. Exercises 213

e1

v13

v14

v5

v1 valves: v1 to v16
tanks: t1 to t2
engines: e1 to e2

fuel

Legend

oxydizer

v6

v7

v8

v9

v10
v15

v16e2 v11

v12

v4

v2 t1

t2

v3

Main
Engines

Propellant
Tanks

Figure 5.14: Deep Space One engine design

• thrust E is true if engine E has thrust.

• thrust is true if no thrust exists in either engine.

• nothrust is true if there is no thrust.

To make this manageable, only write rules for the input into engine e1. Test your
code using AILog on a number of examples.

Exercise 5.11 Consider using abductive diagnosis on the problem in the previous
question.

Suppose the following:

• Valves can be open or closed. For some of them, we know if they are open or
closed, and for some valves we do not know.

• A valve can be ok, in which case the gas will flow if the valve is open and
not if it is closed; broken, in which case gas never flows; stuck, in which case
gas flows independently of whether the valve is open or closed; or leaking, in
which case gas flowing into the valve leaks out instead of flowing through.

• There are three gas sensors that can detect gas leaking (but not which gas);
the first gas sensor detects gas from the rightmost valves (v1, . . . , v4), the
second gas sensor detects gas from the center valves (v5, . . . , v12), and the
third gas sensor detects gas from the leftmost valves (v13, . . . , v16).

214 5. Propositions and Inference

(a) Axiomatize the domain so the system can explain thrust or no thrust in en-
gine e1 and the presence of gas in one of the sensors. For example, it should
be able to explain why e1 is thrusting. It should be able to explain why e1 is
not thrusting and there is a gas detected by the third sensor.

(b) Test your axiomatization on some non-trivial examples.
(c) For some of the queries, many explanations exist. Suggest how the number

of explanations could be reduced or managed so that the abductive diag-
noses are more useful.

Exercise 5.12 AILog has askables, which are atoms that are asked of the user, and
assumables, which are collected in an answer.

Imagine you are axiomatizing the wiring in your home and you have an ax-
iomatization similar to that of Example 5.3 (page 162). You are axiomatizing the
domain for a new tenant who is going to sublet your home and may want to de-
termine what may be going wrong with the wiring.

There are some atoms that you will know the rules for, some that the ten-
ant will know, and some that neither will know. Divide the atomic propositions
into these three categories, and suggest which should be made askable and which
should be assumable. Show what the resulting interaction will look like under
your division.

Exercise 5.13 In this question, consider using integrity constraints and
consistency-based diagnosis in a purchasing agent that interacts with various in-
formation sources on the web. To answer a question, the purchasing agent will ask
a number of the information sources for facts. However, information sources are
sometimes wrong. It is useful to be able to automatically determine which infor-
mation sources may be wrong when a user gets conflicting information.

In this question we consider how integrity constraints and assumables can be
used to determine what errors are present in different information sources.

In this question, we use meaningless symbols such as a, b, c, . . ., but in a real
domain there will be meaning associated with the symbols, such as a meaning
“there is skiing in Hawaii” and z meaning “there is no skiing in Hawaii”, or a
meaning “butterflies do not eat anything” and z meaning “butterflies eat nectar”.
We will use meaningless symbols in this question because the computer does not
have access to the meanings and must simply treat them as meaningless symbols.

Suppose the following information sources and associated information are
provided:

Source s1: Source s1 claims the following clauses are true:

a← h.
d← c.

Source s2: Source s2 claims the following clauses are true:

e← d.
f ← k.
z← g.
j.

5.10. Exercises 215

Source s3: Source s3 claims the following clause is true:

h← d.

Source s4: Source s4 claims the following clauses are true:

a← b∧ e.
b← c.

Source s5: Source s5 claims the following clause is true:

g← f ∧ j.

Yourself: Suppose that you know that the following clauses are true:

false← a∧ z.
c.
k.

Not every source can be believed, because together they produce a contradiction.

(a) Code the knowledge provided by the users into AILog using assumables.
To use a clause provided by one of the sources, you must assume that the
source is reliable.

(b) Use the program to find the conflicts about what sources are reliable. (To
find conflicts you can just ask false.)

(c) Suppose you would like to assume that as few sources as possible are unre-
liable. Which single source, if it was unreliable, could account for a contra-
diction (assuming all other sources were reliable)?

(d) Which pairs of sources could account for a contradiction (assuming all other
sources are reliable) such that no single one of them could account for the
contradiction?

Exercise 5.14 Suppose you have a job at a company that is building online teach-
ing tools. Because you have taken an AI course, your boss wants to know your
opinion on various options under consideration.

They are planning on building an intelligent tutoring system for teaching el-
ementary physics (e.g., mechanics and electromagnetism). One of the things that
the system must do is to diagnose errors that a student may be making.

For each of the following, answer the explicit questions and use proper En-
glish. Answering parts not asked or giving more than one answer when only one
is asked for will annoy the boss. The boss also does not like jargon, so please use
straightforward English.

The boss has heard of consistency-based diagnosis and abductive diagnosis
but wants to know what they involve in the context of building an intelligent tutoring
system for teaching elementary physics.

216 5. Propositions and Inference

sc

s1 s2

gc

a3

a2a1

Figure 5.15: A space communication network

(a) Explain what knowledge (about physics and about students) is requried for
consistency-based diagnosis.

(b) Explain what knowledge (about physics and about students) is requried for
abductive diagnosis.

(c) What is the main advantage of using abductive diagnosis over consistency-
based diagnosis in this domain?

(d) What is the main advantage of consistency-based diagnosis over abductive
diagnosis in this domain?

Exercise 5.15 Consider the bottom-up negation-as-failure proof procedure of
Figure 5.11 (page 198). Suppose we want to allow for incremental addition and
deletion of clauses. How does C change as a clause is added? How does C change
if a clause is removed?

Exercise 5.16 Suppose you are implementing a bottom-up Horn clause explana-
tion reasoner and you want to incrementally add clauses or assumables. When a
clause is added, how are the minimal explanations affected? When an assumable
is added, how are the minimal explanations affected?

Exercise 5.17 Figure 5.15 shows a simplified redundant communication net-
work between an unmanned spacecraft (sc) and a ground control center (gc). There
are two indirect high-bandwidth (high-gain) links that are relayed through satel-
lites (s1, s2) to different ground antennae (a1, a2). Furthermore, there is a direct,
low-bandwidth (low-gain) link between the ground control center’s antenna (a3)
and the spacecraft. The low-gain link is affected by atmospheric disturbances – it
works if there are no disturbances (no dist) – and the spacecraft’s low-gain trans-
mitter (sc lg) and antenna 3 are okay. The high-gain links always work if the
spacecraft’s high-gain transmitter (sc hg), the satellites’ antennae (s1 ant, s2 ant),

5.10. Exercises 217

the satellites’ transmitters (s1 trans, s2 trans), and the ground antennae (a1, a2) are
okay.

To keep matters simple, we consider only messages from the spacecraft going
through these channels to the ground control center.

The following knowledge base formalizes the part of the communication net-
work we are interested in:

send signal lg sc← ok sc lg∧ alive sc.
send signal hg sc← ok sc hg∧ alive sc.
get signal s1← send signal hg sc∧ ok s1 ant.
get signal s2← send signal hg sc∧ ok s2 ant.
send signal s1← get signal s1∧ ok s1 trans.
send signal s2← get signal s2∧ ok s2 trans.
get signal gc← send signal s1∧ ok a1.
get signal gc← send signal s2∧ ok a2.
get signal gc← send signal lg sc∧ ok a3∧ no dist.

Ground control is worried, because it has not received a signal from the space-
craft (no signal gc). It knows for sure that all ground antennae are okay (i.e., ok a1,
ok a2, and ok a3) and satellite s1’s transmitter is ok (ok s1 trans). It is not sure about
the state of the spacecraft, its transmitters, the satellites’ antennae, s2’s transmitter,
and atmospheric disturbances.

(a) Specify a set of assumables and an integrity constraint that model the situa-
tion.

(b) Using the assumables and the integrity constraints from part (a), what is the
set of minimal conflicts?

(c) What is the consistency-based diagnosis for the given situation? In other
words, what are the possible combinations of violated assumptions that
could account for why the control center cannot receive a signal from the
spacecraft?

Exercise 5.18

(a) Explain why NASA may want to use abduction rather than consistency-
based diagnosis for the domain of Exercise 5.17.

(b) Suppose that an atmospheric disturbance dist could produce static or no sig-
nal in the low-bandwidth signal. To receive the static, antenna a3 and the
spacecraft’s low-bandwidth transmitter sc lg must be working. If a3 or sc lg
are not working or sc is dead, there is no signal. What rules and assumables
must be added to the knowledge base of Exercise 5.17 so that we can explain
the possible observations no signal gc, get signal gc, or static gc? You may ig-
nore the high-bandwidth links. You can invent any symbols you need.

Chapter 6

Reasoning Under Uncertainty

It is remarkable that a science which began with the consideration of games
of chance should become the most important object of human knowledge
. . . The most important questions of life are, for the most part, really only
problems of probability . . .

The theory of probabilities is at bottom nothing but common sense re-
duced to calculus.

– Pierre Simon de Laplace [1812]

All of the time, agents are forced to make decisions based on incomplete infor-
mation. Even when an agent senses the world to find out more information,
it rarely finds out the exact state of the world. A robot does not know exactly
where an object is. A doctor does not know exactly what is wrong with a pa-
tient. A teacher does not know exactly what a student understands. When in-
telligent agents must make decisions, they have to use whatever information
they have. This chapter considers reasoning under uncertainty: determining
what is true in the world based on observations of the world. This is used in
Chapter 9 as a basis for acting under uncertainty, where the agent must make
decisions about what action to take even though it cannot precisely predict
the outcomes of its actions. This chapter starts with probability, shows how to
represent the world by making appropriate independence assumptions, and
shows how to reason with such representations.

6.1 Probability

To make a good decision, an agent cannot simply assume what the world is
like and act according to those assumptions. It must consider multiple possible
contingencies and their likelihood. Consider the following example.

219

220 6. Reasoning Under Uncertainty

Example 6.1 Many people consider it sensible to wear a seat belt when trav-
eling in a car because, in an accident, wearing a seat belt reduces the risk of
serious injury. However, consider an agent that commits to assumptions and
bases its decision on these assumptions. If the agent assumes it will not have
an accident, it will not bother with the inconvenience of wearing a seat belt.
If it assumes it will have an accident, it will not go out. In neither case would
it wear a seat belt! A more intelligent agent may wear a seat belt because the
inconvenience of wearing a seat belt is far outweighed by the increased risk
of injury or death if it has an accident. It does not stay at home too worried
about an accident to go out; the benefits of being mobile, even with the risk of
an accident, outweigh the benefits of the extremely cautious approach of never
going out. The decisions of whether to go out and whether to wear a seat belt
depend on the likelihood of having an accident, how much a seat belt helps
in an accident, the inconvenience of wearing a seat belt, and how important it
is to go out. The various trade-offs may be different for different agents. Some
people do not wear seat belts, and some people do not go out because of the
risk of accident.

Reasoning under uncertainty has been studied in the fields of probability the-
ory and decision theory. Probability is the calculus of gambling. When an agent
makes decisions and uncertainties are involved about the outcomes of its ac-
tion, it is gambling on the outcome. However, unlike a gambler at the casino,
the agent cannot opt out and decide not to gamble; whatever it does – including
doing nothing – involves uncertainty and risk. If it does not take the probabili-
ties into account, it will eventually lose at gambling to an agent that does. This
does not mean, however, that making the best decision guarantees a win.

Many of us learn probability as the theory of tossing coins and rolling dice.
Although this may be a good way to present probability theory, probability is
applicable to a much richer set of applications than coins and dice. In general,
we want a calculus for belief that can be used for making decisions.

The view of probability as a measure of belief, as opposed to being a fre-
quency, is known as Bayesian probability or subjective probability. The term
subjective does not mean arbitrary, but rather it means “belonging to the sub-
ject.” For example, suppose there are three agents, Alice, Bob, and Chris, and
one die that has been tossed. Suppose Alice observes that the outcome is a “6”
and tells Bob that the outcome is even, but Chris knows nothing about the out-
come. In this case, Alice has a probability of 1 that the outcome is a “6,” Bob has
a probability of 1

3 that it is a “6” (assuming Bob believes Alice and treats all of
the even outcomes with equal probability), and Chris may have probability of
1
6 that the outcome is a “6.” They all have different probabilities because they all
have different knowledge. The probability is about the outcome of this partic-
ular toss of the die, not of some generic event of tossing dice. These agents may
have the same or different probabilities for the outcome of other coin tosses.

The alternative is the frequentist view, where the probabilities are long-run
frequencies of repeatable events. The Bayesian view of probability is appropri-
ate for intelligent agents because a measure of belief in particular situations

6.1. Probability 221

is what is needed to make decisions. Agents do not encounter generic events
but have to make a decision based on uncertainty about the particular circum-
stances they face.

Probability theory can be defined as the study of how knowledge affects belief.
Belief in some proposition, α, can be measured in terms of a number between
0 and 1. The probability α is 0 means that α is believed to be definitely false
(no new evidence will shift that belief), and a probability of 1 means that α is
believed to be definitely true. Using 0 and 1 is purely a convention.

Adopting the belief view of probabilities does not mean that statistics are
ignored. Statistics of what has happened in the past is knowledge that can
be conditioned on and used to update belief. (See Chapter 7 for how to learn
probabilities.)

We are assuming that the uncertainty is epistemological – pertaining to
an agent’s knowledge of the world – rather than ontological – how the world
is. We are assuming that an agent’s knowledge of the truth of propositions is
uncertain, not that there are degrees of truth. For example, if you are told that
someone is very tall, you know they have some height; you only have vague
knowledge about the actual value of their height.

If an agent’s probability of some α is greater than zero and less than one, this
does not mean that α is true to some degree but rather that the agent is ignorant
of whether α is true or false. The probability reflects the agent’s ignorance.

For the rest of this chapter, we ignore the agent whose beliefs we are mod-
eling and only talk about the probability.

6.1.1 Semantics of Probability

Probability theory is built on the same foundation of worlds and variables as
constraint satisfaction [see Section 4.2 (page 113)]. Instead of having constraints
that eliminate some worlds and treat every other world as possible, probabili-
ties put a measure over the possible worlds. The variables in probability theory
are referred to as random variables. The term random variable is somewhat of a
misnomer because it is neither random nor variable. As discussed in Section 4.2
(page 113), worlds can be described in terms of variables; a world corresponds
to an assignment of a value to each variable. Alternatively, variables can be
described in terms of worlds; a variable is a function that returns a value on
each world.

First we define probability as a measure on sets of worlds, then define prob-
abilities on propositions, then on variables.

A probability measure over the worlds is a function µ from sets of worlds
into the non-negative real numbers such that

• if Ω1 and Ω2 are disjoint sets of worlds (i.e., if Ω1 ∩Ω2 = {}), then µ(Ω1 ∪
Ω2) = µ(Ω1) + µ(Ω2);

• if Ω is the set of all worlds, µ(Ω) = 1.

222 6. Reasoning Under Uncertainty

Note that the use of 1 as the probability of the set of all of the worlds is just
by convention. You could just as well use 100.

It is possible to have infinitely many worlds when some variables have infi-
nite domains or when infinitely many variables exist. When there are infinitely
many worlds, we do not require a measure for all subsets of Ω – just for those
sets that can be described using some language that we assume allows us to
describe the intersection, union, and complement of sets. The set of subsets de-
scribable by these operations has the structure of what mathematicians call an
algebra.

The measure µ can be extended to worlds by defining µ(ω) = µ({ω}) for
world ω. When finitely many worlds exist, the measure over individual worlds
is adequate to define µ. When infinitely many worlds exist, it is possible that
the measure of individual worlds is not enough information to define µ, or that
it may not make sense to have a measure over individual worlds.

Example 6.2 Suppose the worlds correspond to the possible real-valued
heights, in centimeters, of a particular person. In this example, there are in-
finitely many possible worlds. The measure of the set of heights in the range
[175, 180) could be 0.2 and the measure of the range [180, 190) could be 0.3.
Then the measure of the range [175, 190) is 0.5. However, the measure of any
particular height could be zero.

As described in Section 5.1 (page 157), a primitive proposition is an assign-
ment of a value to a variable. Propositions are built from primitive propositions
using logical connectives. We then use this property to define probability dis-
tributions over variables.

The probability of proposition α, written P(α), is the measure of the set of
possible worlds in which α is true. That is,

P(α) = µ({ω : ω |= α}),

where ω |= α means α is true in world ω. Thus, P(α) is the measure of the set
of worlds in which α is true.

This use of the symbol |= differs from its use in the previous chapter [see
Section 5.1.2 (page 160)]. There, the left-hand side was a knowledge base; here,
the left-hand side is a world. Which meaning is intended should be clear from
the context.

A probability distribution, P(X), over a random variable X is a func-
tion from the domain of X into the real numbers such that, given a value
x ∈ dom(X), P(x) is the probability of the proposition X = x. We can also de-
fine a probability distribution over a set of variables analogously. For example,
P(X, Y) is a probability distribution over X and Y such that P(X = x, Y = y),
where x ∈ dom(X) and y ∈ dom(Y), has the value P(X = x ∧ Y = y), where
X = x ∧ Y = y is a proposition and P is the function on propositions. We will
use probability distributions when we want to treat a set of probabilities as a
unit.

6.1. Probability 223

6.1.2 Axioms for Probability

The preceding section gave a semantic definition of probability. We can also
give an axiomatic definition of probability that specifies axioms of what prop-
erties we may want in a calculus of belief.

Probability Density Functions

The definition of probability is sometimes specified in terms of probability
density functions when the domain is continuous (e.g., a subset of the real
numbers). A probability density function provides a way to give a measure
over sets of possible worlds. The measure is defined in terms of an integral of
a probability density function. The formal definition of an integral is the limit
of the discretizations as the discretizations become finer.

The only non-discrete probability distribution we will use in this book is
where the domain is the real line. In this case, there is a possible world for
each real number. A probability density function, which we write as p, is a
function from reals into non-negative reals that integrates to 1. The probability
that a real-valued random variable X has value between a and b is given by

P(a ≤ X ≤ b) =
∫ b

a
p(X) dX.

A parametric distribution is one where the density function can be de-
scribed by a formula. Although not all distributions can be described by for-
mulas, all of the ones that we can represent are. Sometimes statisticians use
the term parametric to mean the distribution can be described using a fixed,
finite number of parameters. A non-parametric distribution is one where the
number of parameters is not fixed. (Oddly, non-parametric typically means
“many parameters”).

A common parametric distribution is the normal or Gaussian distribu-
tion with mean µ and variance σ2 defined by

p(X) =
1√
2πσ

e−
1
2 ((X−µ)/σ)2

,

where σ is the standard deviation. The normal distribution is used for mea-
surement errors, where there is an average value, given by µ, and a variation
in values specified by σ. The central limit theorem, proved by Laplace [1812],
specifies that a sum of independent errors will approach the Gaussian distri-
bution. This and its nice mathematical properties account for the widespread
use of the normal distribution.

Other distributions, including the beta and Dirichlet distributions, are dis-
cussed in the Learning Under Uncertainty section (page 334).

224 6. Reasoning Under Uncertainty

Suppose P is a function from propositions into real numbers that satisfies
the following three axioms of probability:

Axiom 1 0 ≤ P(α) for any proposition α. That is, the belief in any proposition
cannot be negative.

Axiom 2 P(τ) = 1 if τ is a tautology. That is, if τ is true in all possible worlds, its
probability is 1.

Axiom 3 P(α ∨ β) = P(α) + P(β) if α and β are contradictory propositions; that
is, if ¬(α ∧ β) is a tautology. In other words, if two propositions cannot both
be true (they are mutually exclusive), the probability of their disjunction is
the sum of their probabilities.

These axioms are meant to be intuitive properties that we would like to have
of any reasonable measure of belief. If a measure of belief follows these in-
tuitive axioms, it is covered by probability theory, whether or not the mea-
sure is derived from actual frequency counts. These axioms form a sound and
complete axiomatization of the meaning of probability. Soundness means that
probability, as defined by the possible-worlds semantics, follows these axioms.
Completeness means that any system of beliefs that obeys these axioms has a
probabilistic semantics.

Proposition 6.1. If there are a finite number of finite discrete random variables,
Axioms 1, 2, and 3 are sound and complete with respect to the semantics.

It is easy to check that these axioms are true of the semantics. In the other
way around, you can use the axioms to compute any probability from the prob-
ability of worlds, because the descriptions of two worlds are mutually exclu-
sive. The full proof is left as an exercise.

Proposition 6.2. The following hold for all propositions α and β:

(a) Negation of a proposition:

P(¬α) = 1− P(α).

(b) If α ↔ β, then P(α) = P(β). That is, logically equivalent propositions have the
same probability.

(c) Reasoning by cases:

P(α) = P(α ∧ β) + P(α ∧ ¬β).

(d) If V is a random variable with domain D, then, for all propositions α,

P(α) = ∑
d∈D

P(α ∧V = d).

(e) Disjunction for non-exclusive propositions:

P(α ∨ β) = P(α) + P(β)− P(α ∧ β).

6.1. Probability 225

Proof.

(a) The propositions α∨¬α and ¬(α∧¬α) are tautologies. Therefore, 1 = P(α∨
¬α) = P(α) + P(¬α). Rearranging gives the desired result.

(b) If α ↔ β, then α ∨ ¬β is a tautology, so P(α ∨ ¬β) = 1. α and ¬β are
contradictory statements, so we can use Axiom 3 to give P(α ∨ ¬β) =
P(α) + P(¬β). Using part (a), P(¬β) = 1− P(β). Thus, P(α) + 1− P(β) = 1,
and so P(α) = P(β).

(c) The proposition α ↔ ((α ∧ β) ∨ (α ∧ ¬β)) and ¬((α ∧ β) ∧ (α ∧ ¬β)) are
tautologies. Thus, P(α) = P((α ∧ β) ∨ (α ∧ ¬β)) = P(α ∧ β) + P(α ∧ ¬β).

(d) The proof is analogous to the proof of part (c).

(e) (α ∨ β)↔ ((α ∧ ¬β) ∨ β) is a tautology. Thus,

P(α ∨ β) = P((α ∧ ¬β) ∨ β)
= P(α ∧ ¬β) + P(β).

Part (c) shows P(α ∧ ¬β) = P(α)− P(α ∧ β). Thus,

P(α ∨ β) = P(α)− P(α ∧ β) + P(β).

6.1.3 Conditional Probability

Typically, we do not only want to know the prior probability of some proposi-
tion, but we want to know how this belief is updated when an agent observes
new evidence.

The measure of belief in proposition h based on proposition e is called the
conditional probability of h given e, written P(h|e).

A formula e representing the conjunction of all of the agent’s observations
of the world is called evidence. Given evidence e, the conditional probability
P(h|e) is the agent’s posterior probability of h. The probability P(h) is the prior
probability of h and is the same as P(h|true) because it is the probability before
the agent has observed anything.

The posterior probability involves conditioning on everything the agent
knows about a particular situation. All evidence must be conditioned on to
obtain the correct posterior probability.

Example 6.3 For the diagnostic assistant, the patient’s symptoms will be the
evidence. The prior probability distribution over possible diseases is used be-
fore the diagnostic agent finds out about the particular patient. The posterior
probability is the probability the agent will use after it has gained some evi-
dence. When the agent acquires new evidence through discussions with the
patient, observing symptoms, or the results of lab tests, it must update its pos-
terior probability to reflect the new evidence. The new evidence is the conjunc-
tion of the old evidence and the new observations.

226 6. Reasoning Under Uncertainty

Example 6.4 The information that the delivery robot receives from its sensors
is its evidence. When sensors are noisy, the evidence is what is known, such
as the particular pattern received by the sensor, not that there is a person in
front of the robot. The robot could be mistaken about what is in the world but
it knows what information it received.

Semantics of Conditional Probability

Evidence e will rule out all possible worlds that are incompatible with e. Like
the definition of logical consequence, the given formula e selects the possible
worlds in which e is true. Evidence e induces a new measure, µe, over possible
worlds where all worlds in which e is false have measure 0, and the remain-
ing worlds are normalized so that the sum of the measures of the worlds is 1.

Here we go back to basic principles to define conditional probability. This
basic definition is often useful when faced with unusual cases.

The definition of the measure follows from two intuitive properties:

• If S is a set of possible worlds, all of which have e true, define µe(S) = c×
µ(S) for some constant c (which we derive below).

• If S is a set of worlds, all of which have e false, define µe(S) = 0.

Other Possible Measures of Belief

Justifying other measures of belief is problematic. Consider, for example, the
proposal that the belief in α∧ β is some function of the belief in α and the belief
in β. Such a measure of belief is called compositional. To see why this is not
sensible, consider the single toss of a fair coin. Compare the case where α1 is
“the coin will land heads” and β1 is “the coin will land tails” with the case
where α2 is “the coin will land heads” and β2 is “the coin will land heads.”
For these two cases, the belief in α1 would seem to be the same as the belief in
α2, and the belief in β1 would be the same as the belief in β2. But the belief in
α1 ∧ β1, which is impossible, is very different from the belief in α2 ∧ β2, which
is the same as α2.

The conditional probability P(f |e) is very different from the probability of
the implication P(e→ f). The latter is the same as P(¬e∨ f), which is the mea-
sure of the interpretations for which f is true or e is false. For example, suppose
you have a domain where birds are relatively rare, and non-flying birds are
a small proportion of the birds. Here P(¬flies|bird) would be the proportion
of birds that do not fly, which would be low. P(bird → ¬flies) is the same as
P(¬bird ∨ ¬flies), which would be dominated by non-birds and so would be
high. Similarly, P(bird → flies) would also be high, the probability also being
dominated by the non-birds. It is difficult to imagine a situation where the
probability of an implication is the kind of knowledge that is appropriate or
useful.

6.1. Probability 227

We want µe to be a probability measure, so if Ω is the set of all possible worlds,
µe(Ω) = 1. Thus, 1 = µe(Ω) = µe({ω : ω |= e}) + µe({ω : ω �|= e}) =
c× µ({ω : ω |= e}) + 0 = c× P(e). Therefore, c = 1/P(e).

The conditional probability of formula h given evidence e is the measure,
using µe, of the possible worlds in which h is true. That is,

P(h|e) = µe({ω : ω |= h})
= µe({ω : ω |= h∧ e}) + µe({ω : ω |= h∧ ¬e})

=
µ({ω : ω |= h∧ e})

P(e)
+ 0

=
P(h∧ e)

P(e)
.

The last form above is usually given as the definition of conditional probability.
For the rest of this chapter, assume that, if e is the evidence, P(e) > 0. We do

not consider the problem of conditioning on propositions with zero probability
(i.e., on sets of worlds with measure zero).

A conditional probability distribution, written P(X|Y) where X and Y are
variables or sets of variables, is a function of the variables: given a value x ∈
dom(X) for X and a value y ∈ dom(Y) for Y, it gives the value P(X = x|Y = y),
where the latter is the conditional probability of the propositions.

The definition of conditional probability lets us decompose a conjunction
into a product of conditional probabilities:

Proposition 6.3. (Chain rule) Conditional probabilities can be used to decompose
conjunctions. For any propositions α1, . . . , αn:

P(α1 ∧ α2 ∧ . . . ∧ αn) = P(α1)×
P(α2|α1)×
P(α3|α1 ∧ α2)×
...

P(αn|α1 ∧ · · · ∧ αn−1)

=
n

∏
i=1

P(αi|α1 ∧ · · · ∧ αi−1),

where the right-hand side is assumed to be zero if any of the products are zero (even if
some of them are undefined).

Note that any theorem about unconditional probabilities is a theorem about
conditional probabilities if you add the same evidence to each probability. This
is because the conditional probability measure is another probability measure.

Bayes’ Rule

An agent must update its belief when it observes new evidence. A new piece of
evidence is conjoined to the old evidence to form the complete set of evidence.

228 6. Reasoning Under Uncertainty

Background Knowledge and Observation

The difference between background knowledge and observation was de-
scribed in Section 5.3.1 (page 174). When we use reasoning under uncertainty,
the background model is described in terms of a probabilistic model, and the
observations form evidence that must be conditioned on.

Within probability, there are two ways to state that a is true:

• The first is to state that the probability of a is 1 by writing P(a) = 1.

• The second is to condition on a, which involves using a on the right-
hand side of the conditional bar, as in P(·|a).

The first method states that a is true in all possible worlds. The second says
that the agent is only interested in worlds where a happens to be true.

Suppose an agent was told about a particular animal:

P(flies|bird) = 0.8,

P(bird|emu) = 1.0,

P(flies|emu) = 0.001.

If it determines the animal is an emu, it cannot add the statement P(emu) = 1.
No probability distribution satisfies these four assertions. If emu were true in
all possible worlds, it would not be the case that in 0.8 of the possible worlds,
the individual flies. The agent, instead, must condition on the fact that the
individual is an emu.

To build a probability model, a knowledge base designer must take some
knowledge into consideration and build a probability model based on this
knowledge. All subsequent knowledge acquired must be treated as observa-
tions that are conditioned on.

Suppose the agent’s observations at some time are given by the proposi-
tion k. The agent’s subsequent belief states can be modeled by either of the
following:

• construct a probability theory, based on a measure µ, for the agent’s belief
before it had observed k and then condition on the evidence k conjoined
with the subsequent evidence e, or

• construct a probability theory, based on a measure µk, which models the
agent’s beliefs after observing k, and then condition on subsequent evi-
dence e.

All subsequent probabilities will be identical no matter which construction
was used. Building µk directly is sometimes easier because the model does
not have to cover the cases of when k is false. Sometimes, however, it is easier
to build µ and condition on k.

What is important is that there is a coherent stage where the probability
model is reasonable and where every subsequent observation is conditioned
on.

6.1. Probability 229

Bayes’ rule specifies how an agent should update its belief in a proposition
based on a new piece of evidence.

Suppose an agent has a current belief in proposition h based on evidence
k already observed, given by P(h|k), and subsequently observes e. Its new be-
lief in h is P(h|e ∧ k). Bayes’ rule tells us how to update the agent’s belief in
hypothesis h as new evidence arrives.

Proposition 6.4. (Bayes’ rule) As long as P(e|k) �= 0,

P(h|e∧ k) =
P(e|h∧ k)× P(h|k)

P(e|k) .

This is often written with the background knowledge k implicit. In this case, if P(e) �=
0, then

P(h|e) =
P(e|h)× P(h)

P(e)
.

P(e|h) is the likelihood of the hypothesis h; P(h) is the prior of the hypothesis h.
Bayes’ rule states that the posterior is proportional to the likelihood times the prior.

Proof. The commutativity of conjunction means that h∧ e is equivalent to e∧ h,
and so they have the same probability given k. Using the rule for multiplication
in two different ways,

P(h∧ e|k) = P(h|e∧ k)× P(e|k)
= P(e|h∧ k)× P(h|k).

The theorem follows from dividing the right-hand sides by P(e|k).

Often, Bayes’ rule is used to compare various hypotheses (different hi’s),
where it can be noticed that the denominator P(e|k) is a constant that does not
depend on the particular hypothesis. When comparing the relative posterior
probabilities of hypotheses, we can ignore the denominator. To get the pos-
terior probability, the denominator can be computed by reasoning by cases.
If H is an exclusive and covering set of propositions representing all possible
hypotheses, then

P(e|k) = ∑
h∈H

P(e∧ h|k)

= ∑
h∈H

P(e|h∧ k)× P(h|k).

Thus, the denominator of Bayes’ rule is obtained by summing the numerators
for all the hypotheses. When the hypothesis space is large, computing the de-
nominator can be computationally difficult.

Generally, one of P(e|h∧ k) or P(h|e∧ k) is much easier to estimate than the
other. This often occurs when you have a causal theory of a domain, and the
predictions of different hypotheses – the P(e|hi ∧ k) for each hypothesis hi – can
be derived from the domain theory.

230 6. Reasoning Under Uncertainty

Example 6.5 Suppose the diagnostic assistant is interested in the diagnosis of
the light switch s1 of Figure 1.8 (page 34). You would expect that the modeler is
able to specify how the output of a switch is a function of the input, the switch
position, and the status of the switch (whether it is working, shorted, installed
upside-down, etc.). Bayes’ rule lets an agent infer the status of the switch given
the other information.

Example 6.6 Suppose an agent has information about the reliability of fire
alarms. It may know how likely it is that an alarm will work if there is a fire. If
it must know the probability that there is a fire, given that there is an alarm, it
can use Bayes’ rule:

P(fire|alarm) =
P(alarm|fire)× P(fire)

P(alarm)
,

where P(alarm|fire) is the probability that the alarm worked, assuming that
there was a fire. It is a measure of the alarm’s reliability. The expression P(fire)
is the probability of a fire given no other information. It is a measure of how
fire-prone the building is. P(alarm) is the probability of the alarm sounding,
given no other information.

6.1.4 Expected Values

You can use the probabilities to give the expected value of any numerical ran-
dom variable (i.e., one whose domain is a subset of the reals). A variable’s ex-
pected value is the variable’s weighted average value, where its value in each
possible world is weighted by the measure of the possible world.

Suppose V is a random variable whose domain is numerical, and ω is a
possible world. Define V(ω) to be the value v in the domain of V such that
ω |= V = v. That is, we are treating a random variable as a function on worlds.

The expected value of numerical variable V, written E(V), is

E(V) = ∑
ω∈Ω

V(ω)× µ(ω)

when finitely many worlds exist. When infinitely many worlds exist, we must
integrate.

Example 6.7 If number of broken switches is an integer-valued random vari-
able,

E(number of broken switches)

would give the expected number of broken switches. If the world acted accord-
ing to the probability model, this would give the long-run average number of
broken switches.

6.1. Probability 231

In a manner analogous to the semantic definition of conditional probability
(page 226), the conditional expected value of variable X conditioned on evi-
dence e, written E(V|e), is

E(V|e) = ∑
ω∈Ω

V(ω)× µe(ω).

Thus,

E(V|e) =
1

P(e) ∑
ω|=e

V(ω)× P(ω)

= ∑
ω∈Ω

V(ω)× P(ω|e).

Example 6.8 The expected number of broken switches given that light l1 is
not lit is given by

E(number of broken switches|¬lit(l1)).

This is obtained by averaging the number of broken switches over all of the
worlds in which light l1 is not lit.

6.1.5 Information Theory

Probability forms the basis of information theory. In this section, we give a brief
overview of information theory.

A bit is a binary digit. Because a bit has two possible values, it can be used
to distinguish two items. Often the two values are written as 0 and 1, but they
can be any two different values.

Two bits can distinguish four items, each associated with either 00, 01, 10,
or 11. Similarly, three bits can distinguish eight items. In general, n bits can dis-
tinguish 2n items. Thus, we can distinguish n items with log2 n bits. It may be
surprising, but we can do better than this by taking probabilities into account.

Example 6.9 Suppose you want to design a code to distinguish the elements
of the set {a, b, c, d}, with P(a) = 1

2 , P(b) = 1
4 , P(c) = 1

8 , and P(d) = 1
8 . Consider

the following code:

a 0 c 110
b 10 d 111

This code sometimes uses 1 bit and sometimes uses 3 bits. On average, it uses

P(a)× 1 + P(b)× 2 + P(c)× 3 + P(d)× 3

=
1
2

+
2
4

+
3
8

+
3
8

= 1
3
4

bits.

For example, the string aacabbda with 8 characters has code 00110010101110,
which uses 14 bits.

232 6. Reasoning Under Uncertainty

With this code,− log2 P(a) = 1 bit is required to distinguish a from the other
symbols. To distinguish b, you must have− log2 P(b) = 2 bits. To distinguish c,
you must have − log2 P(c) = 3 bits.

It is possible to build a code that, to identify x, requires − log2 P(x) bits (or
the integer greater than this, if x is the only thing being transmitted). Suppose
there is a sequence of symbols we want to transmit or store and we know the
probability distribution over the symbols. A symbol x with probability P(x)
uses − log2 P(x) bits. To transmit a sequence, each symbol requires, on
average,

∑
x
−P(x)× log2 P(x)

bits to send it. This value just depends on the probability distribution of the
symbols. This is called the information content or entropy of the distribution.

Analogously to conditioning in probability, the expected number of bits it
takes to describe a distribution given evidence e is

I(e) = ∑
x
−P(x|e)× log2 P(x|e).

If a test exists that can distinguish the cases where α is true from the cases
where α is false, the information gain from this test is

I(true)− (P(α)× I(α) + P(¬α)× I(¬α)),

where I(true) is the expected number of bits needed before the test and P(α)×
I(α) + P(¬α)× I(¬α) is the expected number of bits after the test.

In later sections, we use the notion of information for a number of tasks:

• In diagnosis, an agent can choose a test that provides the most information.
• In decision-tree learning (page 298), information theory provides a useful

criterion for choosing which property to split on: split on the property that
provides the greatest information gain. The elements it must distinguish are
the different values in the target concept, and the probabilities are obtained
from the proportion of each value in the training set remaining at each node.

• In Bayesian learning (page 334), information theory provides a basis for de-
ciding which is the best model given some data.

6.2 Independence

The axioms of probability are very weak and provide few constraints on allow-
able conditional probabilities. For example, if there are n binary variables, there
are 2n − 1 numbers to be assigned to give a complete probability distribution
from which arbitrary conditional probabilities can be derived. To determine
any probability, you may have to start with an enormous database of condi-
tional probabilities or of probabilities of possible worlds.

6.2. Independence 233

Two main approaches are used to overcome the need for so many num-
bers:

Independence Assume that the knowledge of the truth of one proposition, Y,
does not affect the agent’s belief in another proposition, X, in the context
of other propositions Z. We say that X is independent of Y given Z. This is
defined below.

Maximum entropy or random worlds Given no other knowledge, assume that
everything is as random as possible. That is, the probabilities are distributed
as uniformly as possible consistent with the available information.

We consider here in detail the first of these (but see the box on page 234).
As long as the value of P(h|e) is not 0 or 1, the value of P(h|e) does not

constrain the value of P(h|f ∧ e). This latter probability could have any value
in the range [0, 1]: It is 1 when f implies h, and it is 0 if f implies ¬h.

As far as probability theory is concerned, there is no reason why the name
of the Queen of Canada should not be as significant as a light switch’s position
in determining whether the light is on. Knowledge of the domain, however,
may tell us that it is irrelevant.

In this section we present a representation that allows us to model the struc-
ture of the world where relevant propositions are local and where not-directly-
relevant variables can be ignored when probabilities are specified. This struc-
ture can be exploited for efficient reasoning.

A common kind of qualitative knowledge is of the form P(h|e) =
P(h|f ∧ e). This equality says that f is irrelevant to the probability of h given
e. For example, the fact that Elizabeth is the Queen of Canada is irrelevant to
the probability that w2 is live given that switch s1 is down. This idea can apply
to random variables, as in the following definition:

Random variable X is conditionally independent of random variable Y
given random variable Z if for all x ∈ dom(X), for all y ∈ dom(Y), for all y′ ∈
dom(Y), and for all z ∈ dom(Z), such that P(Y = y ∧ Z = z) > 0 and P(Y = y′ ∧
Z = z) > 0,

P(X = x|Y = y∧ Z = z) = P(X = x|Y = y′ ∧ Z = z).

That is, given a value of Z, knowing Y’s value does not affect your belief in the
value of X.

Proposition 6.5. The following four statements are equivalent, as long as the condi-
tional probabilities are well defined:

1. X is conditionally independent of Y given Z.

2. Y is conditionally independent of X given Z.

3. P(X|Y, Z) = P(X|Z). That is, in the context that you are given a value for Z, if
you were given a value for Y, you would have the same belief in X as if you were
not given a value for Y.

4. P(X, Y|Z) = P(X|Z)P(Y|Z).

234 6. Reasoning Under Uncertainty

Reducing the Numbers

The distinction between allowing representations of independence and us-
ing maximum entropy or random worlds highlights an important difference
between views of a knowledge representation:

• The first view is that a knowledge representation provides a high-level
modeling language that lets us model a domain in a reasonably natural
way. According to this view, it is expected that knowledge representation
designers prescribe how to use the knowledge representation language. It
is expected that they provide a user manual on how to describe domains of
interest.

• The second view is that a knowledge representation should allow someone
to add whatever knowledge they may have about a domain. The knowl-
edge representation should fill in the rest in a commonsense manner. Ac-
cording to this view, it is unreasonable for a knowledge representation de-
signer to specify how particular knowledge should be encoded.

Judging a knowledge representation by the wrong criteria does not result in
a fair assessment.

A belief network is a representation for a particular independence among
variables. Belief networks should be viewed as a modeling language. Many
domains can be concisely and naturally represented by exploiting the inde-
pendencies that belief networks compactly represent. This does not mean that
we can just throw in lots of facts (or probabilities) and expect a reasonable an-
swer. One must think about a domain and consider exactly what variables are
involved and what the dependencies are among the variables. When judged
by this criterion, belief networks form a useful representation scheme.

Once the network structure and the domains of the variables for a be-
lief network are defined, exactly which numbers are required (the conditional
probabilities) are prescribed. The user cannot simply add arbitrary condi-
tional probabilities but must follow the network’s structure. If the numbers
that are required of a belief network are provided and are locally consistent,
the whole network will be consistent.

In contrast, the maximum entropy or random worlds approaches infer the
most random worlds that are consistent with a probabilistic knowledge base.
They form a probabilistic knowledge representation of the second type. For
the random worlds approach, any numbers that happen to be available can
be added and used. However, if you allow someone to add arbitrary prob-
abilities, it is easy for the knowledge to be inconsistent with the axioms of
probability. Moreover, it is difficult to justify an answer as correct if the as-
sumptions are not made explicit.

6.3. Belief Networks 235

The proof is left as an exercise. [See Exercise 1 (page 275).]
Variables X and Y are unconditionally independent if P(X, Y) =

P(X)P(Y), that is, if they are conditionally independent given no observations.
Note that X and Y being unconditionally independent does not imply they are
conditionally independent given some other information Z.

Conditional independence is a useful assumption about a domain that is
often natural to assess and can be exploited to give a useful representation.

6.3 Belief Networks

The notion of conditional independence can be used to give a concise represen-
tation of many domains. The idea is that, given a random variable X, a small
set of variables may exist that directly affect the variable’s value in the sense
that X is conditionally independent of other variables given values for the
directly affecting variables. The set of locally affecting variables is called the
Markov blanket. This locality is what is exploited in a belief network. A belief
network is a directed model of conditional dependence among a set of ran-
dom variables. The precise statement of conditional independence in a belief
network takes into account the directionality.

To define a belief network, start with a set of random variables that repre-
sent all of the features of the model. Suppose these variables are {X1, . . . , Xn}.
Next, select a total ordering of the variables, X1, . . . , Xn.

The chain rule (Proposition 6.3 (page 227)) shows how to decompose a con-
junction into conditional probabilities:

P(X1 = v1 ∧X2 = v2 ∧ · · · ∧Xn = vn)

=
n

∏
i=1

P(Xi = vi|X1 = v1 ∧ · · · ∧Xi−1 = vi−1).

Or, in terms of random variables and probability distributions,

P(X1, X2, · · · , Xn) =
n

∏
i=1

P(Xi|X1, · · · , Xi−1).

Define the parents of random variable Xi, written parents(Xi), to be a min-
imal set of predecessors of Xi in the total ordering such that the other prede-
cessors of Xi are conditionally independent of Xi given parents(Xi). That is,
parents(Xi) ⊆ {X1, . . . , Xi−1} such that

P(Xi|Xi−1 . . . X1) = P(Xi|parents(Xi)).

If more than one minimal set exists, any minimal set can be chosen to be
the parents. There can be more than one minimal set only when some of the
predecessors are deterministic functions of others.

We can put the chain rule and the definition of parents together, giving

P(X1, X2, · · · , Xn) =
n

∏
i=1

P(Xi|parents(Xi)).

236 6. Reasoning Under Uncertainty

The probability over all of the variables, P(X1, X2, · · · , Xn), is called the joint
probability distribution. A belief network defines a factorization of the joint
probability distribution, where the conditional probabilities form factors that
are multiplied together.

A belief network, also called a Bayesian network, is an acyclic directed
graph (DAG), where the nodes are random variables. There is an arc from each
element of parents(Xi) into Xi. Associated with the belief network is a set of
conditional probability distributions – the conditional probability of each vari-
able given its parents (which includes the prior probabilities of those variables
with no parents).

Thus, a belief network consists of

• a DAG, where each node is labeled by a random variable;

• a domain for each random variable; and

• a set of conditional probability distributions giving P(X|parents(X)) for each
variable X.

A belief network is acyclic by construction. The way the chain rule de-
composes the conjunction gives the ordering. A variable can have only pre-
decessors as parents. Different decompositions can result in different belief
networks.

Example 6.10 Suppose we want to use the diagnostic assistant to diagnose
whether there is a fire in a building based on noisy sensor information and
possibly conflicting explanations of what could be going on. The agent receives
a report about whether everyone is leaving the building. Suppose the report
sensor is noisy: It sometimes reports leaving when there is no exodus (a false
positive), and it sometimes does not report when everyone is leaving (a false
negative). Suppose the fire alarm going off can cause the leaving, but this is not
a deterministic relationship. Either tampering or fire could affect the alarm. Fire
also causes smoke to rise from the building.

Suppose we use the following variables, all of which are Boolean, in the
following order:

• Tampering is true when there is tampering with the alarm.

• Fire is true when there is a fire.

• Alarm is true when the alarm sounds.

• Smoke is true when there is smoke.

• Leaving is true if there are many people leaving the building at once.

• Report is true if there is a report given by someone of people leaving. Report
is false if there is no report of leaving.

6.3. Belief Networks 237

Tampering Fire

Alarm

Leaving

Report

Smoke

Figure 6.1: Belief network for report of leaving of Example 6.10

The variable Report denotes the sensor report that people are leaving. This
information is unreliable because the person issuing such a report could be
playing a practical joke, or no one who could have given such a report may
have been paying attention. This variable is introduced to allow conditioning
on unreliable sensor data. The agent knows what the sensor reports, but it only
has unreliable evidence about people leaving the building.

As part of the domain, assume the following conditional independencies:

• Fire is conditionally independent of Tampering (given no other informa-
tion).

• Alarm depends on both Fire and Tampering. That is, we are making no
independence assumptions about how Alarm depends on its predecessors
given this variable ordering.

• Smoke depends only on Fire and is conditionally independent of Tampering
and Alarm given whether there is a Fire.

• Leaving only depends on Alarm and not directly on Fire or Tampering or
Smoke. That is, Leaving is conditionally independent of the other variables
given Alarm.

• Report only directly depends on Leaving.

The belief network of Figure 6.1 expresses these dependencies. This net-
work represents the factorization

P(Tampering, Fire, Alarm, Smoke, Leaving, Report)
= P(Tampering)× P(Fire)× P(Alarm|Tampering, Fire)
× P(Smoke|Fire)× P(Leaving|Alarm)× P(Report|Leaving).

238 6. Reasoning Under Uncertainty

We also must define the domain of each variable. Assume that the vari-
ables are Boolean; that is, they have domain {true, false}. We use the lower-
case variant of the variable to represent the true value and use negation for
the false value. Thus, for example, Tampering = true is written as tampering, and
Tampering = false is written as ¬tampering.

The examples that follow assume the following conditional probabilities:

P(tampering) = 0.02
P(fire) = 0.01
P(alarm|fire∧ tampering) = 0.5
P(alarm|fire∧ ¬tampering) = 0.99
P(alarm|¬fire∧ tampering) = 0.85
P(alarm|¬fire∧ ¬tampering) = 0.0001
P(smoke|fire) = 0.9
P(smoke|¬fire) = 0.01
P(leaving|alarm) = 0.88
P(leaving|¬alarm) = 0.001
P(report|leaving) = 0.75
P(report|¬leaving) = 0.01

Example 6.11 Consider the wiring example of Figure 1.8 (page 34). Suppose
we decide to have variables for whether lights are lit, for the switch positions,
for whether lights and switches are faulty or not, and for whether there is power
in the wires. The variables are defined in Figure 6.2.

Let’s select an ordering where the causes of a variable are before the variable
in the ordering. For example, the variable for whether a light is lit comes after
variables for whether the light is working and whether there is power coming
into the light.

Whether light l1 is lit depends only on whether there is power in wire w0
and whether light l1 is working properly. Other variables, such as the position
of switch s1, whether light l2 is lit, or who is the Queen of Canada, are irrelevant.
Thus, the parents of L1 lit are W0 and L1 st.

Consider variable W0, which represents whether there is power in wire w0.
If we knew whether there was power in wires w1 and w2, and we knew the
position of switch s2 and whether the switch was working properly, the value
of the other variables (other than L1 lit) would not affect our belief in whether
there is power in wire w0. Thus, the parents of W0 should be S2 Pos, S2 st, W1,
and W2.

Figure 6.2 shows the resulting belief network after the independence of each
variable has been considered. The belief network also contains the domains
of the variables, as given in the figure, and conditional probabilities of each
variable given its parents.

6.3. Belief Networks 239

Outside_power

W
3

Cb
1
_st

Cb
2
_st

W
6

W
2

W
0

W
1

W
4

S
1
_st

S
2
_st

P
1

P
2

S
1
_pos

S
2
_pos

S
3
_pos

S
3
_st

L
2
_st

L
2
_lit

L
1
_st

L
1
_lit

• For each wire wi, there is a random variable, Wi, with domain {live, dead},
which denotes whether there is power in wire wi. Wi=live means wire wi
has power. Wi=dead means there is no power in wire wi.

• Outside power with domain {live, dead} denotes whether there is power
coming into the building.

• For each switch si, variable Si pos denotes the position of si. It has domain
{up, down}.

• For each switch si, variable Si st denotes the state of switch si. It has
domain {ok, upside down, short, intermittent, broken}. Si st=ok means switch
si is working normally. Si st=upside down means switch si is installed
upside-down. Si st=short means switch si is shorted and acting as a wire.
Si st=broken means switch si is broken and does not allow electricity to
flow.

• For each circuit breaker cbi, variable Cbi st has domain {on, off}. Cbi st=on
means power can flow through cbi and Cbi st=off means that power can-
not flow through cbi.

• For each light li, variable Li st with domain {ok, intermittent, broken} de-
notes the state of the light. Li st=ok means light li will light if pow-
ered, Li st=intermittent means light li intermittently lights if powered, and
Li st=broken means light li does not work.

Figure 6.2: Belief network for the electrical domain of Figure 1.8

240 6. Reasoning Under Uncertainty

For the variable W1, the following conditional probabilities must be
specified:

P(W1 = live|S1 pos = up∧ S1 st = ok ∧W3 = live)
P(W1 = live|S1 pos = up∧ S1 st = ok ∧W3 = dead)
P(W1 = live|S1 pos = up∧ S1 st = upside down∧W3 = live)

...
P(W1 = live|S1 pos = down∧ S1 st = broken∧W3 = dead).

There are two values for S1 pos, five values for S1 ok, and two values for
W3, so there are 2 × 5 × 2 = 20 different cases where a value for W1 = live
must be specified. As far as probability theory is concerned, the probability for
W1 = live for these 20 cases could be assigned arbitrarily. Of course, knowledge
of the domain constrains what values make sense. The values for W1 = dead
can be computed from the values for W1 = live for each of these cases.

Because the variable S1 st has no parents, it requires a prior distribution,
which can be specified as the probabilities for all but one of the values; the
remaining value can be derived from the constraint that all of the probabilities
sum to 1. Thus, to specify the distribution of S1 st, four of the following five
probabilities must be specified:

P(S1 st = ok)
P(S1 st = upside down)
P(S1 st = short)
P(S1 st = intermittent)
P(S1 st = broken)

The other variables are represented analogously.

A belief network is a graphical representation of conditional independence.
The independence allows us to depict direct effects within the graph and pre-
scribes which probabilities must be specified. Arbitrary posterior probabilities
can be derived from the network.

The independence assumption embedded in a belief network is as follows:
Each random variable is conditionally independent of its non-descendants given its
parents. That is, if X is a random variable with parents Y1, . . . , Yn, all random
variables that are not descendants of X are conditionally independent of X
given Y1, . . . , Yn:

P(X|Y1, . . . , Yn, R) = P(X|Y1, . . . , Yn),

if R does not involve a descendant of X. For this definition, we include X as
a descendant of itself. The right-hand side of this equation is the form of the
probabilities that are specified as part of the belief network. R may involve
ancestors of X and other nodes as long as they are not descendants of X. The
independence assumption states that all of the influence of non-descendant
variables is captured by knowing the value of X’s parents.

6.3. Belief Networks 241

Often, we refer to just the labeled DAG as a belief network. When this is
done, it is important to remember that a domain for each variable and a set of
conditional probability distributions are also part of the network.

The number of probabilities that must be specified for each variable is expo-
nential in the number of parents of the variable. The independence assumption

Belief Networks and Causality

Belief networks have often been called causal networks and have been
claimed to be a good representation of causality. Recall (page 204) that a
causal model predicts the result of interventions. Suppose you have in mind
a causal model of a domain, where the domain is specified in terms of a set
of random variables. For each pair of random variables X1 and X2, if a di-
rect causal connection exists from X1 to X2 (i.e., intervening to change X1 in
some context of other variables affects X2 and this cannot be modeled by hav-
ing some intervening variable), add an arc from X1 to X2. You would expect
that the causal model would obey the independence assumption of the belief
network. Thus, all of the conclusions of the belief network would be valid.

You would also expect such a graph to be acyclic; you do not want some-
thing eventually causing itself. This assumption is reasonable if you consider
that the random variables represent particular events rather than event types.
For example, consider a causal chain that “being stressed” causes you to
“work inefficiently,” which, in turn, causes you to “be stressed.” To break the
apparent cycle, we can represent “being stressed” at different stages as differ-
ent random variables that refer to different times. Being stressed in the past
causes you to not work well at the moment which causes you to be stressed
in the future. The variables should satisfy the clarity principle (page 114) and
have a well-defined meaning. The variables should not be seen as event types.

The belief network itself has nothing to say about causation, and it can rep-
resent non-causal independence, but it seems particularly appropriate when
there is causality in a domain. Adding arcs that represent local causality tends
to produce a small belief network. The belief network of Figure 6.2 (page 239)
shows how this can be done for a simple domain.

A causal network models interventions. If someone were to artificially
force a variable to have a particular value, the variable’s descendants – but no
other nodes – would be affected.

Finally, you can see how the causality in belief networks relates to the
causal and evidential reasoning discussed in Section 5.7 (page 204). A causal
belief network can be seen as a way of axiomatizing in a causal direction.
Reasoning in belief networks corresponds to abducing to causes and then
predicting from these. A direct mapping exists between the logic-based ab-
ductive view discussed in Section 5.7 (page 204) and belief networks: Belief
networks can be modeled as logic programs with probabilities over possible
hypotheses. This is described in Section 14.3 (page 611).

242 6. Reasoning Under Uncertainty

is useful insofar as the number of variables that directly affect another variable
is small. You should order the variables so that nodes have as few parents as
possible.

Note the restriction “each random variable is conditionally independent of
its non-descendants given its parents” in the definition of the independence
encoded in a belief network (page 240). If R contains a descendant of variable
X, the independence assumption is not directly applicable.

Example 6.12 In Figure 6.2 (page 239), variables S3 pos, S3 st, and W3 are the
parents of variable W4. If you know the values of S3 pos, S3 st, and W3, knowing
whether or not l1 is lit or knowing the value of Cb1 st will not affect your belief
in whether there is power in wire w4. However, even if you knew the values of
S3 pos, S3 st, and W3, learning whether l2 is lit potentially changes your belief
in whether there is power in wire w1. The independence assumption is not
directly applicable.

The variable S1 pos has no parents. Thus, the independence embedded in
the belief network specifies that P(S1 pos = up|A) = P(S1 pos = up) for any
A that does not involve a descendant of S1 pos. If A includes a descendant of
S1 pos = up – for example, if A is S2 pos = up∧ L1 lit = true – the independence
assumption cannot be directly applied.

A belief network specifies a joint probability distribution from which ar-
bitrary conditional probabilities can be derived. A network can be queried by
asking for the conditional probability of any variables conditioned on the val-
ues of any other variables. This is typically done by providing observations on
some variables and querying another variable.

Example 6.13 Consider Example 6.10 (page 236). The prior probabilities (with
no evidence) of each variable can be computed using the methods of the
next section. The following conditional probabilities follow from the model of
Example 6.10, to about three decimal places:

P(tampering) = 0.02
P(fire) = 0.01
P(report) = 0.028
P(smoke) = 0.0189

Observing the report gives the following:

P(tampering|report) = 0.399
P(fire|report) = 0.2305
P(smoke|report) = 0.215

As expected, the probability of both tampering and fire are increased by the re-
port. Because fire is increased, so is the probability of smoke.

Suppose instead that smoke were observed:

P(tampering|smoke) = 0.02
P(fire|smoke) = 0.476
P(report|smoke) = 0.320

6.3. Belief Networks 243

Note that the probability of tampering is not affected by observing smoke; how-
ever, the probabilities of report and fire are increased.

Suppose that both report and smoke were observed:

P(tampering|report∧ smoke) = 0.0284
P(fire|report∧ smoke) = 0.964

Observing both makes fire even more likely. However, in the context of the
report, the presence of smoke makes tampering less likely. This is because the
report is explained away by fire, which is now more likely.

Suppose instead that report, but not smoke, was observed:

P(tampering|report∧ ¬smoke) = 0.501
P(fire|report∧ ¬smoke) = 0.0294

In the context of the report, fire becomes much less likely and so the probability
of tampering increases to explain the report.

This example illustrates how the belief net independence assumption gives
commonsense conclusions and also demonstrates how explaining away is a
consequence of the independence assumption of a belief network.

This network can be used in a number of ways:

• By conditioning on the knowledge that the switches and circuit breakers
are ok, and on the values of the outside power and the position of the
switches, this network can simulate how the lighting should work.

• Given values of the outside power and the position of the switches, the
network can infer the likelihood of any outcome – for example, how likely
it is that l1 is lit.

• Given values for the switches and whether the lights are lit, the posterior
probability that each switch or circuit breaker is in any particular state can
be inferred.

• Given some observations, the network can be used to reason backward to
determine the most likely position of switches.

• Given some switch positions, some outputs, and some intermediate val-
ues, the network can be used to determine the probability of any other
variable in the network.

6.3.1 Constructing Belief Networks

To represent a domain in a belief network, the designer of a network must
consider the following questions:

• What are the relevant variables? In particular, the designer must consider

– what the agent may observe in the domain. Each feature that can be
observed should be a variable, because the agent must be able to con-
dition on all of its observations.

– what information the agent is interested in knowing the probability of,
given the observations. Each of these features should be made into a
variable that can be queried.

244 6. Reasoning Under Uncertainty

– other hidden variables or latent variables that will not be observed
or queried but that make the model simpler. These variables either ac-
count for dependencies or reduce the size of the specification of the
conditional probabilities.

• What values should these variables take? This involves considering the
level of detail at which the agent should reason to answer the sorts of
queries that will be encountered.

For each variable, the designer should specify what it means to take
each value in its domain. What must be true in the world for a variable to
have a particular value should satisfy the clarity principle (page 114). It is
a good idea to explicitly document the meaning of all variables and their
possible values. The only time the designer may not want to do this is
when a hidden variable exists whose values the agent will want to learn
from data [see Section 11.2.2 (page 460)].
• What is the relationship between the variables? This should be expressed

in terms of local influence and be modeled using the parent relation.
• How does the distribution of a variable depend on the variables that lo-

cally influence it (its parents)? This is expressed in terms of the condi-
tional probability distributions.

Example 6.14 Suppose you want the diagnostic assistant to be able to reason
about the possible causes of a patient’s wheezing and coughing, as in Example
5.30 (page 201).

• The agent can observe coughing, wheezing, and fever and can ask
whether the patient smokes. There are thus variables for these.

• The agent may want to know about other symptoms of the patient and
the prognosis of various possible treatments; if so, these should also be
variables. (Although they are not used in this example).

• There are variables that are useful to predict the outcomes of patients.
The medical community has named many of these and characterized their
symptoms. Here we will use the variables Bronchitis and Influenza.

• Now consider what the variables directly depend on. Whether patients
wheeze depends on whether they have bronchitis. Whether they cough
depends on on whether they have bronchitis. Whether patients have bron-
chitis depends on whether they have influenza and whether they smoke.
Whether they have fever depends on whether they have influenza. Figure
6.3 depicts these dependencies.

• Choosing the values for the variables involves considering the level of
detail at which to reason. You could encode the severity of each of the dis-
eases and symptoms as values for the variables. You could, for example,
use the values severe, moderate, mild, or absent for the Wheezing variable.
You could even model the disease at a lower level of abstraction, for exam-
ple, by representing all subtypes of the diseases. For ease of exposition, we
will model the domain at a very abstract level, only considering the pres-
ence or absence of symptoms and diseases. Each of the variables will be

6.3. Belief Networks 245

Influenza Smokes

Bronchitis

Coughing Wheezing

FeverSoreThroat

Figure 6.3: Belief network for Example 6.14

Boolean, with domain {true, false}, representing the presence or absence
of the associated disease or symptom.

• You assess how each variable depends on its parents, which is done by
specifying the conditional probabilities of each variable given its parents:

P(influenza) = 0.05
P(smokes) = 0.2
P(soreThroat|influenza) = 0.3
P(soreThroat|¬influenza) = 0.001
P(fever|influenza) = 0.9
P(fever|¬influenza) = 0.05
P(bronchitis|influenza∧ smokes) = 0.99
P(bronchitis|influenza∧ ¬smokes) = 0.9
P(bronchitis|¬influenza∧ smokes) = 0.7
P(bronchitis|¬influenza∧ ¬smokes) = 0.0001
P(coughing|bronchitis) = 0.8
P(coughing|¬bronchitis) = 0.07
P(wheezing|bronchitis) = 0.6
P(wheezing|¬bronchitis) = 0.001

The process of diagnosis is carried out by conditioning on the observed
symptoms and deriving posterior probabilities of the faults or diseases.

This example also illustrates another example of explaining away and the
preference for simpler diagnoses over complex ones.

Before any observations, we can compute (see the next section), to a few sig-
nificant digits, P(smokes) = 0.2, P(influenza) = 0.05, and P(bronchitis) = 0.18.
Once wheezing is observed, all three become more likely: P(smokes|wheezing) =
0.79, P(influenza|wheezing) = 0.25, and P(bronchitis|wheezing) = 0.992.

Suppose wheezing ∧ fever is observed: P(smokes|wheezing ∧ fever) = 0.32,
P(influenza|wheezing ∧ fever) = 0.86, and P(bronchitis|wheezing ∧ fever) = 0.998.
Notice how, as in Example 5.30 (page 201), when fever is observed, influenza is
indicated, and so smokes is explained away.

246 6. Reasoning Under Uncertainty

Example 6.15 Consider the belief network depicted in Figure 6.2 (page 239).
Note the independence assumption embedded in this model: The DAG spec-
ifies that the lights, switches, and circuit breakers break independently. To
model dependencies among how the switches break, you can add more arcs
and perhaps more nodes. For example, if lights do not break independently be-
cause they come from the same batch, you can add an extra node that conveys
the dependency. You would add a node that represents whether the lights come
from a good or bad batch, which is made a parent of L1 st and L2 st. The lights
can now break dependently. When you have evidence that one light is broken,
the probability that the batch is bad may increase and thus make it more likely
that the other light is bad. If you are not sure whether the lights are indeed from
the same batch, you can add a node representing this, too. The important point
is that the belief network provides a specification of independence that lets us
model dependencies in a natural and direct manner.

The model implies that no possibility exists of there being shorts in the
wires or that the house is wired differently from the diagram. In particular, it
implies that w0 cannot be shorted to w4 so that wire w0 can get power from wire
w4. You could add extra dependencies that let each possible short be modeled.
An alternative is to add an extra node that indicates that the model is appro-
priate. Arcs from this node would lead to each variable representing power in
a wire and to each light. When the model is appropriate, you can use the prob-
abilities of Example 6.11 (page 238). When the model is inappropriate, you can,
for example, specify that each wire and light works at random. When there are
weird observations that do not fit in with the original model – they are impos-
sible or extremely unlikely given the model – the probability that the model is
inappropriate will increase.

Example 6.16 Suppose we want to develop a help system to determine what
help page a user is interested in based on the keywords they give in a query to
a help system.

The system will observe the words that the user gives. Suppose that we do
not want to model the sentence structure, but assume that the set of words will
be sufficient to determine the help page. The user can give multiple words. One
way to represent this is to have a Boolean variable for each word. Thus, there
will be nodes labeled “able”, “absent”, “add”, . . . , “zoom” that have the value
true when the user uses that word in a query and false when the user does not
use that word.

We are interested in which help page the user wants. Suppose that the user
is interested in one and only one help page. Thus, it seems reasonable to have
a node H with domain the set of all help pages, {h1, . . . , hk}.

One way this can be represented is as a naive Bayesian classifier. A naive
Bayesian classifier is a belief network that has a single node – the class – that
directly influences the other variables, and the other variables are independent
given the class. Figure 6.4 shows a naive Bayesian classifier for the help system
where H, the help page the user is interested in, is the class, and the other nodes
represent the words used in the query. In this network, the words used in a

6.3. Belief Networks 247

H

"able" "absent" "add" "zoom". . .

Figure 6.4: Naive belief network for Example 6.16

query depend on the help page the user is interested in, and the words are
conditionally independent of each other given the help page.

This network requires P(hi) for each help page hi, which specifies how likely
it is that a user would want this help page given no information. This informa-
tion could be obtained from how likely it is that users have particular problems
they need help with. This network assumes the user is interested in exactly one
help page, and so ∑i P(hi) = 1.

The network also requires, for each word wj and for each help page hi, the
probability P(wj|hi). These may seem more difficult to acquire but there are a
few heuristics we can use. The average of these values should be the average
number of words in a query divided by the total number of words. We would
expect words that appear in the help page to be more likely to be used when
asking for that help page than words not in the help page. There may also be
keywords associated with the page that may be more likely to be used. There
may also be some words that are just used more, independently of the help
page the user is interested in. Example 7.13 (page 312) shows how the proba-
bilities of this network can be learned from experience.

To condition on the set of words in a query, the words that appear in the
query are observed to be true and the words that are not in the query are ob-
served to be false. For example, if the help text was “the zoom is absent”, the
words “the”, “zoom”, “is”, and “absent” would be observed to be true, and
the other words would observed to be false. The posterior for H can then be
computed and the most likely few help topics can be shown to the user.

Some words, such as “the” and “is”, may not be useful in that they have
the same conditional probability for each help topic and so, perhaps, would
be omitted from the model. Some words that may not be expected in a query
could also be omitted from the model.

Note that the conditioning was also on the words that were not in the query.
For example, if page h73 was about printing problems, we may expect that ev-
eryone who wanted page h73 would use the word “print”. The non-existence of
the word “print” in a query is strong evidence that the user did not want page
h73.

The independence of the words given the help page is a very strong as-
sumption. It probably does not apply to words like “not”, where what “not”

248 6. Reasoning Under Uncertainty

is associated with is very important. If people are asking sentences, the words
would not be conditionally independent of each other given the help they need,
because the probability of a word depends on its context in the sentence. There
may even be words that are complementary, in which case you would expect
users to use one and not the other (e.g., “type” and “write”) and words you
would expect to be used together (e.g., “go” and “to”); both of these cases vio-
late the independence assumption. It is an empirical question as to how much
violating the assumptions hurts the usefulness of the system.

6.4 Probabilistic Inference

The most common probabilistic inference task is to compute the posterior dis-
tribution of a query variable given some evidence. Unfortunately, even the
problem of estimating the posterior probability in a belief network within an
absolute error (of less than 0.5), or within a constant multiplicative factor, is
NP-hard, so general efficient implementations will not be available.

The main approaches for probabilistic inference in belief networks are

• exploiting the structure of the network. This approach is typified by the vari-
able elimination algorithm detailed later.

• search-based approaches. By enumerating some of the possible worlds, pos-
terior probabilities can be estimated from the worlds generated. By comput-
ing the probability mass of the worlds not considered, a bound on the er-
ror in the posterior probability can be estimated. This approach works well
when the distributions are extreme (all probabilities are close to zero or close
to one), as occurs in engineered systems.

• variational inference, where the idea is to find an approximation to the
problem that is easy to compute. First choose a class of representations that
are easy to compute. This class could be as simple as the set of disconnected
belief networks (with no arcs). Next try to find a member of the class that is
closest to the original problem. That is, find an easy-to-compute distribution
that is as close as possible to the posterior distribution that must be com-
puted. Thus, the problem reduces to an optimization problem of minimizing
the error.

• stochastic simulation. In these approaches, random cases are generated ac-
cording to the probability distributions. By treating these random cases as
a set of samples, the marginal distribution on any combination of variables
can be estimated. Stochastic simulation methods are discussed in Section
6.4.2 (page 256).

This book presents only the first and fourth methods.

6.4.1 Variable Elimination for Belief Networks

This section gives an algorithm for finding the posterior distribution for a vari-
able in an arbitrarily structured belief network. Many of the efficient exact

6.4. Probabilistic Inference 249

r(X, Y, Z)=

X Y Z val
t t t 0.1
t t f 0.9
t f t 0.2
t f f 0.8
f t t 0.4
f t f 0.6
f f t 0.3
f f f 0.7

r(X=t, Y, Z)=

Y Z val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

r(X=t, Y, Z=f)=
Y val
t 0.9
f 0.8

r(X=t, Y=f , Z=f) = 0.8

Figure 6.5: An example factor and assignments

methods can be seen as optimizations of this algorithm. This algorithm can be
seen as a variant of variable elimination (VE) for constraint satisfaction prob-
lems (CSPs) (page 127) or VE for soft constraints (page 147).

The algorithm is based on the notion that a belief network specifies a fac-
torization of the joint probability distribution (page 236).

Before we give the algorithm, we define factors and the operations that will
be performed on them. Recall that P(X|Y) is a function from variables (or sets
of variables) X and Y into the real numbers that, given a value for X and a value
for Y, gives the conditional probability of the value for X, given the value for
Y. This idea of a function of variables is generalized as the notion of a factor.
The VE algorithm for belief networks manipulates factors to compute posterior
probabilities.

A factor is a representation of a function from a tuple of random variables
into a number. We will write factor f on variables X1, . . . , Xj as f (X1, . . . , Xj).
The variables X1, . . . , Xj are the variables of the factor f , and f is a factor on
X1, . . . , Xj.

Suppose f (X1, . . . , Xj) is a factor and each vi is an element of the domain of
Xi. f (X1 = v1, X2 = v2, . . . , Xj = vj) is a number that is the value of f when each
Xi has value vi. Some of the variables of a factor can be assigned to values to
make a new factor on the other variables. For example, f (X1 = v1, X2, . . . , Xj),
sometimes written as f (X1, X2, . . . , Xj)X1 = v1 , where v1 is an element of the do-
main of variable X1, is a factor on X2, . . . , Xj.

Example 6.17 Figure 6.5 shows a factor r(X, Y, Z) on variables X, Y and Z as
a table. This assumes that each variable is binary with domain {t, f}. The figure
gives a table for the factor r(X = t, Y, Z), which is a factor on Y, Z. Similarly,
r(X = t, Y, Z = f) is a factor on Y, and r(X = t, Y = f , Z = f) is a number.

Factors can be multiplied together. Suppose f1 and f2 are factors, where f1
is a factor that contains variables X1, . . . , Xi and Y1, . . . , Yj, and f2 is a factor
with variables Y1, . . . , Yj and Z1, . . . , Zk, where Y1, . . . , Yj are the variables in

250 6. Reasoning Under Uncertainty

Representations of Conditional Probabilities and Factors

A conditional probability distribution can be seen as a function of the vari-
ables involved. A factor is a representation of a function on variables; thus, a
factor can be used to represent conditional probabilities.

When the variables have finite domains, these factors can be implemented
as arrays. If there is an ordering of the variables (e.g., alphabetical) and the
values in the domains are mapped into the non-negative integers, there is
a canonical representation of each factor as a one-dimensional array that is
indexed by natural numbers. Operations on factors can be implemented effi-
ciently using such a representation. However, this form is not a good one to
present to users because the structure of the conditional is lost.

Factors do not have to be implemented as arrays. The tabular represen-
tation is often too large when there are many parents. Often, more structure
exists in conditional probabilities that can be exploited.

One such structure exploits context-specific independence, where one
variable is conditionally independent of another, given a particular value of
the third variable. For example, suppose the robot can go outside or get cof-
fee. Whether it gets wet depends on whether there is rain in the context that
it went out or on whether the cup was full if it got coffee. There are a num-
ber of ways to represent the conditional probability P(Wet|Out, Rain, Full) –
for example as a decision tree, as rules with probabilities, or as tables with
contexts:

t fft

ft
Out

Rain Full

0.8 0.1 0.6 0.3

wet← out∧ rain : 0.8
wet← out∧∼rain : 0.1
wet← ∼out∧ full : 0.6
wet← ∼out∧∼full : 0.3

out :

Rain Wet Prob
t t 0.8
t f 0.2
f t 0.1
f f 0.9

∼out :

Full Wet Prob
t t 0.6
t f 0.4
f t 0.3
f f 0.7

Another common representation is a noisy or. For example, suppose the
robot can get wet from rain, coffee, sprinkler, or kids. There can be a probabil-
ity that it gets wet from rain if it rains, and a probability that it gets wet from
coffee if it has coffee, and so on (these probabilities give the noise). The robot
gets wet if it gets wet from one of them, giving the “or”.

The next chapter explores other representations that can be used for con-
ditional probabilities.

6.4. Probabilistic Inference 251

f1=

A B val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2=

B C val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

f1 × f2=

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

Figure 6.6: Multiplying factors example

common to f1 and f2. The product of f1 and f2, written f1 × f2, is a factor on the
union of the variables, namely X1, . . . , Xi, Y1, . . . , Yj, Z1, . . . , Zk, defined by:

(f1 × f2)(X1, . . . , Xi, Y1, . . . , Yj, Z1, . . . , Zk)
= f1(X1, . . . , Xi, Y1, . . . , Yj)× f2(Y1, . . . , Yj, Z1, . . . , Zk).

Example 6.18 Figure 6.6 shows the product of f1(A, B) and f2(B, C), which is
a factor on A, B, C. Note that (f1 × f2)(A = t, B = f , C = f) = f1(A = t, B =
f)× f2(B = f , C = f) = 0.9× 0.4 = 0.36.

The remaining operation is to sum out a variable in a factor. Given factor
f (X1, . . . , Xj), summing out a variable, say X1, results in a factor on the other
variables, X2, . . . , Xj, defined by

(∑
X1

f)(X2, . . . , Xj) = f (X1 = v1, X2, . . . , Xj) + · · ·+ f (X1 = vk, X2 . . . , Xj),

where {v1, . . . , vk} is the set of possible values of variable X1.

Example 6.19 Figure 6.7 (on the next page) gives an example of summing out
variable B from a factor f3(A, B, C), which is a factor on A, C. Notice how

(∑
B

f3)(A = t, C = f) = f3(A = t, B = t, C = f) + f3(A = t, B = f , C = f)

= 0.07 + 0.36
= 0.43

A conditional probability distribution P(X|Y1, . . . , Yj) can be seen as a fac-
tor f on X, Y1, . . . , Yj, where

f (X = u, Y1 = v1, . . . , Yj = vj) = P(X = u|Y1 = v1 ∧ · · · ∧ Yj = vj).

Usually, humans prefer the P(·|·) notation, but internally the computer just
treats conditional probabilities as factors.

252 6. Reasoning Under Uncertainty

f3=

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

∑B f3=

A C val
t t 0.57
t f 0.43
f t 0.54
f f 0.46

Figure 6.7: Summing out a variable from a factor

The belief network inference problem is the problem of computing the
posterior distribution of a variable, given some evidence.

The problem of computing posterior probabilities can be reduced to the
problem of computing the probability of conjunctions. Given evidence Y1 =
v1, . . . , Yj = vj, and query variable Z:

P(Z|Y1 = v1, . . . , Yj = vj)

=
P(Z, Y1 = v1, . . . , Yj = vj)

P(Y1 = v1, . . . , Yj = vj)

=
P(Z, Y1 = v1, . . . , Yj = vj)

∑z P(Z, Y1 = v1, . . . , Yj = vj)
.

So the agent computes the factor P(Z, Y1 = v1, . . . , Yj = vj) and normalizes.
Note that this is a factor only of Z; given a value for Z, it returns a num-
ber that is the probability of the conjunction of the evidence and the value
for Z.

Suppose the variables of the belief network are X1, . . . , Xn. To compute the
factor P(Z, Y1 = v1, . . . , Yj = vj), sum out the other variables from the joint dis-
tribution. Suppose Z1, . . . , Zk is an enumeration of the other variables in the
belief network – that is,

{Z1, . . . , Zk} = {X1, . . . , Xn} − {Z} − {Y1, . . . , Yj}.

The probability of Z conjoined with the evidence is

p(Z, Y1 = v1, . . . , Yj = vj) = ∑
Zk

· · ·∑
Z1

P(X1, . . . , Xn)Y1 = v1,...,Yj = vj .

The order that the variables Zi are summed out is an elimination ordering.
Note how this is related to the possible worlds semantics of probabil-

ity (page 221). There is a possible world for each assignment of a value to
each variable. The joint probability distribution, P(X1, . . . , Xn), gives the

6.4. Probabilistic Inference 253

probability (or measure) for each possible world. The VE algorithm thus selects
the worlds with the observed values for the Yi’s and sums over the possible
worlds with the same value for Z. This corresponds to the definition of condi-
tional probability (page 225). However, VE does this more efficiently than by
summing over all of the worlds.

By the rule for conjunction of probabilities and the definition of a belief
network,

P(X1, . . . , Xn) = P(X1|parents(X1))× · · · × P(Xn|parents(Xn)),

where parents(Xi) is the set of parents of variable Xi.
We have now reduced the belief network inference problem to a problem of

summing out a set of variables from a product of factors. To solve this problem
efficiently, we use the distribution law learned in high school: to compute a
sum of products such as xy + xz efficiently, distribute out the common factors
(here x), which results in x(y + z). This is the essence of the VE algorithm. We
call the elements multiplied together “factors” because of the use of the term in
algebra. Initially, the factors represent the conditional probability distributions,
but the intermediate factors are just functions on variables that are created by
adding and multiplying factors.

To compute the posterior distribution of a query variable given observa-
tions:

1. Construct a factor for each conditional probability distribution.

2. Eliminate each of the non-query variables:

• if the variable is observed, its value is set to the observed value in each
of the factors in which the variable appears,

• otherwise the variable is summed out.

3. Multiply the remaining factors and normalize.

To sum out a variable Z from a product f1, . . . , fk of factors, first partition the
factors into those that do not contain Z, say f1, . . . , fi, and those that contain Z,
fi+1, . . . , fk; then distribute the common factors out of the sum:

∑
Z

f1 × · · · × fk = f1 × · · · × fi ×
(

∑
Z

fi+1 × · · · × fk

)
.

VE explicitly constructs a representation (in terms of a multidimensional array,
a tree, or a set of rules) of the rightmost factor.

Figure 6.8 (on the next page) gives pseudocode for the VE algorithm. The
elimination ordering can be given a priori or can be computed on the fly. It is
worthwhile to select observed variables first in the elimination ordering, be-
cause eliminating these simplifies the problem.

This assumes that the query variable is not observed. If it is observed to
have a particular value, its posterior probability is just 1 for the observed value
and 0 for the other values.

254 6. Reasoning Under Uncertainty

1: procedure VE BN(Vs, Ps, O, Q)
2: Inputs
3: Vs: set of variables
4: Ps: set of factors representing the conditional probabilities
5: O: set of observations of values on some of the variables
6: Q: a query variable

7: Output
8: posterior distribution on Q
9: Local

10: Fs: a set of factors
11: Fs← Ps
12: for each X ∈ Vs− {Q} using some elimination ordering do
13: if X is observed then
14: for each F ∈ Fs that involves X do
15: set X in F to its observed value in O
16: project F onto remaining variables

17: else
18: Rs := {F ∈ Fs : F involves X}
19: let T be the product of the factors in Rs
20: N := ∑X T
21: Fs := Fs \ Rs∪ {N}
22: let T be the product of the factors in Rs
23: N := ∑Q T
24: return T/N

Figure 6.8: Variable elimination for belief networks

Example 6.20 Consider Example 6.10 (page 236) with the query

P(Tampering|Smoke = true∧ Report = true).

After eliminating the observed variables, Smoke and Report, the following fac-
tors remain:

ConditionalProbability Factor
P(Tampering) f0(Tampering)
P(Fire) f1(Fire)
P(Alarm|Tampering, Fire) f2(Tampering, Fire, Alarm)
P(Smoke = yes|Fire) f3(Fire)
P(Leaving|Alarm) f4(Alarm, Leaving)
P(Report = yes|Leaving) f5(Leaving)

The algorithm ignores the conditional probability reading and just works with
the factors. The intermediate factors do not always represent a conditional
probability.

6.4. Probabilistic Inference 255

Suppose Fire is selected next in the elimination ordering. To eliminate Fire,
collect all of the factors containing Fire – f1(Fire), f2(Tampering, Fire, Alarm), and
f3(Fire) – multiply them together, and sum out Fire from the resulting factor.
Call this factor F6(Tampering, Alarm). At this stage, the following factors remain:

f0(Tampering),
f4(Alarm, Leaving),
f5(Leaving),
f6(Tampering, Alarm).

Suppose Alarm is eliminated next. VE multiplies the factors containing Alarm
and sums out Alarm from the product, giving a factor, call it f7:

f7(Tampering, Leaving) = ∑
Alarm

f4(Alarm, Leaving)× f6(Tampering, Alarm)

It then has the following factors:

f0(Tampering),
f5(Leaving),
f7(Tampering, Leaving).

Eliminating Leaving results in the factor

f8(Tampering) = ∑
Leaving

f5(Leaving)× f7(Tampering, Leaving).

To determine the distribution over Tampering, multiply the remaining factors,
giving

f9(Tampering) = f0(Tampering)× f8(Tampering).

The posterior distribution over tampering is given by

f9(Tampering)
∑Tampering f9(Tampering)

.

Note that the denominator is the prior probability of the evidence.

Example 6.21 Consider the same network as in the previous example but
with the following query:

P(Alarm|Fire=true).

When Fire is eliminated, the factor P(Fire) becomes a factor of no variables; it is
just a number, P(Fire = true).

Suppose Report is eliminated next. It is in one factor, which represents
P(Report|Leaving). Summing over all of the values of Report gives a factor on
Leaving, all of whose values are 1. This is because P(Report=true|Leaving =
v) + P(Report = false|Leaving = v) = 1 for any value v of Leaving.

256 6. Reasoning Under Uncertainty

Similarly, if you eliminate Leaving next, you multiply a factor that is all 1 by
a factor representing P(Leaving|Alarm) and sum out Leaving. This, again, results
in a factor all of whose values are 1.

Similarly, eliminating Smoke results in a factor of no variables, whose value
is 1. Note that even if smoke had been observed, eliminating smoke would re-
sult in a factor of no variables, which would not affect the posterior distribution
on Alarm.

Eventually, there is only the factor on Alarm that represents its prior proba-
bility and a constant factor that will cancel in the normalization.

The complexity of the algorithm depends on a measure of complexity of
the network. The size of a tabular representation of a factor is exponential
in the number of variables in the factor. The treewidth of a network, given
an elimination ordering, is the maximum number of variables in a factor cre-
ated by summing out a variable, given the elimination ordering. The treewidth
of a belief network is the minimum treewidth over all elimination orderings.
The treewidth depends only on the graph structure and is a measure of the
sparseness of the graph. The complexity of VE is exponential in the treewidth
and linear in the number of variables. Finding the elimination ordering with
minimum treewidth is NP-hard, but there is some good elimination ordering
heuristics, as discussed for CSP VE (page 130).

There are two main ways to speed up this algorithm. Irrelevant variables
can be pruned, given the observations and the query. Alternatively, it is possi-
ble to compile the graph into a secondary structure that allows for caching of
values.

6.4.2 Approximate Inference Through Stochastic Simulation

Many problems are too big for exact inference, and one must resort to approx-
imate inference. One of the most effective methods is based on generating ran-
dom samples from the (posterior) distribution that the network specifies.

Stochastic simulation is based on the idea that a set of samples can be
used to compute probabilities. For example, you could interpret the probability
P(a) = 0.14 as meaning that, out of 1,000 samples, about 140 will have a true.
You can go from (enough) samples into probabilities and from probabilities
into samples.

We consider three problems:

• how to generate samples,

• how to incorporate observations, and

• how to infer probabilities from samples.

We examine three methods that use sampling to compute the posterior dis-
tribution of a variable: (1) rejection sampling, (2) importance sampling, and
(3) particle filtering.

6.4. Probabilistic Inference 257

0

1

v1 v2 v3 v4 v1 v2 v3 v4

P(X)

f(X)

0

1

Figure 6.9: A cumulative probability distribution

Sampling from a Single Variable

To generate samples from a single discrete or real-valued variable, X, first to-
tally order the values in the domain of X. For discrete variables, if there is
no natural order, you can just create an arbitrary ordering. Given this order-
ing, the cumulative probability distribution is a function of x, defined by
f (x) = P(X ≤ x).

To generate a random sample for X, select a random number y in the range
[0, 1]. We select y from a uniform distribution to ensure that each number be-
tween 0 and 1 has the same chance of being chosen. Let v be the value of X that
maps to y in the cumulative probability distribution. That is, v is the element
of dom(X) such that f (v) = y or, equivalently, v = f−1(y). Then, X = v is a
random sample of X, chosen according to the distribution of X.

Example 6.22 Consider a random variable X with domain {v1, v2, v3, v4}.
Suppose P(X=v1) = 0.3, P(X=v2) = 0.4, P(X=v3) = 0.1, and P(X=v4) = 0.2.
First, totally order the values, say v1 < v2 < v3 < v4. Figure 6.9 shows P(X),
the distribution for X, and f (X), the cumulative distribution for X. Consider
value v1; 0.3 of the range of f maps back to v1. Thus, if a sample is uniformly se-
lected from the Y-axis, v1 has a 0.3 chance of being selected, v2 has a 0.4 chance
of being selected, and so forth.

Forward Sampling in Belief Networks

Forward sampling is a way to generate a sample of every variable of a be-
lief network so that each sample is generated in proportion to it probability.
Suppose X1, . . . , Xn is a total ordering of the variables so that the parents of a
variable come before the variable in the total order. Forward sampling draws a
sample of all of the variables by drawing a sample of each variable X1, . . . , Xn

in order. First, it samples X1 using the aforementioned method. For each of the
other variables, due to the total ordering of variables, when it comes time to

258 6. Reasoning Under Uncertainty

Sample Tampering Fire Alarm Smoke Leaving Report
s1 false true true true false false
s2 false false false false false false
s3 false true true true true true
s4 false false false false false true
s5 false false false false false false
s6 false false false false false false
s7 true false false true true true
s8 true false false false false true
. . .
s1000 true false true true false false

Figure 6.10: Sampling for a belief network

sample Xi, it already has values for all of Xi’s parents. It now samples a value
for Xi from the distribution of Xi given the values already assigned to the par-
ents of Xi. Repeating this for every variable generates a sample containing val-
ues for all of the variables. The probability of selecting a particular assignment
to all of the variables will be the probability of the assignment.

Example 6.23 Let us create a set of samples for the belief network of Figure
6.1 (page 237). Suppose the variables are ordered as follows: Tampering, Fire,
Alarm, Smoke, Leaving, Report. First the algorithm samples Tampering, using the
inverse of the cumulative distribution. Suppose it selects Tampering = false.
Then it samples Fire using the same method. Suppose it selects Fire = true. Then
it must select a value for Alarm, using the distribution P(Alarm|Tampering =
false, Fire = true). Suppose it selects Alarm = true. Next, it selects a value for
Smoke using P(Smoke|Fire = true). Then it selects a value for Leaving using the
distribution for P(Leaving|Alarm = true). Suppose it selects Leaving = false.
Then it selects a value for Report, using the distribution P(Report|Leaving =
false). It has thus selected a value for each variable and created the first sample
of Figure 6.10. Notice that it has selected a very unlikely combination of values.
This does not happen very often; it happens in proportion to how likely the
sample is. It can then repeat this until it has enough samples. In Figure 6.10, it
generated 1,000 samples.

From Samples to Probabilities

Probabilities can be estimated from a set of examples using the sample average.
The sample average of a proposition α is the number of samples where α is
true divided by the total number of samples. The sample average approaches
the true probability as the number of samples approaches infinity by the law
of large numbers.

6.4. Probabilistic Inference 259

Hoeffding’s inequality provides an estimate of the error of an uncondi-
tional probability given n samples:

Proposition 6.6 (Hoeffding). Suppose p is the true probability, and s is the sample
average from n independent samples; then

P(|s− p| > ε) ≤ 2e−2nε2
.

This theorem can be used to determine how many samples are required
to guarantee a probably approximately correct estimate of the probability. To
guarantee that the error is less than some ε < 0.5, infinitely many samples are
required. However, if you are willing to have an error greater than ε in δ of the
cases, you can solve 2e−2nε2

< δ for n, which gives

n >
− ln δ

2
2ε2 .

For example, suppose you want an error less than 0.1, nineteen times out of
twenty; that is, you are only willing to tolerate an error bigger than 0.1, in 5%
of the cases. You can use Hoeffding’s bound by setting ε to 0.1 and δ = 0.05,
which gives n > 184. Thus, you can guarantee such bounds on the error with
185 samples. If you want an error of less than 0.01 in at least 95% of the cases,
18,445 samples can be used. If you want an error of less than 0.1 in 99% of the
cases, 265 samples can be used.

Rejection Sampling

Given some evidence e, rejection sampling estimates P(h|e) using the formula

P(h|e) =
P(h∧ e)

P(e)
.

This can be computed by considering only the samples where e is true and by
determining the proportion of these in which h is true. The idea of rejection
sampling is that samples are generated as before, but any sample where e is
false is rejected. The proportion of the remaining, non-rejected, samples where
h is true is an estimate of P(h|e). If the evidence is a conjunction of assignments
of values to variables, a sample can be rejected when any of the variables as-
signed in the sample are different from the observed value.

The error in the probability of h depends on the number of samples that
are not rejected. The number of samples that are not rejected is proportional to
P(e). Thus, in Hoeffding’s inequality, n is the number of non-rejected samples.
Therefore, the error depends on P(e).

Rejection sampling does not work well when the evidence is unlikely. This
may not seem like that much of a problem because, by definition, unlikely

260 6. Reasoning Under Uncertainty

Sample Tampering Fire Alarm Smoke Leaving Report
s1 false true true true ✘

s2 false false false false false false ✘

s3 false true true true ✘

s4 false false false false false true ✔

s5 false false false false false false ✘

s6 false false false false false false ✘

s7 true false false true ✘

s8 true false false false false true ✔

. . .
s1000 true false true true ✘

Figure 6.11: Rejection sampling for P(tampering|¬smoke∧ report)

evidence is unlikely to occur. But, although this may be true for simple models,
for complicated models with complex observations, every possible observation
may be unlikely. Also, for many applications, such as in diagnosis, the user is
interested in determining the probabilities because unusual observations are
involved.

Example 6.24 Figure 6.11 shows how rejection sampling can be used to esti-
mate P(tampering|¬smoke ∧ report). Any sample with Smoke = true is rejected.
The sample can be rejected without considering any more variables. Any sam-
ple with Report = false is rejected. The sample average from the remaining
samples (those marked with ✔) is used to estimate the posterior probability
of tampering.

Because P(¬smoke ∧ report) = 0.0213, we would expect about 21 samples
out of the 1,000 to not be rejected. Thus, 21 can be used as n in Hoeffding’s in-
equality, which, for example, guarantees an error for any probability computed
from these samples of less than 0.2 in about 63% of the cases.

Importance Sampling

Instead of creating a sample and then rejecting it, it is possible to mix sampling
with inference to reason about the probability that a sample would be rejected.
In importance sampling, each sample has a weight, and the sample average
is computed using the weighted average of samples. The weights of samples
come from two sources:

• The samples do not have to be selected in proportion to their probability,
but they can be selected according to some other distribution, called the pro-
posal distribution.

• Evidence is used to update the weights and is used to compute the proba-
bility that a sample would be rejected.

6.4. Probabilistic Inference 261

Example 6.25 Consider variable A with no parents; variable E has A as its
only parent, but A has other children. Suppose P(e|a) = 0.003, P(e|¬a) = 0.63,
and e is observed. Consider the samples with A = true. Out of 1,000 such sam-
ples, only about 3 will not be rejected. Instead of rejecting 99.7% of the samples
with A = true, each sample with A = true can be weighted by 0.003. Thus, just
one sample is able to convey the information of many rejections.

Suppose P(a) = 0.98. If the algorithm samples according to the probabil-
ity, A = false would only be true in about 20 samples out of 1,000. Instead of
sampling according to the probability, suppose A = true is sampled 50% of the
time, but each sample is weighted as follows. Each sample with A = true can be
weighted by 0.98/0.5 = 1.96 and each sample with A = false can be weighted
by 0.02/0.5 = 0.04. It is easy to show that the weighted sample average is the
same as the probability.

In rejection sampling, given the preceding probabilities and the observation
of e, A will be true in 98% of the samples and 99.7% of these will be rejected
due to the evidence of e. A = false would be selected in 2% of the samples
and 37% of these will be rejected. Rejection sampling would thus accept only
0.98× 0.003 + 0.02× 0.63 = 0.01554 of the samples and would reject more than
98% of the samples.

If you combine the ideas in the first two paragraphs of this example, half of
the examples will have A = true, and these will be weighted by 1.96× 0.003 =
0.00588, and the other half of the samples will have A = false with a weighting
of 0.04× 0.63 = 0.0252. Even two such samples convey the information of many
rejected samples.

Importance sampling differs from rejection sampling in two ways:

• Importance sampling does not sample all variables, only some of them. The
variables that are not sampled and are not observed are summed out (i.e,
some exact inference is carried out).

In particular, you probably do not want it to sample the observed vari-
ables (although the algorithm does not preclude this). If all of the non-
observed variables are sampled, it is easy to determine the probability of
a sample given the evidence [see Exercise 6.10 (page 278)].

• Importance sampling does not have to sample the variables according to
their prior probability; it can sample them using any distribution. The dis-
tribution that it uses to sample the variables is called the proposal distribu-
tion. Any distribution can be used as a proposal distribution as long as the
proposal distribution does not have a zero probability for choosing some
sample that is possible in the model (otherwise this part of the space will
never be explored). Choosing a good proposal distribution is non-trivial.

In general, to sum over variables S from a product f (S)q(S), you can choose
a set of samples {s1, . . . , sN} from the distribution q(s). Then

∑
S

f (S)q(S) = lim
N→∞

(
1
N ∑

si

f (si)

)
, (6.1)

262 6. Reasoning Under Uncertainty

which essentially computes the expected value (page 230) of f (S), where the
expectation is over the distribution q(S).

In forward sampling, q(s) is the uniform sample, but Equation (6.1) works
for any distribution.

In importance sampling, let S be the set of variables that will be sampled.
As in VE, we introduce some variables and sum them out; in this case, we sum
over the sampled variables:

P(h|e) = ∑
S

P(h|S, e)P(S|e).

Multiplying the top and the bottom by proposal distribution q(S) gives

P(h|e) = ∑
S

P(h|S, e)P(S|e)q(S)
q(S)

.

Note that this does not give a divide-by-zero error; if q(s) = 0, s would never
be chosen as a sample.

Using Equation (6.1), suppose {s1, . . . , sN} is the set of all samples:

P(h|e) = lim
N→∞

∑
si

P(h|si, e)P(si|e)
q(si)

.

Using Bayes’ rule on P(si|e), and noting that P(e) is a constant, gives

P(h|e) = lim
n→∞

1
k ∑

si

P(h|si, e)P(e|si)P(si)
q(si)

,

where k is a normalizing constant that ensures that the posterior probabili-
ties of the values for a mutually exclusive and covering set of hypotheses sum
to 1.

Thus, for each sample, the weighting P(si)/q(si) acts like a prior that is mul-
tiplied by the probability of the evidence, given the sample, to get the weight
of the sample. Given many samples, the preceding formula shows how to pre-
dict the posterior on any h by getting the weighted average prediction of each
sample.

Note how importance sampling generalizes rejection sampling. Rejection
sampling is the case with q(si) = P(si) and S includes all of the variables, in-
cluding the observed variables.

Figure 6.12 shows the details of the importance sampling algorithm for
computing P(Q|e) for query variable Q and evidence e. The first for loop (line
18) creates the sample s on S. The variable p (on line 21) is the weight of sample
s. The algorithm updates the weight of each value of the query variable and
adds the probability of the sample s to the variable mass, which represents the
probability mass – the sum of probabilities for all of the values for the query
variable. Finally, it returns the probability by dividing the weight of each value
of the query variable by the probability mass.

6.4. Probabilistic Inference 263

1: procedure IS BN(Vs, P, e, Q, S, q, n)
2: Inputs
3: Vs: set of variables
4: P: a procedure to compute conditional probabilities
5: e: the evidence; an assignment of a value to some of the variables
6: Q: a query variable
7: S = {S1, . . . , Sk}: a set of variables to sample
8: q: a distribution on S (the proposal distribution)
9: n: number of samples to generate

10: Output
11: posterior distribution on Q
12: Local
13: array v[k], where v[i] ∈ dom(Si)
14: real array ans[m] where m is the size of dom(Q)
15: s assignment of a value to each element of S

16: mass := 0
17: repeat n times
18: for i = 1 : k do
19: select vi ∈ dom(Si) using distribution q(Si=vi|S0=v0, . . . ,

Si−1=vi−1)
20: s := assignment S0=v0, . . . , Sk=vk
21: p := P(e|s)× P(s)/q(s)
22: for each vi ∈ dom(Q) do
23: ans[i] := ans[i] + P(Q = vi|s∧ e)× p

24: mass := mass + p

25: return ans[]/mass

Figure 6.12: Importance sampling for belief network inference

Example 6.26 Suppose we want to use importance sampling to compute
P(alarm|smoke∧ report). We must choose which variables to sample and the pro-
posal distribution. Suppose we sample Tampering, Fire, and Leaving, and we use
the following proposal distribution:

q(tampering) = 0.02
q(fire) = 0.5
q(Alarm|Tampering, Alarm) = P(Alarm|Tampering, Alarm)
q(Leaving|Alarm) = P(Leaving|Alarm)

Thus, the proposal distribution is the same as the original distribution, except
for Fire.

The following table gives a few samples. In this table, s is the sample;
e is smoke ∧ report; P(e|s) is equal to P(smoke|Fire) × P(report|Leaving), where
the value for Fire and Leaving are from the sample; P(s)/q(s) is 0.02 when

264 6. Reasoning Under Uncertainty

Fire = true in the sample and is 1.98 when Fire = false; p = P(e|s)× P(s)/q(s) is
the weight of the sample.

Tampering Fire Alarm Leaving P(e|s) P(s)/q(s) p
false true false true 0.675 0.02 0.0135
true true true false 0.009 0.02 0.00018
false false false true 0.0075 1.98 0.01485
false true false false 0.009 0.02 0.00018

P(alarm|smoke ∧ report) is the weighted proportion of the samples that have
Alarm true.

The efficiency of this algorithm, in terms of how accuracy depends on the run
time, depends on

• the proposal distribution. To get the best result, the proposal distribution
should be as close as possible to the posterior distribution. However, an
agent typically cannot sample directly from the posterior distribution; if it
could, it could produce posterior probabilities much more simply.

• which variables to sample. Sampling fewer variables means that there is
more information from each sample, but each sample requires more time
to compute the probability of the sample.

Determining the proposal distribution and which variables to sample is an art.

Particle Filtering

Importance sampling enumerates the samples one at a time and, for each sam-
ple, assigns a value to each variable. It is also possible to start with all of the
samples and, for each variable, generate a value for that variable for each of
the samples. For example, for the data of Figure 6.10 (page 258), the same data
could be generated by generating all of the values for Tampering before gen-
erating the values for Fire. The particle filtering algorithm generates all the
samples for one variable before moving to the next variable. It does one sweep
through the variables, and for each variable it does a sweep through all of the
samples. This algorithm has an advantage when variables are generated dy-
namically and there can be unboundedly many variables. It also allows for a
new operation of resampling.

Given a set of samples on some of the variables, resampling consists of
taking n samples, each with their own weighting, and generating a new set
of n samples, each with the same weight. Resampling can be implemented in
the same way that random samples for a single random variable are generated
(page 257), but samples, rather than values, are selected. Some of the samples
are selected multiple times and some are not selected.

A particle consists of an assignment of a value to a set of variables and
an associated weight. The probability of a proposition, given some evidence,
is proportional to the weighted proportion of the weights of the particles in
which the proposition is true. A set of particles is a population.

6.4. Probabilistic Inference 265

Particle filtering is a sampling method that starts with a population of par-
ticles, each of which assigns a value to no variables, and has a weight of 1. At
each step it can

• select a variable that has not been sampled or summed out and is not ob-
served. For each particle, it samples the variable according to some pro-
posal distribution. The weight of the particle is updated as in importance
sampling.

• select a piece of evidence to absorb. This evidence should not have been
absorbed before. The weight of the particle is multiplied by the probability of
the evidence given the values of the particle (and summing out any variables
that are relevant and have not been sampled).

• resample the population. Resampling constructs a new population of parti-
cles, each with the same weight, by selecting particles from the population,
where each particle is chosen with probability proportional to the weight of
the particle. Some particles may be forgotten and some may be duplicated.

Importance sampling can be seen as being equivalent to particle filtering
without resampling, but the principal difference is the order in which the par-
ticles are generated. In particle filtering, each variable is sampled for all par-
ticles, whereas, in importance sampling, each particle (sample) is sampled for
all variables before the next particle is considered.

Particle filtering has two main advantages over importance sampling. First,
it can be used for an unbounded number of variables (which we will see later).
Second, the particles better cover the hypothesis space. Whereas importance
sampling will involve some particles that have very low probability, with only
a few of the particles covering most of the probability mass, resampling lets
many particles more uniformly cover the probability mass.

Example 6.27 Consider using particle filtering to compute P(Report|smoke)
for the belief network of Figure 6.1 (page 237). First generate the particles
s1, . . . , s1000. For this example, we use the conditional probability of the vari-
able being sampled given particle as the proposal distribution. Suppose it first
samples Fire. Out of the 1,000 particles, about 10 will have Fire = true and
about 990 will have Fire = false (as P(fire) = 0.01). It can then absorb the ev-
idence Smoke = true. Those particles with Fire = true will be weighted by 0.9
[as P(smoke|fire) = 0.9] and those particles with Fire = false will be weighted
by 0.01 [as P(smoke|¬fire) = 0.01]. It can then resample; each particle can be
chosen in proportion to its weight. The particles with Fire = true will be chosen
in the ratio 990× 0.01 : 10× 0.9. Thus, about 524 particles will be chosen with
Fire = true, and the remainder with Fire = false. The other variables can be
sampled, in turn, until Report is sampled.

Note that in particle filtering the particles are not independent, so Hoeffding’s
inequality (page 259), is not directly applicable.

266 6. Reasoning Under Uncertainty

S0 S1 S2 S3 S4

Figure 6.13: A Markov chain as a belief network

6.5 Probability and Time

We can model a dynamic system as a belief network by treating a feature at a
particular time as a random variable. We first give a model in terms of states
and then show how it can be extended to features.

6.5.1 Markov Chains

A Markov chain is a special sort of belief network used to represent sequences
of values, such as the sequence of states in a dynamic system or the sequence
of words in a sentence.

Figure 6.13 shows a generic Markov chain as a belief network. The network
does not have to stop at stage s4, but it can be extended indefinitely. The belief
network conveys the independence assumption

P(St+1|S0, . . . , St) = P(St+1|St),

which is called the Markov assumption.
Often, St represents the state at time t. Intuitively, St conveys all of the in-

formation about the history that can affect the future states. At St, you can see
that “the future is conditionally independent of the past given the present.”

A Markov chain is stationary if the transition probabilities are the same for
each time point [i.e., for all t > 0, t′ > 0, P(St+1|St) = P(St′+1|St′)]. To specify a
stationary Markov chain, two conditional probabilities must be specified:

• P(S0) specifies initial conditions.
• P(St+1|St) specifies the dynamics, which is the same for each t ≥ 0.

Stationary Markov chains are of interest because

• They provide a simple model that is easy to specify.
• The assumption of stationarity is often the natural model, because the dy-

namics of the world typically does not change in time. If the dynamics does
change in time, it is usually because some other feature exists that could also
be modeled.

• The network can extend indefinitely. Specifying a small number of parame-
ters can give an infinite network. You can ask queries or make observations
about any arbitrary points in the future or the past.

To determine the probability distribution of state Si, VE can be used to sum
out the preceding variables. Note that the variables after Si are irrelevant to
the probability of Si and need not be considered. This computation is nor-
mally specified as matrix multiplication, but note that matrix multiplication

6.5. Probability and Time 267

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

Figure 6.14: A hidden Markov model as a belief network

is a simple form of VE. Similarly, to compute P(Si|Sk), where k > i, only the
variables before Sk need to be considered.

6.5.2 Hidden Markov Models

A hidden Markov model (HMM) is an augmentation of the Markov chain
to include observations. Just like the state transition of the Markov chain, an
HMM also includes observations of the state. These observations can be partial
in that different states can map to the same observation and noisy in that the
same state can stochastically map to different observations at different times.

The assumptions behind an HMM are that the state at time t + 1 only de-
pends on the state at time t, as in the Markov chain. The observation at time
t only depends on the state at time t. The observations are modeled using the
variable Ot for each time t whose domain is the set of possible observations.
The belief network representation of an HMM is depicted in Figure 6.14. Al-
though the belief network is shown for four stages, it can proceed indefinitely.

A stationary HMM includes the following probability distributions:

• P(S0) specifies initial conditions.
• P(St+1|St) specifies the dynamics.
• P(Ot|St) specifies the sensor model.

There are a number of tasks that are common for HMMs.
The problem of filtering or belief-state monitoring is to determine the cur-

rent state based on the current and previous observations, namely to determine

P(Si|O0, . . . , Oi).

Note that all state and observation variables after Si are irrelevant because they
are not observed and can be ignored when this conditional distribution is com-
puted.

The problem of smoothing is to determine a state based on past and fu-
ture observations. Suppose an agent has observed up to time k and wants to
determine the state at time i for i < k; the smoothing problem is to determine

P(Si|O0, . . . , Ok).

All of the variables Si and Vi for i > k can be ignored.

268 6. Reasoning Under Uncertainty

Loc0 Loc1 Loc2 Loc3 Loc4

Obs0 Obs1 Obs2 Obs3 Obs4

Act0 Act1 Act2 Act3

Figure 6.15: A belief network for localization

Localization

Suppose a robot wants to determine its location based on its history of actions
and it sensor readings. This is the problem of localization. Figure 6.15 shows
a belief-network representation of the localization problem. There is a variable
Loci for each time i, which represents the robot’s location at time i. There is a
variable Obsi for each time i, which represents the robot’s observation made
at time i. For each time i, there is a variable Acti that represents the robot’s
action at time i. In this section, assume that the robot’s actions are observed
(we consider the case in which the robot chooses its actions in Chapter 9).

This model assumes the following dynamics: At time i, the robot is at lo-
cation Loci, it observes Obsi, then it acts, it observes its action Acti, and time
progresses to time i + 1, where it is at location Loci+1. Its observation at time
t only depends on the state at time t. The robot’s location at time t + 1 de-
pends on its location at time t and its action at time t. Its location at time t + 1
is conditionally independent of previous locations, previous observations, and
previous actions, given its location at time t and its action at time t.

The localization problem is to determine the robot’s location as a function
of its observation history:

P(Loct|Obs0, Act0, Obs1, Act1, . . . , Actt−1, Obst).

Example 6.28 Consider the domain depicted in Figure 6.16. There is a circu-
lar corridor, with 16 locations numbered 0 to 15. The robot is at one of these
locations at each time. This is modeled with, for every time i, a variable Loci
with domain {0, 1, . . . , 15}.
• There are doors at positions 2, 4, 7, and 11 and no doors at other locations.
• The robot has a sensor that can noisily sense whether or not it is in front of

a door. This is modeled with a variable Obsi for each time i, with domain
{door, nodoor}. Assume the following conditional probabilities:

P(Obs=door | atDoor) = 0.8
P(Obs=door | notAtDoor) = 0.1

where atDoor is true at states 2, 4, 7, and 11 and notAtDoor is true at the
other states.

6.5. Probability and Time 269

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.16: Localization domain

Thus, the observation is partial in that many states give the same ob-
servation and it is noisy in the following way: In 20% of the cases in which
the robot is at a door, the sensor falsely gives a negative reading. In 10%
of the cases where the robot is not at a door, the sensor records that there
is a door.

• The robot can, at each time, move left, move right, or stay still. Assume
that the stay still action is deterministic, but the dynamics of the moving
actions are stochastic. Just because it carries out the goRight action does
not mean that it actually goes one step to the right – it is possible that it
stays still, goes two steps right, or even ends up at some arbitrary location
(e.g., if someone picks up the robot and moves it). Assume the following
dynamics, for each location L:

P(Loct+1=L|Actt=goRight∧ Loct=L) = 0.1
P(Loct+1=L + 1|Actt=goRight∧ Loct=L) = 0.8
P(Loct+1=L + 2|Actt=goRight∧ Loct=L) = 0.074
P(Loct+1=L′|Actt=goRight∧ Loct=L) = 0.002 for any other location L′.

All location arithmetic is modulo 16. The action goLeft works the same but
to the left.

The robot starts at an unknown location and must determine its location.
It may seem as though the domain is too ambiguous, the sensors are too

noisy, and the dynamics is too stochastic to do anything. However, it is possible
to compute the probability of the robot’s current location given its history of
actions and observations.

Figure 6.17 (on the next page) gives the robot’s probability distribution over
its locations, assuming it starts with no knowledge of where it is and experi-
ences the following observations: observe door, go right, observe no door, go
right, and then observe door. Location 4 is the most likely current location, with
posterior probability of 0.42. That is, in terms of the network of Figure 6.15:

P(Loc2 = 4 | Obs0 = door, Act0 = goRight, Obs1 = nodoor,
Act1 = goRight, Obs2 = door) = 0.42

Location 7 is the second most likely current location, with posterior proba-
bility of 0.141. Locations 0, 1, 3, 8, 12, and 15 are the least likely current locations,
with posterior probability of 0.011.

You can see how well this works for other sequences of observations by
using the applet at the book web site.

270 6. Reasoning Under Uncertainty

1 2 3 5 6 7 8 9 10 11 12 13 14 1540

0.011 0.011 0.08 0.011 0.42 0.015 0.054 0.141 0.011 0.053 0.018 0.082 0.011 0.053 0.018 0.011

Figure 6.17: A distribution over locations. The locations are numbered from 0 to
15. The number at the bottom gives the posterior probability that the robot is
at the location after the particular sequence of actions and observations given in
Example 6.28 (page 268). The height of the bar is proportional to the posterior
probability.

Example 6.29 Let us augment Example 6.28 (page 268) with another sensor.
Suppose that, in addition to a door sensor, there is also a light sensor. The light
sensor and the door sensor are conditionally independent given the state. Sup-
pose the light sensor is not very informative; it can only give yes-or-no infor-
mation about whether it can detect any light, and that this is very noisy, and
depends on the location.

This is modeled in Figure 6.18 using the following variables:

• Loct is the robot’s location at time t.

• Actt is the robot’s action at time t.

• Dt is the door sensor value at time t.

• Lt is the light sensor value at time t.

Conditioning on both Li and Di lets it combine information from the light sen-
sor and the door sensor. This is an instance of sensor fusion. It is not neces-
sary to define any new mechanisms for sensor fusion given the belief-network
model; standard probabilistic inference combines the information from both
sensors.

Loc0 Loc1 Loc2 Loc3 Loc4

D0 D1 D2 D3 D4

Act0 Act1 Act2 Act3

L0 L1 L2 L3 L4

Figure 6.18: Localization with multiple sensors

6.5. Probability and Time 271

6.5.3 Algorithms for Monitoring and Smoothing

You can use any standard belief-network algorithms, such as VE or particle
filtering, to carry out monitoring or smoothing. However, you can take advan-
tage of the fact that time moves forward and that you are getting observations
in time and are interested in the state at the current time.

In belief monitoring or filtering, an agent computes the probability of the
current state given the history of observations. In terms of the HMM of Figure
6.14 (page 267), for each i, the agent wants to compute P(Si|o0, . . . , oi), which
is the distribution over the state at time i given the particular observation of
o0, . . . , oi. This can easily be done using VE:

P(Si|o0, . . . , oi) ∝ P(Si, o0, . . . , oi)
= P(oi|Si)P(Si, o0, . . . , oi−1)
= P(oi|Si) ∑

Si−1

P(Si, Si−1, o0, . . . , oi−1)

= P(oi|Si) ∑
Si−1

P(Si|Si−1)P(Si−1, o0, . . . , oi−1)

∝ P(oi|Si) ∑
Si−1

P(Si|Si−1)P(Si−1|o0, . . . , oi−1). (6.2)

Suppose the agent has computed the previous belief based on the obser-
vations received up until time i − 1. That is, it has a factor representing
P(Si−1|o0, . . . , oi−1). Note that this is just a factor on Si−1. To compute the next
belief, it multiplies this by P(Si|Si−1), sums out Si−1, multiplies this by the fac-
tor P(oi|Si), and normalizes.

Multiplying a factor on Si−1 by the factor P(Si|Si−1) and summing out Si−1
is matrix multiplication. Multiplying the result by P(oi|Si) is called the dot
product. Matrix multiplication and dot product are simple instances of VE.

Example 6.30 Consider the domain of Example 6.28 (page 268). An obser-
vation of a door involves multiplying the probability of each location L by
P(door|Loc = L) and renormalizing. A move right involves, for each state, do-
ing a forward simulation of the move-right action in that state weighted by the
probability of being in that state.

For many problems the state space is too big for exact inference. For these
domains, particle filtering (page 264) is often very effective. With temporal
models, resampling typically occurs at every time step. Once the evidence has
been observed, and the posterior probabilities of the samples have been com-
puted, they can be resampled.

Smoothing is the problem of computing the probability distribution of a
state variable in an HMM given past and future observations. The use of future
observations can make for more accurate predictions. Given a new observation
it is possible to update all previous state estimates with one sweep through the
states using VE; see Exercise 6.11 (page 279).

272 6. Reasoning Under Uncertainty

6.5.4 Dynamic Belief Networks

You do not have to represent the state at a particular time as a single variable.
It is often more natural to represent the state in terms of features (page 112).

A dynamic belief network (DBN) is a belief network with regular re-
peated structure. It is like a (hidden) Markov model, but the states and the
observations are represented in terms of features. Assume that time is discrete
(page 46). If F is a feature, we write Ft as the random variable that represented
the value of variable F at time t. A dynamic belief network makes the following
assumptions:

• The set of features is the same at each time.

• For any time t > 0, the parents of variable Ft are variables at time t or time
t − 1, such that the graph for any time is acyclic. The structure does not
depend on the value of t (except t = 0 is a special case).

• The conditional probability distribution of how each variable depends on its
parents is the same for every time t > 0.

Thus, a dynamic belief network specifies a belief network for time t = 0, and
for each variable Ft specifies P(Ft|parents(Ft)), where the parents of Ft are in
the same or previous time step. This is specified for t as a free parameter; the
conditional probabilities can be used for any time t > 0. As in a belief network,
directed cycles are not allowed.

The model for a dynamic belief network can be represented as a two-step
belief network that represents the variables at the first two times (times 0 and
1). That is, for each feature F there are two variables, F0 and F1; parents(F0) only
include variables for time 0, and parents(F1) can be variables at time 0 or 1,
as long as the resulting graph is acyclic. Associated with the network are the
probabilities P(F0|parents(F0)) and P(F1|parents(F1)). Because of the repeated
structure, P(Fi|parents(Fi)), for i > 1, has exactly the same structure and the
same conditional probability values as P(F1|parents(F1)).

Example 6.31 Suppose the trading agent (page 37) wants to model the dy-
namics of the price of a commodity such as printer paper. To represent this
domain, the designer models what variables affect the price and the other vari-
ables. Suppose the cost of pulp and the transportation costs directly affect the
price of paper. The transportation costs are affected by the weather. The pulp
cost is affected by the prevalence of tree pests, which in turn depend on the
weather. Suppose that each variable depends on the values of the previous time
step. A two-stage dynamic belief network representing these dependencies is
shown in Figure 6.19.

Note that, in this figure, the variables are initially independent.
This two-stage dynamic belief network can be expanded into a regular dy-

namic belief network by replicating the nodes for each time step, and the par-
ents for future steps are a copy of the parents for the time 1 variables. An ex-
panded belief network is shown in Figure 6.20. The subscripts represent the
time that the variable is referring to.

6.5. Probability and Time 273

Weather

Transportation

costs

Tree

pests

Cost

pulp

Cost

paper

Weather

Transportation

costs

Tree

pests

Cost

pulp

Cost

paper

time=0 time=1

Figure 6.19: Two-stage dynamic belief network for paper pricing

Weather0

Transportation

costs0

Tree

pests0

Cost

pulp0

Cost

paper0

Weather1

Transportation

costs1

Tree

pests1

Cost

pulp1

Cost

paper1

Weather2

Transportation

costs2

Tree

pests2

Cost

pulp2

Cost

paper2

Weather3

Transportation

costs3

Tree

pests3

Cost

pulp3

Cost

paper3

Figure 6.20: Expanded dynamic belief network for paper pricing

274 6. Reasoning Under Uncertainty

6.5.5 Time Granularity

One of the problems with the definition of an HMM or a dynamic belief net-
work is that the model depends on the time granularity. The time granularity
can either be fixed, for example each day or each thirtieth of a second, or it can
be event-based, where a time step exists when something interesting occurs.
If the time granularity were to change, for example from daily to hourly, the
conditional probabilities must be changed.

One way to model the dynamics independently of the time granularity is
to model, for each variable and each value for the variable,

• how long the variable is expected to keep that value and

• what value it will transition to when its value changes.

Given a discretization of time, and a time model for state transitions, such as
an exponential decay, the dynamic belief network can be constructed from this
information. If the discretization of time is fine enough, ignoring multiple value
transitions in each time step will only result in a small error. See Exercise 6.12
(page 279).

6.6 Review

The following are the main points you should have learned from this chapter:

• Probability can be used to make decisions under uncertainty.

• The posterior probability is used to update an agent’s beliefs based on
evidence.

• A Bayesian belief network can be used to represent independence in a
domain.

• Exact inference can be carried out for sparse graphs (with low treewidth).

• Stochastic simulation can be used for approximate inference.

• A hidden Markov model or a dynamic belief network can be used for prob-
abilistic reasoning in time, such as for localization.

6.7 References and Further Reading

Introductions to probability theory from an AI perspective, and belief
(Bayesian) networks, are by Darwiche [2009], [Koller and Friedman, 2009],
Pearl [1988], Jensen [1996], and Castillo, Gutiérrez, and Hadi [1996]. Halpern
[1997] reviews the relationship between logic and probability. Bacchus, Grove,
Halpern, and Koller [1996] present a random worlds approach to probabilistic
reasoning.

Variable elimination for evaluating belief networks is presented in Zhang
and Poole [1994] and Dechter [1996]. Treewidth is discussed by Bodlaender
[1993].

6.8. Exercises 275

For comprehensive reviews of information theory, see Cover and Thomas
[1991] and Grünwald [2007].

For discussions of causality, see Pearl [2000] and Spirtes et al. [2000].
For introductions to stochastic simulation, see Rubinstein [1981] and An-

drieu, de Freitas, Doucet, and Jordan [2003]. The forward sampling in belief
networks is based on Henrion [1988], who called it logic sampling. The use
of importance sampling in belief networks described here is based on Cheng
and Druzdzel [2000], who also consider how to learn the proposal distribution.
There is a collection of articles on particle filtering in Doucet, de Freitas, and
Gordon [2001].

HMMs are described by Rabiner [1989]. Dynamic Bayesian networks were
introduced by Dean and Kanazawa [1989]. Markov localization and other is-
sues on the relationship of probability and robotics are described by Thrun,
Burgard, and Fox [2005]. The use of particle filtering for localization is due to
Dellaert, Fox, Burgard, and Thrun [1999].

The annual Conference on Uncertainty in Artificial Intelligence, and the
general AI conferences, provide up-to-date research results.

6.8 Exercises

Exercise 6.1 Using only the axioms of probability and the definition of condi-
tional independence, prove Proposition 6.5 (page 233).

Exercise 6.2 Consider the belief network of Figure 6.21 (on the next page), which
extends the electrical domain to include an overhead projector. Answer the follow-
ing questions about how knowledge of the values of some variables would affect
the probability of another variable:

(a) Can knowledge of the value of Projector plugged in affect your belief in the
value of Sam reading book? Explain.

(b) Can knowledge of Screen lit up affect your belief in Sam reading book? Ex-
plain.

(c) Can knowledge of Projector plugged in affect your belief in Sam reading book
given that you have observed a value for Screen lit up? Explain.

(d) Which variables could have their probabilities changed if just Lamp works
was observed?

(e) Which variables could have their probabilities changed if just Power
in projector was observed?

Exercise 6.3 Represent the same scenario as in Exercise 5.8 (page 211) using a be-
lief network. Show the network structure and shade the observed nodes. Give all
of the initial factors, making reasonable assumptions about the conditional proba-
bilities (they should follow the story given in that exercise, but allow some noise).

Exercise 6.4 Suppose we want to diagnose the errors school students make when
adding multidigit binary numbers. Suppose we are only considering adding two
two-digit numbers to form a three-digit number.

276 6. Reasoning Under Uncertainty

Figure 6.21: Belief network for overhead projector

That is, the problem is of the form:

A1 A0
+ B1 B0
C2 C1 C0

,

where Ai, Bi, and Ci are all binary digits.

(a) Suppose we want to model whether students know binary addition and
whether they know how to carry. If they know how, they usually get the
correct answer, but sometimes they make mistakes. If they don’t know how
to do the appropriate task, they simply guess.

What variables are necessary to model binary addition and the errors
students could make? You must specify, in words, what each of the variables
represents. Give a DAG that specifies the dependence of these variables.

(b) What are reasonable conditional probabilities for this domain?

(c) Implement this, perhaps by using the AIspace.org belief-network tool. Test
your representation on a number of different cases.

You must give the graph, explain what each variable means, give the probabil-
ity tables, and show how it works on a number of examples.

Exercise 6.5 In this question, you will build a belief network representation of
the Deep Space 1 (DS1) spacecraft considered in Exercise 5.10 (page 212). Figure
5.14 (page 213) depicts a part of the actual DS1 engine design.

AIspace.org

6.8. Exercises 277

Suppose the following scenario:

• Valves can be open or closed.

• A value can be ok, in which case the gas will flow if the valve is open and
not if it is closed; broken, in which case gas never flows; stuck, in which case
gas flows independently of whether the valve is open or closed; or leaking, in
which case gas flowing into the valve leaks out instead of flowing through.

• There are three gas sensors that can detect gas leaking (but not which gas);
the first gas sensor detects gas from the rightmost valves (v1 . . . v4), the sec-
ond gas sensor detects gas from the center valves (v5 . . . v12), and the third
gas sensor detects gas from the leftmost valves (v13 . . . v16).

(a) Build a belief-network representation of the domain. You only must con-
sider the topmost valves (those that feed into engine e1). Make sure there
are appropriate probabilities.

(b) Test your model on some non-trivial examples.

Exercise 6.6 Consider the following belief network:

A B

C

E F

D

with Boolean variables (we write A = true as a and A = false as ¬a) and the
following conditional probabilities:

P(a) = 0.9
P(b) = 0.2

P(c|a, b) = 0.1
P(c|a,¬b) = 0.8
P(c|¬a, b) = 0.7

P(c|¬a,¬b) = 0.4

P(d|b) = 0.1
P(d|¬b) = 0.8

P(e|c) = 0.7
P(e|¬c) = 0.2

P(f |c) = 0.2
P(f |¬c) = 0.9

(a) Compute P(e) using VE. You should first prune irrelevant variables. Show
the factors that are created for a given elimination ordering.

(b) Suppose you want to compute P(e|¬f) using VE. How much of the previous
computation can be reused? Show the factors that are different from those in
part (a).

Exercise 6.7 Explain how to extend VE to allow for more general observations
and queries. In particular, answer the following:

(a) How can the VE algorithm be extended to allow observations that are dis-
junctions of values for a variable (e.g., of the form X = a∨X = b)?

278 6. Reasoning Under Uncertainty

C

S

A

S_ok

A_ok

Figure 6.22: Belief network for a nuclear submarine

(b) How can the VE algorithm be extended to allow observations that are dis-
junctions of values for different variables (e.g., of the form X = a∨ Y = b)?

(c) How can the VE algorithm be extended to allow for the marginal probability
on a set of variables (e.g., asking for the marginal P(XY|e))?

Exercise 6.8 In a nuclear research submarine, a sensor measures the temperature
of the reactor core. An alarm is triggered (A = true) if the sensor reading is abnor-
mally high (S = true), indicating an overheating of the core (C = true). The alarm
and/or the sensor can be defective (S ok = false, A ok = false), which can cause
them to malfunction. The alarm system can be modeled by the belief network of
Figure 6.22.

(a) What are the initial factors for this network? For each factor, state what it
represents and what variables it is a function of.

(b) Show how VE can be used to compute the probability that the core is over-
heating, given that the alarm does not go off; that is, P(c|¬a).

For each variable eliminated, show which variable is eliminated, which
factor(s) are removed, and which factor(s) are created, including what vari-
ables each factor is a function of. Explain how the answer can be derived
from the final factor.

(c) Suppose we add a second, identical sensor to the system and trigger the
alarm when either of the sensors reads a high temperature. The two sen-
sors break and fail independently. Give the corresponding extended belief
network.

Exercise 6.9 Let’s continue Exercise 5.14 (page 215).

(a) Explain what knowledge (about physics and about students) a belief-
network model requires.

(b) What is the main advantage of using belief networks (over using abductive
diagnosis or consistency-based diagnosis) in this domain?

(c) What is the main advantage of using abductive diagnosis or consistency-
based diagnosis compared to using belief networks in this domain?

Exercise 6.10 In importance sampling, every non-observed variable is sampled;
a full implementation of VE is not needed. Explain how to compute the probability

6.8. Exercises 279

of a sample given the evidence in this situation. [Hint: remember that it is possible
to sample children as well as parents of observed variables.]

Exercise 6.11 Consider the problem of filtering in HMMs (page 271).

(a) Give a formula for the probability of some variable Xj given future and past
observations. This should involve obtaining a factor from the previous state
and a factor from the next state and combining them to determine the pos-
terior probability of Xk. How can the factor needed by Xj−1 be computed
without recomputing the message from Xj+1? [Hint: consider how VE, elim-
inating from the leftmost variable and eliminating from the rightmost vari-
able, can be used to compute the posterior distribution for Xj.]

(b) Suppose you have computed the probability distribution for each state S1,
. . . , Sk, and then you get an observation for time k + 1. How can the posterior
probability of each variable be updated in time linear in k? [Hint: you may
need to store more than just the distribution over each Si.]

Exercise 6.12 Consider the problem of generating a dynamic belief network
given a particular discretization of time and given a representation in terms of
transition time, and the state transition, as in Section 6.5.5 (page 274). Suppose
that there is an exponential distribution of how long each variable remains in a
state and that the half-life of each variable value is specified. Give the dynamic
belief network representation, assuming only a single transition in each time step.

Exercise 6.13 Suppose you get a job where the boss is interested in localization of
a robot that is carrying a camera around a factory. The boss has heard of variable
elimination, rejection sampling, and particle filtering and wants to know which
would be most suitable for this task. You must write a report for your boss (using
proper English sentences), explaining which one of these technologies would be
most suitable. For the two technologies that are not the most suitable, explain why
you rejected them. For the one that is most suitable, explain what information is
required by that technology to use it for localization:

(a) VE (i.e., exact inference as used in HMMs),
(b) rejection sampling, or
(c) particle filtering.

Part III

Learning and Planning

281

Chapter 7

Learning: Overview and
Supervised Learning

Whoso neglects learning in his youth, loses the past and is dead for the
future.

– Euripides (484 BC – 406 BC), Phrixus, Frag. 927

Learning is the ability of an agent to improve its behavior based on experience.
This could mean the following:

• The range of behaviors is expanded; the agent can do more.

• The accuracy on tasks is improved; the agent can do things better.

• The speed is improved; the agent can do things faster.

The ability to learn is essential to any intelligent agent. As Euripides pointed,
learning involves an agent remembering its past in a way that is useful for its
future.

This chapter considers supervised learning: given a set of training exam-
ples made up of input–output pairs, predict the output of a new input. We
show how such learning may be based on one of four possible approaches:
choosing a single hypothesis that fits the training examples well, predicting di-
rectly from the training examples, selecting the subset of a hypothesis space
consistent with the training examples, or finding the posterior probability dis-
tribution of hypotheses conditioned on the training examples.

Chapter 11 goes beyond supervised learning and considers clustering (of-
ten called unsupervised learning), learning probabilistic models, and reinforce-
ment learning. Section 14.2 (page 606) considers learning relational representa-
tions.

283

284 7. Learning: Overview and Supervised Learning

7.1 Learning Issues

The following components are part of any learning problem:

task The behavior or task that is being improved
data The experiences that are used to improve performance in the task
measure of improvement How the improvement is measured – for example,

new skills that were not present initially, increasing accuracy in prediction,
or improved speed

Consider the agent internals of Figure 2.9 (page 60). The problem of learn-
ing is to take in prior knowledge and data (e.g., about the experiences of the
agent) and to create an internal representation (the knowledge base) that is
used by the agent as it acts.

This internal representation could be the raw experiences themselves, but
it is typically a compact representation that summarizes the data. The prob-
lem of inferring an internal representation based on examples is often called
induction and can be contrasted with deduction (page 167), which is deriving
consequences of a knowledge base, and abduction (page 199), which is hypoth-
esizing what may be true about a particular case.

There are two principles that are at odds in choosing a representation
scheme:

• The richer the representation scheme, the more useful it is for subsequent problems
solving. For an agent to learn a way to solve a problem, the representation
must be rich enough to express a way to solve the problem.

• The richer the representation, the more difficult it is to learn. A very rich represen-
tation is difficult to learn because it requires a great deal of data, and often
many different hypotheses are consistent with the data.

The representations required for intelligence are a compromise between many
desiderata [see Section 1.4 (page 11)]. The ability to learn the representation is
one of them, but it is not the only one.

Learning techniques face the following issues:

Task Virtually any task for which an agent can get data or experiences can be
learned. The most commonly studied learning task is supervised learning:
given some input features, some target features, and a set of training exam-
ples where the input features and the target features are specified, predict
the target features of a new example for which the input features are given.
This is called classification when the target variables are discrete and regres-
sion when the target features are continuous.

Other learning tasks include learning classifications when the examples
are not already classified (unsupervised learning), learning what to do based
on rewards and punishments (reinforcement learning), learning to reason
faster (analytic learning), and learning richer representations such as logic
programs (inductive logic programming) or Bayesian networks.

Feedback Learning tasks can be characterized by the feedback given to the
learner. In supervised learning, what has to be learned is specified for each

7.1. Learning Issues 285

example. Supervised classification occurs when a trainer provides the clas-
sification for each example. Supervised learning of actions occurs when the
agent is given immediate feedback about the value of each action. Unsu-
pervised learning occurs when no classifications are given and the learner
must discover categories and regularities in the data. Feedback often falls
between these extremes, such as in reinforcement learning, where the feed-
back in terms of rewards and punishments occurs after a sequence of actions.
This leads to the credit-assignment problem of determining which actions
were responsible for the rewards or punishments. For example, a user could
give rewards to the delivery robot without telling it exactly what it is being
rewarded for. The robot then must either learn what it is being rewarded for
or learn which actions are preferred in which situations. It is possible that it
can learn what actions to perform without actually determining which con-
sequences of the actions are responsible for rewards.

Representation For an agent to use its experiences, the experiences must affect
the agent’s internal representation. Much of machine learning is studied
in the context of particular representations (e.g., decision trees, neural net-
works, or case bases). This chapter presents some standard representations
to show the common features behind learning.

Online and offline In offline learning, all of the training examples are available
to an agent before it needs to act. In online learning, training examples
arrive as the agent is acting. An agent that learns online requires some rep-
resentation of its previously seen examples before it has seen all of its ex-
amples. As new examples are observed, the agent must update its represen-
tation. Typically, an agent never sees all of its examples. Active learning is
a form of online learning in which the agent acts to acquire useful exam-
ples from which to learn. In active learning, the agent reasons about which
examples would be useful to learn from and acts to collect these examples.

Measuring success Learning is defined in terms of improving performance
based on some measure. To know whether an agent has learned, we must
define a measure of success. The measure is usually not how well the agent
performs on the training experiences, but how well the agent performs for
new experiences.

In classification, being able to correctly classify all training examples is
not the problem. For example, consider the problem of predicting a Boolean
feature based on a set of examples. Suppose that there were two agents P
and N. Agent P claims that all of the negative examples seen were the only
negative examples and that every other instance is positive. Agent N claims
that the positive examples in the training set were the only positive examples
and that every other instance is negative. Both of these agents correctly clas-
sify every example in the training set but disagree on every other example.
Success in learning should not be judged on correctly classifying the training
set but on being able to correctly classify unseen examples. Thus, the learner
must generalize: go beyond the specific given examples to classify unseen
examples.

A standard way to measure success is to divide the examples into a train-
ing set and a test set. A representation is built using the training set, and then

286 7. Learning: Overview and Supervised Learning

the predictive accuracy is measured on the test set. Of course, this is only an
approximation of what is wanted; the real measure is its performance on
some future task.

Bias The tendency to prefer one hypothesis over another is called a bias. Con-
sider the agents N and P defined earlier. Saying that a hypothesis is better
than N’s or P’s hypothesis is not something that is obtained from the data –
both N and P accurately predict all of the data given – but is something ex-
ternal to the data. Without a bias, an agent will not be able to make any
predictions on unseen examples. The hypotheses adopted by P and N dis-
agree on all further examples, and, if a learning agent cannot choose some
hypotheses as better, the agent will not be able to resolve this disagreement.
To have any inductive process make predictions on unseen data, an agent
requires a bias. What constitutes a good bias is an empirical question about
which biases work best in practice; we do not imagine that either P’s or N’s
biases work well in practice.

Learning as search Given a representation and a bias, the problem of learning
can be reduced to one of search. Learning is a search through the space of
possible representations, trying to find the representation or representations
that best fits the data given the bias. Unfortunately, the search spaces are
typically prohibitively large for systematic search, except for the simplest of
examples. Nearly all of the search techniques used in machine learning can
be seen as forms of local search (page 130) through a space of representa-
tions. The definition of the learning algorithm then becomes one of defining
the search space, the evaluation function, and the search method.

Noise In most real-world situations, the data are not perfect. Noise exists in the
data (some of the features have been assigned the wrong value), there are in-
adequate features (the features given do not predict the classification), and
often there are examples with missing features. One of the important prop-
erties of a learning algorithm is its ability to handle noisy data in all of its
forms.

Interpolation and extrapolation For cases in which there is a natural interpre-
tation of “between,” such as where the prediction is about time or space,
interpolation involves making a prediction between cases for which there
are data. Extrapolation involves making a prediction that goes beyond the
seen examples. Extrapolation is usually much more inaccurate than inter-
polation. For example, in ancient astronomy, the Ptolemaic system and he-
liocentric system of Copernicus made detailed models of the movement of
solar system in terms of epicycles (cycles within cycles). The parameters for
the models could be made to fit the data very well and they were very good
at interpolation; however, the models were very poor at extrapolation. As
another example, it is often easy to predict a stock price on a certain day
given data about the prices on the days before and the days after that day.
It is very difficult to predict the price that a stock will be tomorrow, and it
would be very profitable to be able to do so. An agent must be careful if its
test cases mostly involve interpolating between data points, but the learned
model is used for extrapolation.

7.1. Learning Issues 287

Why Should We Believe an Inductive Conclusion?

When learning from data, an agent makes predictions beyond what the data
give it. From observing the sun rising each morning, people predict that
the sun will rise tomorrow. From observing unsupported objects repeatedly
falling, a child may conclude that unsupported objects always fall (until she
comes across helium-filled balloons). From observing many swans, all of
which were black, someone may conclude that all swans are black. From the
data of Figure 7.1 (page 289), the algorithms that follow learn a representa-
tion that predicts the user action for a case where the author is unknown, the
thread is new, the length is long, and it was read at work. The data do not tell
us what the user does in this case. The question arises of why an agent should
ever believe any conclusion that is not a logical consequence of its knowledge.

When an agent adopts a bias, or chooses a hypothesis, it is going beyond
the data – even making the same prediction about a new case that is identical
to an old case in all measured respects goes beyond the data. So why should
an agent believe one hypothesis over another? By what criteria can it possibly
go about choosing a hypothesis?

The most common technique is to choose the simplest hypothesis that fits
the data by appealing to Ockham’s razor. William of Ockham was an English
philosopher who was born in about 1285 and died, apparently of the plague,
in 1349. (Note that “Occam” is the French spelling of the English town “Ock-
ham”and is often used.) He argued for economy of explanation: “What can be
done with fewer [assumptions] is done in vain with more” [Edwards, 1967,
Vol. 8, p. 307].

Why should one believe the simplest hypothesis, especially because which
hypothesis is simplest depends on the language used to express the hypo-
thesis?

First, it is reasonable to assume that there is structure in the world and that
an agent should discover this structure to act appropriately. A reasonable way
to discover the structure of the world is to search for it. An efficient search
strategy is to search from simpler hypotheses to more complicated ones. If
there is no structure to be discovered, nothing will work! The fact that much
structure has been found in the world (e.g., all of the structure discovered by
physicists) would lead us to believe that this is not a futile search.

The fact that simplicity is language dependent should not necessarily
make us suspicious. Language has evolved because it is useful; it allows peo-
ple to express the structure of the world. Thus, we would expect that simplic-
ity in everyday language would be a good measure of complexity.

The most important reason for believing inductive hypotheses is that it is
useful to believe them. They help agents interact with the world and to avoid
being killed; an agent that does not learn that it should not fling itself from
heights will not survive long. The “simplest hypothesis” heuristic is useful
because it works.

288 7. Learning: Overview and Supervised Learning

7.2 Supervised Learning

An abstract definition of supervised learning is as follows. Assume the learner
is given the following data:

• a set of input features, X1, . . . , Xn;

• a set of target features, Y1, . . . , Yk;

• a set of training examples, where the values for the input features and the
target features are given for each example; and

• a set of test examples, where only the values for the input features are given.

The aim is to predict the values of the target features for the test examples and
as-yet-unseen examples. Typically, learning is the creation of a representation
that can make predictions based on descriptions of the input features of new
examples.

If e is an example, and F is a feature, let val(e, F) be the value of feature F in
example e.

Example 7.1 Figure 7.1 shows training and test examples typical of a classi-
fication task. The aim is to predict whether a person reads an article posted to
a bulletin board given properties of the article. The input features are Author,
Thread, Length, and WhereRead. There is one target feature, UserAction. There are
eighteen training examples, each of which has a value for all of the features.

In this data set, val(e11, Author)=unknown, val(e11, Thread)=followUp, and
val(e11, UserAction)=skips.

The aim is to predict the user action for a new example given its values for
the input features.

The most common way to learn is to have a hypothesis space of all possible
representations. Each possible representation is a hypothesis. The hypothesis
space is typically a large finite, or countably infinite, space. A prediction is
made using one of the following:

• the best hypothesis that can be found in the hypothesis space according to
some measure of better,

• all of the hypotheses that are consistent with the training examples, or

• the posterior probability of the hypotheses given the evidence provided by
the training examples.

One exception to this paradigm is in case-based reasoning, which uses the ex-
amples directly.

7.2.1 Evaluating Predictions

If e is an example, a point estimate for target feature Y is a prediction of a
particular value for Y on e. Let pval(e, Y) be the predicted value for target fea-
ture Y on example e. The error for this example on this feature is a measure of

7.2. Supervised Learning 289

Example Author Thread Length WhereRead UserAction
e1 known new long home skips
e2 unknown new short work reads
e3 unknown follow Up long work skips
e4 known follow Up long home skips
e5 known new short home reads
e6 known follow Up long work skips
e7 unknown follow Up short work skips
e8 unknown new short work reads
e9 known follow Up long home skips
e10 known new long work skips
e11 unknown follow Up short home skips
e12 known new long work skips
e13 known follow Up short home reads
e14 known new short work reads
e15 known new short home reads
e16 known follow Up short work reads
e17 known new short home reads
e18 unknown new short work reads
e19 unknown new long work ?
e20 unknown follow Up long home ?

Figure 7.1: Examples of a user’s preferences. These are some training and test
examples obtained from observing a user deciding whether to read articles posted
to a threaded discussion board depending on whether the author is known or not,
whether the article started a new thread or was a follow-up, the length of the
article, and whether it is read at home or at work. e1, . . . , e18 are the training
examples. The aim is to make a prediction for the user action on e19, e20, and
other, currently unseen, examples.

how close pval(e, Y) is to val(e, Y), where val(e, Y) is the actual value for feature
Y in e.

For regression, when the target feature Y is real valued, both pval(e, Y) and
val(e, Y) are real numbers that can be compared arithmetically.

For classification, when the target feature Y is a discrete variable, a number
of alternatives exist:

• When Y is binary, one value can be associated with 0, the other value with 1,
and a prediction can be some real number. The predicted and actual values
can be compared numerically.

• When the domain of Y has more than two values, sometimes the values are
totally ordered and can be scaled so a real number can be associated with
each value of the domain of Y. In this case, the predicted and actual values
can be compared on this scale. Often, this is not appropriate even when the

290 7. Learning: Overview and Supervised Learning

values are totally ordered; for example, suppose the values are short, medium,
and long. The prediction that the value is short ∨ long is very different from
the prediction that the value is medium.

• When the domain of Y is {v1, . . . , vk}, where k > 2, a separate prediction
can be made for each vi. This can be modeled by having a binary indicator
variable (page 141) associated with each vi which, for each example, has
value 1 when the example has value vi and the indicator variable has value
0 otherwise. For each training example, exactly one of the indicator variables
associated with Y will be 1 and the others will be 0. A prediction gives k real
numbers – one real number for each vi.

Example 7.2 Suppose the trading agent wants to learn a person’s preference
for the length of holidays. Suppose the holiday can be for 1, 2, 3, 4, 5, or 6 days.

One representation is to have a real-valued variable Y that is the number of
days in the holiday.

Another representation is to have six real-valued variables, Y1, . . . , Y6,
where Yi represents the proposition that the person would like to stay for i
days. For each example, Yi=1 when there are i days in the holiday, and Yi=0
otherwise.

The following is a sample of five data points using the two representations:

Example Y
e1 1
e2 6
e3 6
e4 2
e5 1

Example Y1 Y2 Y3 Y4 Y5 Y6
e1 1 0 0 0 0 0
e2 0 0 0 0 0 1
e3 0 0 0 0 0 1
e4 0 1 0 0 0 0
e5 1 0 0 0 0 0

A prediction for a new example in the first representation can be any real
number, such as Y=3.2.

In the second representation, the learner would predict a value for each Yi
for each example. One such prediction may be Y1=0.5, Y2=0.3, Y3=0.1, Y4=0.1,
Y5=0.1, and Y6=0.5. This is a prediction that the person may like 1 day or
6 days, but will not like a stay of 3, 4, or 5 days.

In the following definitions, E is the set of all examples and T is the set of
target features.

There are a number of prediction measures that can be defined:

• The absolute error on E is the sum of the absolute errors of the predictions
on each example. That is,

∑
e∈E

∑
Y∈T
|val(e, Y)− pval(e, Y)| .

This is always non-negative, and is only zero when the predictions exactly
fit the observed values.

• The sum-of-squares error on E is

∑
e∈E

∑
Y∈T

(val(e, Y)− pval(e, Y))2.

7.2. Supervised Learning 291

8

7

6
5

5

P1

P2

P3

4

4

3

3

2

2

1

1
0

0

Figure 7.2: Linear predictions for a simple prediction example. Filled circles are the
training examples. P1 is the prediction that minimizes the absolute error of the
training examples. P2 is the prediction that minimizes the sum-of-squares error
of the training examples. P3 is the prediction that minimizes the worst-case error
of the training examples. See Example 7.3.

This measure treats large errors as worse than small errors. An error twice
as big is four times as bad, and an error 10 times as big is 100 times worse.

• The worst-case error on E is the maximum absolute error:

max
e∈E

max
Y∈T
|val(e, Y)− pval(e, Y)| .

In this case, the learner is evaluated by how bad it can be.

Example 7.3 Suppose there is a real-valued target feature, Y, that is based on
a single real-valued input feature, X. Suppose the data contains the following
(X, Y) points:

(0.7, 1.7), (1.1, 2.4), (1.3, 2.5), (1.9, 1.7), (2.6, 2.1), (3.1, 2.3), (3.9, 7).

Figure 7.2 shows a plot of the training data (filled circles) and three lines, P1, P2,
and P3, that predict the Y-value for all X points. P1 is the line that minimizes
the absolute error, P2 is the line that minimizes the sum-of-squares error, and
P3 minimizes the worst-case error of the training examples.

Lines P1 and P2 give similar predictions for X=1.1; namely, P1 predicts 1.805
and P2 predicts 1.709, whereas the data contain a data point (1.1, 2.4). P3 pre-
dicts 0.7. They give predictions within 1.5 of each other when interpolating in
the range [1, 3]. Their predictions diverge when extrapolating from the data. P1
and P3 give very different predictions for X=10.

The difference between the lines that minimize the various error measures
is most pronounced in how they handle the outlier examples, in this case the
point (3.9, 7). The other points are approximately in a line.

The prediction with the least worse-case error for this example, P3, only
depends on three data points, (1.1, 2.4), (3.1, 2.3), and (3.9, 7), each of which
has the same worst-case error for prediction P3. The other data points could be

292 7. Learning: Overview and Supervised Learning

at different locations, as long as they are not farther away from P3 than these
three points.

In contrast, the prediction that minimizes the absolute error, P1, does not
change as a function of the actual Y-value of the training examples, as long
as the points above the line stay above the line, and those below the line stay
below. For example, the prediction that minimizes the absolute error would be
the same, even if the last data point was (3.9, 107) instead of (3.9, 7).

Prediction P2 is sensitive to all of the data points; if the Y-value for any
point changes, the line that minimizes the sum-of-squares error will change.

There are a number of prediction measures that can be used for the special
case where the domain of Y is {0, 1}, and the prediction is in the range [0, 1].
These measures can be used for Boolean domains where true is treated as 1,
and false is treated as 0.

• The likelihood of the data is the probability of the data when the predicted
value is interpreted as a probability:

∏
e∈E

∏
Y∈T

pval(e, Y)val(e,Y)(1− pval(e, Y))(1−val(e,Y)).

One of val(e, Y) and (1− val(e, Y)) is 1, and the other is 0. Thus, this product
uses pval(e, Y) when val(e, Y)=1 and (1 − pval(e, Y)) when val(e, Y)=0. A
better prediction is one with a higher likelihood. The model with the greatest
likelihood is the maximum likelihood model.

• The entropy of the data is the number of bits it will take to encode the data
given a code that is based on pval(e, Y) treated as a probability. The entropy
is

−∑
e∈E

∑
Y∈T

[val(e, Y) log pval(e, Y) + (1− val(e, Y)) log(1− pval(e, Y))].

A better prediction is one with a lower entropy.
A prediction that minimizes the entropy is a prediction that maximizes

the likelihood. This is because the entropy is the negative of the logarithm of
the likelihood.

• Suppose the predictions are also restricted to be {0, 1}. A false-positive er-
ror is a positive prediction that is wrong (i.e., the predicted value is 1, and
the actual value is 0). A false-negative error is a negative prediction that is
wrong (i.e., the predicted value is 0, and the actual value is 1). Often dif-
ferent costs are associated with the different sorts of errors. For example, if
there are data about whether a product is safe, there may be different costs
for claiming it is safe when it is not safe, and for claiming it is not safe when
it is safe.

We can separate the question of whether the agent has a good learning
algorithm from whether it makes good predictions based on preferences that
are outside of the learner. The predicting agent can at one extreme choose to
only claim a positive prediction when it is sure the prediction is positive.
At the other extreme, it can claim a positive prediction unless it is sure the

7.2. Supervised Learning 293

prediction should be negative. It can often make predictions between these
extremes.

One way to test the prediction independently of the decision is to con-
sider the four cases between the predicted value and the actual value:

actual positive actual negative
predict positive true positive (tp) false positive (fp)

predict negative false negative (fn) true negative (tn)

Suppose tp is the number of true positives, fp is the number of false neg-
atives, fn is the number of false negatives, and tn is the number of true
negatives. The precision is tp

tp+fp , which is the proportion of positive predic-

tions that are actual positives. The recall or true-positive rate is tp
tp+fn , which

is the proportion of actual positives that are predicted to be positive. The
false-positive error rate is fp

fp+tn , which is the proportion of actual negatives
predicted to be positive.

An agent should try to maximize precision and recall and to minimize
the false-positive rate; however, these goals are incompatible. An agent can
maximize precision and minimize the false-positive rate by only making
positive predictions it is sure about. However, this choice worsens recall. To
maximize recall, an agent can be risky in making predictions, which makes
precision smaller and the false-positive rate larger. The predicting agent of-
ten has parameters that can vary a threshold of when to make positive pre-
dictions. A precision-recall curve plots the precision against the recall as
these parameters change. An ROC curve, or receiver operating characteris-
tic curve, plots the false-positive rate against the false-negative rate as this
parameter changes. Each of these approaches may be used to compare learn-
ing algorithms independently of the actual claim of the agent.

• The prediction can be seen as an action of the predicting agent. The agent
should choose the action that maximizes a preference function that involves
a trade-off among the costs associated with its actions. The actions may be
more than true or false, but may be more complex, such as “proceed with
caution” or “definitely true.” What an agent should do when faced with
uncertainty is discussed in Chapter 9.

Example 7.4 Consider the data of Example 7.2 (page 290). Suppose there are
no input features, so all of the examples get the same prediction.

In the first representation, the prediction that minimizes the sum of ab-
solute errors on the training data presented in Example 7.2 (page 290) is 2,
with an error of 10. The prediction that minimizes the sum-of-squares error
on the training data is 3.2. The prediction the minimizes the worst-case error
is 3.5.

For the second representation, the prediction that minimizes the sum of
absolute errors for the training examples is to predict 0 for each Yi. The pre-
diction that minimizes the sum-of-squares error for the training examples is
Y1=0.4, Y2=0.1, Y3=0, Y4=0, Y5=0, and Y6=0.4. This is also the prediction

294 7. Learning: Overview and Supervised Learning

that minimizes the entropy and maximizes the likelihood of the training data.
The prediction that minimizes the worst-case error for the training examples is
to predict 0.5 for Y1, Y2, and Y6 and to predict 0 for the other features.

Thus, whichever prediction is preferred depends on how the prediction will be
evaluated.

7.2.2 Point Estimates with No Input Features

The simplest case for learning is when there are no input features and where
there is a single target feature. This is the base case for many of the learning
algorithms and corresponds to the case where all inputs are ignored. In this
case, a learning algorithm predicts a single value for the target feature for all
of the examples. The prediction that minimizes the error depends on the error
that is being minimized.

Suppose E is a set of examples and Y is a numeric feature. The best an
agent can do is to make a single point estimate for all examples. Note that it is
possible for the agent to make stochastic predictions, but these are not better;
see Exercise 7.2 (page 342).

The sum-of-squares error on E of prediction v is

∑
e∈E

(val(e, Y)− v)2.

The absolute error on E of prediction v is

∑
e∈E
|val(e, Y)− v| .

The worst-case error on E of prediction v is

max
e∈E
|val(e, Y)− v| .

Proposition 7.1. Suppose V is the multiset of values of val(e, Y) for e ∈ E.

(a) The prediction that minimizes the sum-of-squares error on E is the mean of V (the
average value).

(b) The value that minimizes the absolute error is the median of V. In particular, any
number v such that there is the same number of values of V less than v as there are
values greater than v minimizes the error.

(c) The value that minimizes the worst-case error is (max + min)/2, where max is the
maximum value and min is the minimum value.

Proof. The details of the proof are left as an exercise. The basic idea follows:

(a) Differentiate the formula for the sum-of-squares error with respect to v and
set to zero. This is elementary calculus. To make sure the point(s) with a
derivative of zero is(are) a minimum, the end points also must be checked.

7.2. Supervised Learning 295

Prediction Measure of Optimal
measure prediction p for prediction for

the training data training data
absolute error n0p + n1(1− p) median(n0, n1)
sum squares n0p2 + n1(1− p)2 n1

n0+n1

worst case

p if n1 = 0
1− p if n0 = 0
max(p, 1− p) otherwise

0 if n1 = 0
1 if n0 = 0
0.5 otherwise

likelihood pn1(1− p)n0 n1
n0+n1

entropy −n1 log p− n0 log(1− p) n1
n0+n1

Figure 7.3: Optimal prediction for binary classification where the training data
consist of n0 examples of 0 and n1 examples of 1, with no input features.
median(n0, n1) is 0 if n0 > n1, 1 if n0 < n1, and any value in [0, 1] if n0 = n1.

(b) The absolute error is a piecewise linear function of v. The slope for a value
that is not in V depends on the number of elements greater minus the num-
ber of elements less than that value: v is a minimum if there are the same
number of elements greater than v as there are less than v.

(c) This prediction has an error of (max−min)/2; increasing or decreasing the
prediction will increase the error.

When the target feature has domain {0, 1}, the training examples can be
summarized in two numbers: n0, the number of examples with the value 0,
and n1, the number of examples with value 1. The prediction for each new case
is the same number, p.

The optimal prediction p depends on the optimality criteria. The value of
the optimality criteria for the training examples can be computed analytically
and can be optimized analytically. The results are summarized in Figure 7.3.

Notice that optimizing the absolute error means predicting the median,
which in this case is also the mode; this should not be surprising because the
error is linear in p.

The optimal prediction for the training data for the other criteria is to pre-
dict the empirical frequency: the proportion of 1’s in the training data, namely

n1
n0+n1

. This can be seen as a prediction of the probability. The empirical fre-
quency is often called the maximum-likelihood estimate.

This analysis does not specify the optimal prediction for the test data. We
would not expect the empirical frequency of the training data to be the optimal
prediction for the test data for maximizing the likelihood or minimizing the
entropy. If n0 = 0 or if n1 = 0, all of the training data are classified the same.
However, if just one of the test examples is not classified in this way, the likeli-
hood would be 0 (its lowest possible value) and the entropy would be infinite.
See Exercise 1 (page 342).

296 7. Learning: Overview and Supervised Learning

7.2.3 Learning Probabilities

For many of the prediction measures, the optimal prediction on the training
data is the empirical frequency. Thus, making a point estimate can be inter-
preted as learning a probability. However, the empirical frequency is typically
not a good estimate of the probability of new cases; just because an agent has
not observed some value of a variable does not mean that the value should be
assigned a probability of zero. A probability of zero means that the value is
impossible.

Typically, we do not have data without any prior knowledge. There is typ-
ically a great deal of knowledge about a domain, either in the meaning of the
symbols or in experience with similar examples that can be used to improve
predictions.

A standard way both to solve the zero-probability problem and to take prior
knowledge into account is to use a pseudocount or prior count for each value
to which the training data is added.

Suppose there is a binary feature Y, and an agent has observed n0 cases
where Y=0 and n1 cases where Y=1. The agent can use a pseudocount c0 ≥ 0
for Y=0 and a pseudocount c1 ≥ 0 for Y=1 and estimate the probability as

P(Y=1) = (n1 + c1)/(n0 + c0 + n1 + c1).

This takes into account both the data and the prior knowledge. This formula
can be justified in terms of a prior on the parameters [see Section 7.8 (page 334)].
Choosing pseudocounts is part of designing the learner.

More generally, suppose Y has domain {y1, . . . , yk}. The agent starts with a
pseudocount ci for each yi. These counts are chosen before the agent has seen
any of the data. Suppose the agent observes some training examples, where ni
is the number of data points with Y=yi. It can then use

P(Y=yi) =
ci + ni

∑i′ ci′ + ni′
.

To determine the pseudocounts, consider the question, “How much more
should an agent believe yi if it had seen one example with yi true than if it
had seen no examples with yi true?” If, with no examples of yi true, the agent
believes that yi is impossible, ci should be zero. If not, the ratio chosen in answer
to that question should be equal to the ratio (1 + ci) : ci. If the pseudocount is
1, a value that has been seen once would be twice as likely as one that has been
seen no times. If the pseudocount is 10, a value observed once would be 10%
more likely than a value observed no times. If the pseudocount is 0.1, a value
observed once would be 11 times more likely than a value observed no times.
If there is no reason to choose one value in the domain of Y over another, all of
the values of ci should be equal.

If there is no prior knowledge, Laplace [1812] suggested that it is reasonable
to set ci=1. See Section 7.8 (page 334) for a justification of why this may be
reasonable. We will see examples where it is not appropriate, however.

7.2. Supervised Learning 297

The same idea can be used to learn a conditional probability distribution
(page 227). To estimate a conditional distribution, P(Y|X), of variable Y condi-
tioned on variable(s) X, the agent can maintain a count for each pair of a value
for Y and a value for X. Suppose cij is a non-negative number that will be used
as a pseudocount for Y=yi ∧X=xj. Suppose nij is the number of observed cases
of Y=yi ∧X=xj. The agent can use

P(Y=yi|X=xj) =
cij + nij

∑i′ ci′j + ni′j
,

but this does not work well when the denominator is small, which occurs when
some values of X are rare. When X has structure – for example, when it is
composed of other variables – it is often the case that some assignments to X
are very rare or even do not appear in the training data. In these cases, the
learner must use other methods that are discussed in this chapter.

Probabilities from Experts

The use of pseudocounts also gives us a way to combine expert opinion and
data. Often a single agent does not have good data but may have access to
multiple experts who have varying levels of expertise and who give different
probabilities.

There are a number of problems with obtaining probabilities from experts:

• experts’ reluctance to give an exact probability value that cannot be re-
fined,

• representing the uncertainty of a probability estimate,

• combining the numbers from multiple experts, and

• combining expert opinion with actual data.

Rather than expecting experts to give probabilities, the experts can provide
counts. Instead of giving a real number such as 0.667 for the probability of A,
an expert can give a pair of numbers as 〈n, m〉 that can be interpreted as though
the expert had observed n A’s out of m trials. Essentially, the experts provide
not only a probability but also an estimate of the size of the data set on which
their opinion is based.

The counts from different experts can be combined together by adding the
components to give the pseudocounts for the system. Whereas the ratio re-
flects the probability, different levels of confidence can be reflected in the ab-
solute values: 〈2, 3〉 reflects extremely low confidence that would quickly be
dominated by data or other experts’ estimates. The pair 〈20, 30〉 reflects more
confidence – a few examples would not change it much, but tens of examples
would. Even hundreds of examples would have little effect on the prior counts
of the pair 〈2000, 3000〉. However, with millions of data points, even these prior
counts would have little impact on the resulting probability.

298 7. Learning: Overview and Supervised Learning

knownunknown

follow_upnew

shortlong

Length

Thread

Author

skips

reads

skips reads

shortlong

Length

reads with

probability 0.82
skips

Figure 7.4: Two decision trees

7.3 Basic Models for Supervised Learning

A learned model is a representation of a function from the input features to
the target features. Most supervised learning methods take the input features,
the target features, and the training data and return a model that can be used
for future prediction. Many of the learning methods differ in what representa-
tions are considered for representing the function. We first consider some basic
models from which other composite models are built. Section 7.4 (page 313)
considers more sophisticated models that are built from these basic models.

7.3.1 Learning Decision Trees

A decision tree is a simple representation for classifying examples. Decision
tree learning is one of the most successful techniques for supervised classifica-
tion learning. For this section, assume that all of the features have finite discrete
domains, and there is a single target feature called the classification. Each ele-
ment of the domain of the classification is called a class.

A decision tree or a classification tree is a tree in which each internal (non-
leaf) node is labeled with an input feature. The arcs coming from a node labeled
with a feature are labeled with each of the possible values of the feature. Each
leaf of the tree is labeled with a class or a probability distribution over the
classes.

To classify an example, filter it down the tree, as follows. For each feature
encountered in the tree, the arc corresponding to the value of the example for
that feature is followed. When a leaf is reached, the classification corresponding
to that leaf is returned.

Example 7.5 Figure 7.4 shows two possible decision trees for the example
of Figure 7.1 (page 289). Each decision tree can be used to classify examples
according to the user’s action. To classify a new example using the tree on the
left, first determine the length. If it is long, predict skips. Otherwise, check the
thread. If the thread is new, predict reads. Otherwise, check the author and

7.3. Basic Models for Supervised Learning 299

predict read only if the author is known. This decision tree can correctly classify
all examples in Figure 7.1 (page 289).

The tree on the right makes probabilistic predictions when the length is
short. In this case, it predicts reads with probability 0.82 and so skips with
probability 0.18.

A deterministic decision tree, in which all of the leaves are classes, can be
mapped into a set of rules, with each leaf of the tree corresponding to a rule.
The example has the classification at the leaf if all of the conditions on the path
from the root to the leaf are true.

Example 7.6 The leftmost decision tree of Figure 7.4 can be represented as the
following rules:

skips← long.
reads← short∧ new.
reads← short∧ followUp∧ known.
skips← short∧ followUp∧ unknown.

With negation as failure (page 194), the rules for either skips or reads can be
omitted, and the other can be inferred from the negation.

To use decision trees as a target representation, there are a number of questions
that arise:

• Given some training examples, what decision tree should be generated? Be-
cause a decision tree can represent any function of the input features, the
bias that is necessary to learn is incorporated into the preference of one de-
cision tree over another. One proposal is to prefer the smallest tree that is
consistent with the data, which could mean the tree with the least depth or
the tree with the fewest nodes. Which decision trees are the best predictors
of unseen data is an empirical question.

• How should an agent go about building a decision tree? One way is to
search the space of decision trees for the smallest decision tree that fits the
data. Unfortunately the space of decision trees is enormous (see Exercise 7.7
(page 344)). A practical solution is to carry out a local search on the space of
decision trees, with the goal of minimizing the error. This is the idea behind
the algorithm described below.

Searching for a Good Decision Tree

A decision tree can be incrementally built from the top down by recur-
sively selecting a feature to split on and partitioning the training examples
with respect to that feature. In Figure 7.5 (on the next page), the procedure
DecisionTreeLearner learns a decision tree for binary attributes. The decisions
regarding when to stop and which feature to split on are left undefined. The
procedure DecisionTreeClassify takes in a decision tree produced by the learner
and makes predictions for a new example.

300 7. Learning: Overview and Supervised Learning

1: procedure DecisionTreeLearner(X, Y, E)
2: Inputs
3: X: set of input features, X = {X1, . . . , Xn}
4: Y: target feature
5: E: set of training examples

6: Output
7: decision tree
8: if stopping criterion is true then
9: return pointEstimate(Y, E)

10: else
11: Select feature Xi ∈ X, with domain {v1, v2}
12: let E1 = {e ∈ E : val(e, Xi)=v1}
13: let T1 = DecisionTreeLearner(X \ {Xi}, Y, E1)
14: let E2 = {e ∈ E : val(e, Xi)=v2}
15: let T2 = DecisionTreeLearner(X \ {Xi}, Y, E2)
16: return 〈Xi=v1, T1, T2〉
17:
18: procedure DecisionTreeClassify(e, X, Y, DT)
19: Inputs
20: X: set of input features, X = {X1, . . . , Xn}
21: Y: target feature
22: e: example to classify
23: DT: decision tree
24: Output
25: prediction on Y for example e
26: Local
27: S subtree of DT
28: S := DT
29: while S is an internal node of the form 〈Xi=v, T1, T2〉 do
30: if val(e, Xi)=v then
31: S := T1
32: else
33: S := T2

34: return S

Figure 7.5: Decision tree learning and classification for binary features

The algorithm DecisionTreeLearner builds a decision tree from the top down
as follows: The input to the algorithm is a set of input features, a target feature,
and a set of examples. The learner first tests if some stopping criterion is true.
If the stopping criterion is true, it returns a point estimate (page 288) for Y,
which is either a value for Y or a probability distribution over the values for
Y. If the stopping criterion is not true, the learner selects a feature Xi to split

7.3. Basic Models for Supervised Learning 301

on, and for each value v of this feature, it recursively builds a subtree for those
examples with Xi=v. The returned tree is represented here in terms of triples
representing an if-then-else structure.

Example 7.7 Consider applying DecisionTreeLearner to the classification data
of Figure 7.1 (page 289). The initial call is

decisionTreeLearner([Author, Thread, Length, WhereRead], UserAction,
[e1, e2, . . . , e18]).

Suppose the stopping criterion is not true and the algorithm selects the feature
Length to split on. It then calls

decisionTreeLearner([WhereRead, Thread, Author], UserAction,
[e1, e3, e4, e6, e9, e10, e12]).

All of these examples agree on the user action; therefore, the algorithm returns
the prediction skips. The second step of the recursive call is

decisionTreeLearner([WhereRead, Thread, Author], UserAction,
[e2, e5, e7, e8, e11, e13, e14, e15, e16, e17, e18]).

Not all of the examples agree on the user action, so the algorithm selects a fea-
ture to split on. Suppose it selects Thread. Eventually, this recursive call returns
the subtree for the case when Length is short, such as

〈Thread=new, reads, 〈Author=unknown, skips, reads〉〉 .

The final result is

〈Length=long, skips,

〈Thread=new, reads, 〈Author=unknown, skips, reads〉〉〉 ,

which is a representation of the tree of Figure 7.4 (page 298).

The learning algorithm of Figure 7.5 leaves three choices unspecified:

• The stopping criterion is not defined. The learner should stop when there
are no input features, when all of the examples have the same classification,
or when no splitting would improve the classification ability of the resulting
tree. The last is the most difficult criterion to test for; see below.

• What should be returned at the leaves is not defined. This is a point estimate
(page 288) because, at this step, all of the other input features are ignored.
This prediction is typically the most likely classification, the median or mean
value, or a probability distribution over the classifications. [See Exercise 7.9
(page 345).]

• Which feature to select to split on is not defined. The aim is to choose the
feature that will result in the smallest tree. The standard way to do this is
to choose the myopically optimal split: if the learner were only allowed one
split, which single split would result in the best classification? With the sum-
of-squares error, for each feature, determine the error of the resulting tree
based on a single split on that feature. For the likelihood or the entropy, the

302 7. Learning: Overview and Supervised Learning

myopically optimal split is the one that gives the maximum information
gain (page 232). Sometimes information gain is used even when the opti-
mality criterion is the sum-of-squares error. An alternative, the Gini index,
is investigated in Exercise 7.10 (page 345).

Example 7.8 Consider learning the user action from the data of Figure 7.1
(page 289), where we split on the feature with the maximum information gain
or we myopically choose the split that minimizes the entropy or maximizes the
likelihood of the data. See Section 6.1.5 (page 231) for the definition of informa-
tion used here.

The information content of all examples with respect to feature UserAction
is 1.0, because there are 9 examples with UserAction=reads and 9 examples with
UserAction=skips.

Splitting on Author partitions the examples into [e1, e4, e5, e6, e9, e10,
e12, e13, e14, e15, e16, e17] with Author=known and [e2, e3, e7, e8, e11, e18] with
Author=unknown, each of which is evenly split between the different user ac-
tions. The information gain for the test Author is zero. In this case, finding out
whether the author is known, by itself, provides no information about what the
user action will be.

Splitting on Thread partitions the examples into [e1, e2, e5, e8, e10, e12, e14, e15,
e17, e18] and [e3, e4, e6, e7, e9, e11, e13, e16]. The first set of examples, those with
Thread=new, contains 3 examples with UserAction=skips and 7 examples with
UserAction=reads; thus, the information content of this set with respect to the
user action is

−0.3× log2 0.3− 0.7× log2 0.7 = 0.881

and so the information gain is 0.119.
Similarly, the examples with Thread=old divide up 6 : 2 according to the

user action and thus have information content 0.811. The expected information
gain is thus 1.0− [(10/18)× 0.881 + (8/18)× 0.811] = 0.150.

The test Length divides the examples into [e1, e3, e4, e6, e9, e10, e12] and [e2, e5,
e7, e8, e11, e13, e14, e15, e16, e17, e18]. The former all agree on the value of UserAction
and so have information content zero. The user action divides the second set
9 : 2, and so the information is 0.684. Thus, the expected information gain by
the test length is 1.0− 11/18× 0.684 = 0.582. This is the highest information
gain of any test and so Length is chosen to split on.

In choosing which feature to split on, the information content before the
test is the same for all tests, and so the learning agent can choose the test that
results in the minimum expected information after the test.

The algorithm of Figure 7.5 (page 300) assumes each input feature has only
two values. This restriction can be lifted in two ways:

• Allow a multiway split. To split on a multivalued variable, there would
be a child for each value in the domain of the variable. This means that
the representation of the decision tree becomes more complicated than
the simple if-then-else form used for binary features. There are two main
problems with this approach. The first is what to do with values for which

7.3. Basic Models for Supervised Learning 303

there are no training examples. The second is that, for most myopic split-
ting heuristics, including information gain, it is generally better to split
on a variable with a larger domain because it produces more children
and so can fit the data better than splitting on a feature with a smaller do-
main. [See Exercise 7.8 (page 344).] However, splitting on a feature with
a smaller domain keeps the representation more compact.
• Partition the domain into two disjoint subsets. When the domain is totally

ordered, such as if the domain is a subset of the real numbers, the domain
can be split into values less than some threshold and those greater than
the threshold. For example, the children could correspond to X < v and
X ≥ v for some value v in the domain of X. A myopically optimal value
for v can be chosen in one sweep through the data by sorting the data on
the value of X and considering each split that partitions the values. When
the domain does not have a natural ordering, a split can be performed on
arbitrary subsets of the domain. In this case, the myopically optimal split
can be found by sorting values that appear in the data on the probability
of classification.

If there is noise in the data, a major problem of the preceding algorithm is
overfitting the data. Overfitting occurs when the algorithm tries to fit distinc-
tions that appear in the training data but do not appear in the unseen exam-
ples. This occurs when random correlations exist in the training data that are
not reflected in the data set as a whole. Section 7.5 (page 320) discusses ways to
detect overfitting. There are two ways to overcome the problem of overfitting
in decision trees:

• Restrict the splitting to split only when the split is useful.
• Allow unrestricted splitting and then prune the resulting tree where it

makes unwarranted distinctions.

The second method seems to work better in practice. One reason is that it is
possible that two features together predict well but one of them, by itself, is
not very useful, as shown in the following example.

Example 7.9 Suppose the aim is to predict whether a game of matching pen-
nies is won or not. The input features are A, whether the first coin is heads or
tails; B, whether the second coin is heads or tails; and C, whether there is cheer-
ing. The target feature, W, is true when there is a win, which occurs when both
coins are heads or both coins are tails. Suppose cheering is correlated with win-
ning. This example is tricky because A by itself provides no information about
W, and B by itself provides no information about W. However, together they
perfectly predict W. A myopic split may first split on C, because this provides
the most myopic information. If all the agent is told is C, this is much more
useful than A or B. However, if the tree eventually splits on A and B, the split
on C is not needed. Pruning can remove C as being useful, whereas stopping
early will keep the split on C.

A discussion of how to trade off model complexity and fit to the data is pre-
sented in Section 7.5 (page 320).

304 7. Learning: Overview and Supervised Learning

7.3.2 Linear Regression and Classification

Linear functions provide the basis for many learning algorithms. In this sec-
tion, we first cover regression – the problem of predicting a real-valued func-
tion from training examples. Then we consider the discrete case of classifi-
cation.

Linear regression is the problem of fitting a linear function to a set of input–
output pairs given a set of training examples, in which the input and output
features are numeric.

Suppose the input features are X1, . . . , Xn. A linear function of these fea-
tures is a function of the form

f w(X1, . . . , Xn) = w0 + w1 ×X1 + · · ·+ wn ×Xn ,

where w = 〈w0, w1, . . . , wn〉 is a tuple of weights. To make w0 not be a special
case, we invent a new feature, X0, whose value is always 1.

We will learn a function for each target feature independently, so we con-
sider only one target, Y. Suppose a set E of examples exists, where each exam-
ple e ∈ E has values val(e, Xi) for feature Xi and has an observed value val(e, Y).
The predicted value is thus

pvalw(e, Y) = w0 + w1 × val(e, X1) + · · ·+ wn × val(e, Xn)

=
n

∑
i=0

wi × val(e, Xi) ,

where we have made it explicit that the prediction depends on the weights,
and where val(e, X0) is defined to be 1.

The sum-of-squares error on examples E for target Y is

ErrorE(w) = ∑
e∈E

(val(e, Y)− pvalw(e, Y))2

= ∑
e∈E

(
val(e, Y)−

n

∑
i=0

wi × val(e, Xi)

)2

. (7.1)

In this linear case, the weights that minimize the error can be computed
analytically [see Exercise 7.5 (page 344)]. A more general approach, which can
be used for wider classes of functions, is to compute the weights iteratively.

Gradient descent (page 149) is an iterative method to find the minimum of
a function. Gradient descent starts with an initial set of weights; in each step, it
decreases each weight in proportion to its partial derivative:

wi := wi − η × ∂ErrorE(w)
∂wi

where η, the gradient descent step size, is called the learning rate. The learning
rate, as well as the features and the data, is given as input to the learning algo-
rithm. The partial derivative specifies how much a small change in the weight
would change the error.

7.3. Basic Models for Supervised Learning 305

1: procedure LinearLearner(X, Y, E, η)
2: Inputs
3: X: set of input features, X = {X1, . . . , Xn}
4: Y: target feature
5: E: set of examples from which to learn
6: η: learning rate

7: Output
8: parameters w0, . . . , wn

9: Local
10: w0, . . . , wn: real numbers
11: pvalw(e, Y) = w0 + w1 × val(e, X1) + · · ·+ wn × val(e, Xn)
12: initialize w0, . . . , wn randomly
13: repeat
14: for each example e in E do
15: δ := val(e, Y)− pvalw(e, Y)
16: for each i ∈ [0, n] do
17: wi := wi + η × δ× val(e, Xi)
18: until termination
19: return w0, . . . , wn

Figure 7.6: Gradient descent for learning a linear function

Consider minimizing the sum-of-squares error. The error is a sum over the
examples. The partial derivative of a sum is the sum of the partial derivatives.
Thus, we can consider each example separately and consider how much it
changes the weights. The error with respect to example e has a partial deriva-
tive with respect to weight of wi of−2× [val(e, Y)− pvalw(e, Y)]× val(e, Xi). For
each example e, let δ = val(e, Y) − pvalw(e, Y). Thus, each example e updates
each weight wi:

wi := wi + η × δ× val(e, Xi), (7.2)

where we have ignored the constant 2, because we assume it is absorbed into
the constant η.

Figure 7.6 gives an algorithm, LinearLearner(X, Y, E, η), for learning a lin-
ear function for minimizing the sum-of-squares error. Note that, in line 17,
val(e, X0) is 1 for all e. Termination is usually after some number of steps, when
the error is small or when the changes get small.

The algorithm presented in Figure 7.6 is sometimes called incremental gra-
dient descent because of the weight change while it iterates through the exam-
ples. An alternative is to save the weights at each iteration of the while loop,
use the saved weights for computing the function, and then update these saved
weights after all of the examples. This process computes the true derivative of
the error function, but it is more complicated and often does not work as well.

306 7. Learning: Overview and Supervised Learning

The same algorithm can be used for other error functions. For the absolute
error, which is not actually differentiable at zero, the derivative can be defined
to be zero at that point because the error is already at a minimum and the
parameters do not have to change. See Exercise 7.12 (page 346).

Squashed Linear Functions

The use of a linear function does not work well for classification tasks. When
there are only two values, say 0 and 1, a learner should never make a predic-
tion of greater than 1 or less than 0. However, a linear function could make a
prediction of, say, 3 for one example just to fit other examples better.

Initially let’s consider binary classification, where the domain of the target
variable is {0, 1}. If multiple binary target variables exist, they can be learned
separately.

For classification, we often use a squashed linear function of the form

f w(X1, . . . , Xn) = f (w0 + w1 ×X1 + · · ·+ wn ×Xn) ,

where f is an activation function, which is a function from real numbers into
[0, 1]. Using a squashed linear function to predict a value for the target feature
means that the prediction for example e for target feature Y is

pvalw(e, Y) = f (w0 + w1 × val(e, X1) + · · ·+ wn × val(e, Xn)) .

A simple activation function is the step function, f (x), defined by

f (x) =
{

1 if x ≥ 0
0 if x < 0 .

A step function was the basis for the perceptron [Rosenblatt, 1958], which was
one of the first methods developed for learning. It is difficult to adapt gradient
descent to step functions because gradient descent takes derivatives and step
functions are not differentiable.

If the activation is differentiable, we can use gradient descent to update the
weights. The sum-of-squares error is

ErrorE(w) = ∑
e∈E

(
val(e, Y)− f (∑

i
wi × val(e, Xi))

)2

.

The partial derivative with respect to weight wi for example e is

∂ErrorE(w)
∂wi

= −2× δ× f ′(∑
i

wi × val(e, Xi))× val(e, Xi) .

where δ = val(e, Y)− pvalw(e, Y), as before. Thus, each example e updates each
weight wi as follows:

wi := wi + η × δ× f ′(∑
i

wi × val(e, Xi))× val(e, Xi) .

7.3. Basic Models for Supervised Learning 307

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1 + e−x

Figure 7.7: The sigmoid or logistic function

A typical differentiable activation function is the sigmoid or logistic func-
tion:

f (x) =
1

1 + e−x .

This function, depicted in Figure 7.7, squashes the real line into the interval
(0, 1), which is appropriate for classification because we would never want to
make a prediction of greater than 1 or less than 0. It is also differentiable, with a
simple derivative – namely, f ′(x) = f (x)× (1− f (x)) – which can be computed
using just the values of the outputs.

The LinearLearner algorithm of Figure 7.6 (page 305) can be changed to use
the sigmoid function by changing line 17 to

wi := wi + η × δ× pvalw(e, Y)× [1− pvalw(e, Y)]× val(e, Xi) .

where pvalw(e, Y) = f (∑i wi × val(e, Xi)) is the predicted value of feature Y for
example e.

Example 7.10 Consider learning a squashed linear function for classifying the
data of Figure 7.1 (page 289). One function that correctly classifies the examples
is

Reads = f (−8 + 7× Short + 3×New + 3× Known) ,

where f is the sigmoid function. A function similar to this can be found with
about 3,000 iterations of gradient descent with a learning rate η = 0.05. Accord-
ing to this function, Reads is true (the predicted value is closer to 1 than 0) if and
only if Short is true and either New or Known is true. Thus, the linear classifier
learns the same function as the decision tree learner. To see how this works, see
the “mail reading” example of the Neural AIspace.org applet.

This algorithm with the sigmoid function as the activation function can
learn any linearly separable classification in the sense that the error can be

AIspace.org

308 7. Learning: Overview and Supervised Learning

+ +

+-

0 1

0

1

or

- +

--

0 1

0

1

and

+ -

+-

0 1

0

1

xor

Figure 7.8: Linear separators for Boolean functions

made arbitrarily small on arbitrary sets of examples if, and only if, the target
classification is linearly separable. A classification is linearly separable if there
exists a hyperplane where the classification is true on one side of the hyper-
plane and false on the other side. The hyperplane is defined as where the pre-
dicted value, f w(X1, . . . , Xn) = f (w0 + w1× val(e, X1) + · · ·+ wn× val(e, Xn)), is
0.5. For the sigmoid activation function, this occurs when w0 + w1× val(e, X1)+
· · ·+ wn × val(e, Xn) = 0 for the learned weights w. On one side of this hyper-
plane, the prediction is greater than 0.5; on the other side, it is less than 0.5.

Figure 7.8 shows linear separators for “or” and “and”. The dashed line sep-
arates the positive (true) cases from the negative (false) cases. One simple func-
tion that is not linearly separable is the exclusive-or (xor) function, shown on
the right. There is no straight line that separates the positive examples from the
negative examples. As a result, a linear classifier cannot represent, and there-
fore cannot learn, the exclusive-or function.

Often it is difficult to determine a priori whether a data set is linearly sepa-
rable.

Example 7.11 Consider the data set of Figure 7.9, which is used to predict
whether a person likes a holiday as a function of whether there is culture,
whether the person has to fly, whether the destination is hot, whether there
is music, and whether there is nature. In this data set, the value 1 means true
and 0 means false. The linear classifier requires the numerical representation.

After 10,000 iterations of gradient descent with a learning rate of 0.05, the
optimal prediction is (to one decimal point)

Likes = f (2.3× Culture + 0.01× Fly− 9.1×Hot

− 4.5×Music + 6.8×Nature + 0.01) ,

which approximately predicts the target value for all of the tuples in the train-
ing set except for the last and the third-to-last tuple, for which it predicts a value
of about 0.5. This function seems to be quite stable with different initializations.
Increasing the number of iterations makes it predict the other tuples better.

When the domain of the target variable is greater than 2 – there are more than
two classes – indicator variables (page 290) can be used to convert the classifi-
cation to binary variables. These binary variables could be learned separately.
However, the outputs of the individual classifiers must be combined to give
a prediction for the target variable. Because exactly one of the values must be

7.3. Basic Models for Supervised Learning 309

Culture Fly Hot Music Nature Likes
0 0 1 0 0 0
0 1 1 0 0 0
1 1 1 1 1 0
0 1 1 1 1 0
0 1 1 0 1 0
1 0 0 1 1 1
0 0 0 0 0 0
0 0 0 1 1 1
1 1 1 0 0 0
1 1 0 1 1 1
1 1 0 0 0 1
1 0 1 0 1 1
0 0 0 1 0 0
1 0 1 1 0 0
1 1 1 1 0 0
1 0 0 1 0 0
1 1 1 0 1 0
0 0 0 0 1 1
0 1 0 0 0 1

Figure 7.9: Training data for which holiday a person likes

true for each example, the learner should not predict that more than one will
be true or that none will be true. A classifier that predicts a probability distri-
bution can normalize the predictions of the individual predictions. A learner
that must make a definitive prediction can use the mode.

7.3.3 Bayesian Classifiers

A Bayesian classifier is based on the idea that the role of a (natural) class is to
predict the values of features for members of that class. Examples are grouped
in classes because they have common values for the features. Such classes are
often called natural kinds. In this section, the target feature corresponds to a
discrete class, which is not necessarily binary.

The idea behind a Bayesian classifier is that, if an agent knows the class, it
can predict the values of the other features. If it does not know the class, Bayes’
rule (page 227) can be used to predict the class given (some of) the feature val-
ues. In a Bayesian classifier, the learning agent builds a probabilistic model of
the features and uses that model to predict the classification of a new example.

A latent variable is a probabilistic variable that is not observed. A Bayesian
classifier is a probabilistic model where the classification is a latent variable
that is probabilistically related to the observed variables. Classification then
become inference in the probabilistic model.

310 7. Learning: Overview and Supervised Learning

UserAction

Author Thread Length Where Read

Figure 7.10: Belief network corresponding to a naive Bayesian classifier

The simplest case is the naive Bayesian classifier, which makes the inde-
pendence assumption that the input features are conditionally independent of
each other given the classification. (See page 233 for a definition of conditional
independence.)

The independence of the naive Bayesian classifier is embodied in a particu-
lar belief network (page 235) where the features are the nodes, the target vari-
able (the classification) has no parents, and the classification is the only parent
of each input feature. This belief network requires the probability distributions
P(Y) for the target feature Y and P(Xi|Y) for each input feature Xi. For each
example, the prediction can be computed by conditioning on observed values
for the input features and by querying the classification.

Given an example with inputs X1=v1, . . . , Xk=vk, Bayes’ rule (page 227) is
used to compute the posterior probability distribution of the example’s classi-
fication, Y:

P(Y|X1=v1, . . . , Xk=vk)

=
P(X1=v1, . . . , Xk=vk|Y)× P(Y)

P(X1=v1, . . . , Xk=vk)

=
P(X1=v1|Y)× · · · × P(Xk=vk|Y)× P(Y)

∑Y P(X1=v1|Y)× · · · × P(Xk=vk|Y)× P(Y)

where the denominator is a normalizing constant to ensure the probabilities
sum to 1. The denominator does not depend on the class and, therefore, it is
not needed to determine the most likely class.

To learn a classifier, the distributions of P(Y) and P(Xi|Y) for each input fea-
ture can be learned from the data, as described in Section 7.2.3 (page 296). The
simplest case is to use the empirical frequency in the training data as the proba-
bility (i.e., use the proportion in the training data as the probability). However,
as shown below, this approach is often not a good idea when this results in zero
probabilities.

Example 7.12 Suppose an agent wants to predict the user action given the
data of Figure 7.1 (page 289). For this example, the user action is the classifi-
cation. The naive Bayesian classifier for this example corresponds to the belief
network of Figure 7.10. The training examples are used to determine the prob-
abilities required for the belief network.

7.3. Basic Models for Supervised Learning 311

Suppose the agent uses the empirical frequencies as the probabilities for
this example. The probabilities that can be derived from these data are

P(UserAction=reads) =
9

18
= 0.5

P(Author=known|UserAction=reads) =
2
3

P(Author=known|UserAction=skips) =
2
3

P(Thread=new|UserAction=reads) =
7
9

P(Thread=new|UserAction=skips) =
1
3

P(Length=long|UserAction=reads) = 0

P(Length=long|UserAction=skips) =
7
9

P(WhereRead=home|UserAction=reads) =
4
9

P(WhereRead=home|UserAction=skips) =
4
9

.

Based on these probabilities, the features Author and WhereRead have no
predictive power because knowing either does not change the probability
that the user will read the article. The rest of this example ignores these
features.

To classify a new case where the author is unknown, the thread is a follow-
up, the length is short, and it is read at home,

P(UserAction=reads|Thread=followUp∧ Length=short)
= P(followUp|reads)× P(short|reads)× P(reads)× c

=
2
9
× 1× 1

2
× c

=
1
9
× c

P(UserAction=skips|Thread=followUp∧ Length=short)
= P(followUp|skips)× P(short|skips)× P(skips)× c

=
2
3
× 2

9
× 1

2
× c

=
2

27
× c

where c is a normalizing constant that ensures these add up to 1. Thus, c must
be 27

5 , so

P(UserAction=reads|Thread=followUp∧ Length=short) = 0.6 .

312 7. Learning: Overview and Supervised Learning

This prediction does not work well on example e11, which the agent skips, even
though it is a followUp and is short. The naive Bayesian classifier summarizes
the data into a few parameters. It predicts the article will be read because being
short is a stronger indicator that the article will be read than being a follow-up
is an indicator that the article will be skipped.

A new case where the length is long has P(length=long|UserAction=
reads) = 0. Thus, the posterior probability that the UserAction=reads is zero, no
matter what the values of the other features are.

The use of zero probabilities can imply some unexpected behavior. First,
some features become predictive: knowing just one feature value can rule out
a category. If we allow zero probabilities, it is possible that some combinations
of observations are impossible. See Exercise 7.13 (page 346). This is a problem
not necessarily with using a Bayesian classifier but rather in using empirical
frequencies as probabilities. The alternative to using the empirical frequencies
is to incorporate pseudocounts (page 296). A designer of the learner should
carefully choose pseudocounts, as shown in the following example.

Example 7.13 Consider how to learn the probabilities for the help system of
Example 6.16 (page 246), where a helping agent infers what help page a user is
interested in based on the keywords given by the user. The helping agent must
learn the prior probability that each help page is wanted and the probability of
each keyword given the help page wanted. These probabilities must be learned,
because the system designer does not know a priori what words users will
use. The agent can learn from the words users actually use when looking for
help.

The learner must learn P(H). To do this, it starts with a pseudocount
(page 296) for each hi. Pages that are a priori more likely can have a higher
pseudocount. If the designer did not have any prior belief about which pages
were more likely, the agent could use the same pseudocount for each page.
To think about what count to use, the designer should consider how much
more the agent would believe a page is the correct page after it has seen the
page once; see Section 7.2.3 (page 296). It is possible to learn this pseudo-
count, if the designer has built another help system, by optimizing the pseu-
docount over the training data for that help system [or by using what is called
a hierarchical Bayesian model (page 338)]. Given the pseudocounts and some
data, P(hi) can be computed by dividing the count (the empirical count plus
the pseudocount) associated with hi by the sum of the counts for all of the
pages.

For each word wj and for each help page hi, the helping agent requires two
counts – the number of times wj was used when hi was the appropriate page
(call this c+

ij) and the the number of times wj was not used when hi was the ap-

propriate page (call this c−ij). Neither of these counts should be zero. We expect

c−ij to be bigger on average than c+
ij , because we expect the average query to

use a small portion of the total number of words.We may want to use different

7.4. Composite Models 313

counts for those words that appear in the help page hi than for those words that
do not appear in hi, so that the system starts with sensible behavior.

Every time a user claims they have found the help page they are interested
in, the counts for that page and the conditional counts for all of the words can be
updated. That is, if the user says that hi is the correct page, the count associated
with hi can be incremented, c+

ij is incremented for each word wj used in the

query, and c−ij is incremented for each wj not in the query.
This model does not use information about the wrong page. If the user

claims that a page is not the correct page, this information is not used until
the correct page is found.

The biggest challenge in building such a help system is not in the learning
but in acquiring useful data. In particular, users may not know whether they
have found the page they were looking for. Thus, users may not know when
to stop and provide the feedback from which the system learns. Some users
may never be satisfied with a page. Indeed, there may not exist a page they
are satisfied with, but that information never gets fed back the learner. Alter-
natively, some users may indicate they have found the page they were look-
ing for, even though there may be another page that was more appropriate. In
the latter case, the correct page may have its count reduced so that it is never
discovered.

Although there are some cases where the naive Bayesian classifier does not
produce good results, it is extremely simple, it is easy to implement, and often
it works very well. It is a good method to try for a new problem.

In general, the naive Bayesian classifier works well when the independence
assumption is appropriate, that is, when the class is a good predictor of the
other features and the other features are independent given the class. This may
be appropriate for natural kinds, where the classes have evolved because they
are useful in distinguishing the objects that humans want to distinguish. Natu-
ral kinds are often associated with nouns, such as the class of dogs or the class
of chairs.

7.4 Composite Models

Decision trees, (squashed) linear functions, and Bayesian classifiers provide the
basis for many other supervised learning techniques. Linear classifiers are very
restricted in what they can represent. Although decision trees can represent
any discrete function, many simple functions have very complicated decision
trees. Bayesian classifiers make a priori modeling assumptions that may not be
valid.

One way to make the linear function more powerful is to have the inputs to
the linear function be some non-linear function of the original inputs. Adding
these new features can increase the dimensionality, making some functions that
were not linear (or linearly separable) in the lower-dimensional space linear in
the higher-dimensional space.

314 7. Learning: Overview and Supervised Learning

Example 7.14 The exclusive-or function, x1 xor x2, is linearly separable in the
space where the dimensions are X1, X2, and x1x2, where x1x2 is a feature that
is true when both x1 and x2 are true. To visualize this, consider Figure 7.8
(page 308); with the product as the third dimension, the top-right point will
be lifted out of the page, allowing for a linear separator (in this case a plane) to
go underneath it.

A support vector machine (SVM) is used for classification. It uses func-
tions of the original inputs as the inputs of the linear function. These functions
are called kernel functions. Many possible kernel functions exist. An exam-
ple kernel function is the product of original features; adding the products
of features is enough to enable the representation of the exclusive-or func-
tion. Increasing the dimensionality can, however, cause overfitting. An SVM
constructs a decision surface, which is a hyperplane that divides the positive
and negative examples in this higher-dimensional space. Define the margin
to be the minimum distance from the decision surface to any of the exam-
ples. An SVM finds the decision surface with maximum margin. The exam-
ples that are closest to the decision surface are those that support (or hold up)
the decision surface. In particular, these examples, if removed, would change
the decision surface. Overfitting is avoided because these support vectors de-
fine a surface that can be defined in fewer parameters than there are exam-
ples. For detailed description of SVMs see the references at the end of this
chapter.

Neural networks allow the inputs to the (squashed) linear function to be
a squashed linear function with parameters to be tuned. Having multiple lay-
ers of squashed linear functions as inputs to (squashed) linear functions that
predict the target variables allows more complex functions to be represented.
Neural networks are described in more detail later.

Another nonlinear representation is a regression tree, which is a decision
tree with a (squashed) linear function at the leaves of the decision tree. This can
represent a piecewise linear approximation. It is even possible to have neural
networks or SVMs at the leaves of the decision tree. To classify a new example,
the example is filtered down the tree, and the classifier at the leaves is then
used to classify the example.

The naive Bayesian classifier can be expanded to allow some input features
to be parents of the classification and to allow some to be children. The prob-
ability of the classification given its parents can be represented as a decision
tree or a squashed linear function or a neural network. The children of the
classification do not have to be independent. One representation of the chil-
dren is as a tree augmented naive Bayesian (TAN) network, where the chil-
dren are allowed to have exactly one other parent other than the classifica-
tion (as long as the resulting graph is acyclic). This allows for a simple model
that accounts for interdependencies among the children. An alternative is to
put structure in the class variable. A latent tree model decomposes the class
variable into a number of latent variables that are connected together in a

7.4. Composite Models 315

tree structure. Each observed variable is a child of one of the latent variables.
The latent variables allow a model of the dependence between the observed
variables.

Another possibility is to use a number of classifiers that have each been
trained on the data and to combine these using some mechanism such as vot-
ing or a linear function. These techniques are known as ensemble learning
(page 319).

7.4.1 Neural Networks

Neural networks are a popular target representation for learning. These net-
works are inspired by the neurons in the brain but do not actually simulate
neurons. Artificial neural networks typically contain many fewer than the ap-
proximately 1011 neurons that are in the human brain, and the artificial neu-
rons, called units, are much simpler than their biological counterparts.

Artificial neural networks are interesting to study for a number of reasons:

• As part of neuroscience, to understand real neural systems, researchers are
simulating the neural systems of simple animals such as worms, which
promises to lead to an understanding about which aspects of neural systems
are necessary to explain the behavior of these animals.

• Some researchers seek to automate not only the functionality of intelligence
(which is what the field of artificial intelligence is about) but also the mecha-
nism of the brain, suitably abstracted. One hypothesis is that the only way to
build the functionality of the brain is by using the mechanism of the brain.
This hypothesis can be tested by attempting to build intelligence using the
mechanism of the brain, as well as without using the mechanism of the brain.
Experience with building other machines – such as flying machines (page 9),
which use the same principles, but not the same mechanism, that birds use
to fly – would indicate that this hypothesis may not be true. However, it is
interesting to test the hypothesis.

• The brain inspires a new way to think about computation that contrasts with
currently available computers. Unlike current computers, which have a few
processors and a large but essentially inert memory, the brain consists of
a huge number of asynchronous distributed processes, all running concur-
rently with no master controller. One should not think that the current com-
puters are the only architecture available for computation.

• As far as learning is concerned, neural networks provide a different measure
of simplicity as a learning bias than, for example, decision trees. Multilayer
neural networks, like decision trees, can represent any function of a set of
discrete features. However, the functions that correspond to simple neural
networks do not necessarily correspond to simple decision trees. Neural net-
work learning imposes a different bias than decision tree learning. Which is
better, in practice, is an empirical question that can be tested on different
domains.

316 7. Learning: Overview and Supervised Learning

There are many different types of neural networks. This book considers one
kind of neural network, the feed-forward neural network. Feed-forward net-
works can be seen as cascaded squashed linear functions. The inputs feed into
a layer of hidden units, which can feed into layers of more hidden units, which
eventually feed into the output layer. Each of the hidden units is a squashed
linear function of its inputs.

Neural networks of this type can have as inputs any real numbers, and
they have a real number as output. For regression, it is typical for the output
units to be a linear function of their inputs. For classification it is typical for
the output to be a sigmoid function of its inputs (because there is no point in
predicting a value outside of [0,1]). For the hidden layers, there is no point in
having their output be a linear function of their inputs because a linear function
of a linear function is a linear function; adding the extra layers gives no added
functionality. The output of each hidden unit is thus a squashed linear function
of its inputs.

Associated with a network are the parameters for all of the linear functions.
These parameters can be tuned simultaneously to minimize the prediction er-
ror on the training examples.

Example 7.15 Figure 7.11 shows a neural network with one hidden layer for
the classification data of Figure 7.9 (page 309). As explained in Example 7.11
(page 308), this data set is not linearly separable. In this example, five Boolean
inputs correspond to whether there is culture, whether the person has to fly,
whether the destination is hot, whether there is music, and whether there is
nature, and a single output corresponds to whether the person likes the hol-
iday. In this network, there is one hidden layer, which contains two hidden
units that have no a priori meaning. The network represents the following
equations:

pval(e, Likes) = f (w0 + w1 × val(e, H1) + w2 × val(e, H2))
val(e, H1) = f (w3 + w4 × val(e, Culture) + w5 × val(e, Fly)

+ w6 × val(e, Hot) + w7 × val(e, Music) + w8 × val(e, Nature)
val(e, H2) = f (w9 + w10 × val(e, Culture) + w11 × val(e, Fly)

+ w12 × val(e, Hot) + w13 × val(e, Music)
+ w14 × val(e, Nature)) ,

where f (x) is an activation function.
For this example, there are 15 real numbers to be learned (w0, . . . , w14). The

hypothesis space is thus a 15-dimensional real space. Each point in this 15-
dimensional space corresponds to a function that predicts a value for Likes for
every example with Culture, Fly, Hot, Music, and Nature given.

Given particular values for the parameters, and given values for the inputs,
a neural network predicts a value for each target feature. The aim of neural
network learning is, given a set of examples, to find parameter settings that
minimize the error. If there are m parameters, finding the parameter settings

7.4. Composite Models 317

Culture Fly Hot Music

H2

w9

H1

w3

Likes

w0

w1w2

w7w6

w4

w10

w12

w11

w5 w13

Input Units

Hidden Units

Output Unit

Nature

w14

w8

Figure 7.11: A neural network with one hidden layer. The wi are weights. The
weight inside the nodes is the weight that does not depend on an input; it is the
one multiplied by 1. The meaning of this network is given in Example 7.15.

with minimum error involves searching through an m-dimensional Euclidean
space.

Back-propagation learning is gradient descent search (page 149) through
the parameter space to minimize the sum-of-squares error.

Figure 7.12 (on the next page) gives the incremental gradient descent ver-
sion of back-propagation for networks with one layer of hidden units. This ap-
proach assumes n input features, k output features, and nh hidden units. Both
hw and ow are two-dimensional arrays of weights. Note that 0 : nk means the
index ranges from 0 to nk (inclusive) and 1 : nk means the index ranges from 1
to nk (inclusive). This algorithm assumes that val(e, X0) = 1 for all e.

The back-propagation algorithm is similar to the linear learner of Figure 7.6
(page 305), but it takes into account multiple layers and the activation function.
Intuitively, for each example it involves simulating the network on that exam-
ple, determining first the value of the hidden units (line 23) then the value of
the output units (line 25). It then passes the error back through the network,
computing the error on the output nodes (line 26) and the error on the hidden
nodes (line 28). It then updates all of the weights based on the derivative of the
error.

Gradient descent search (page 149) involves repeated evaluation of the
function to be minimized – in this case the error – and its derivative. An

318 7. Learning: Overview and Supervised Learning

1: procedure BackPropagationLearner(X, Y, E, nh, η)
2: Inputs
3: X: set of input features, X = {X1, . . . , Xn}
4: Y: set of target features, Y = {Y1, . . . , Yk}
5: E: set of examples from which to learn
6: nh: number of hidden units
7: η: learning rate

8: Output
9: hidden unit weights hw[0 : n, 1 : nh]

10: output unit weights ow[0 : nh, 1 : k]
11: Local
12: hw[0 : n, 1 : nh] weights for hidden units
13: ow[0 : nh, 1 : k] weights for output units
14: hid[0 : nh] values for hidden units
15: hErr[1 : nh] errors for hidden units
16: out[1 : k] predicted values for output units
17: oErr[1 : k] errors for output units

18: initialize hw and ow randomly
19: hid[0] := 1
20: repeat
21: for each example e in E do
22: for each h ∈ {1, . . . , nh} do
23: hid[h] := ∑n

i=0 hw[i, h]× val(e, Xi)
24: for each o ∈ {1, . . . , k} do
25: out[o] := ∑n

h=0 hw[i, h]× hid[h]
26: oErr[o] := out[o]× (1− out[o])× (val(e, Yo)− out[o])
27: for each h ∈ {0, . . . , nh} do
28: hErr[h] := hid[h]× (1− hid[h])×∑k

o=0 ow[h, o]× oErr[o]
29: for each i ∈ {0, . . . , n} do
30: hw[i, h] := hw[i, h] + η × hErr[h]× val(e, Xi)
31: for each o ∈ {1, . . . , k} do
32: ow[h, o] := ow[h, o] + η × oErr[o]× hid[h]
33: until termination
34: return w0, . . . , wn

Figure 7.12: Back-propagation for learning a neural network with a single hidden
layer

evaluation of the error involves iterating through all of the examples. Back-
propagation learning thus involves repeatedly evaluating the network on all
examples. Fortunately, with the logistic function the derivative is easy to deter-
mine given the value of the output for each unit.

7.4. Composite Models 319

Example 7.16 The network of Figure 7.11 (page 317), with one hidden layer
containing two units, trained on the data of Figure 7.9 (page 309), can perfectly
fit this data.

One run of back-propagation with the learning rate η = 0.05, and taking
10,000 steps, gave weights that accurately predicted the training data:

H1 = f (− 2.0× Culture− 4.43× Fly + 2.5×Hot

+ 2.4×Music− 6.1×Nature + 1.63)
H2 = f (− 0.7× Culture + 3.0× Fly + 5.8×Hot

+ 2.0×Music− 1.7×Nature− 5.0)
Likes = f (− 8.5×H1− 8.8×H2 + 4.36) .

The use of neural networks may seem to challenge the physical symbol
system hypothesis (page 15), which relies on symbols having meaning. Part of
the appeal of neural networks is that, although meaning is attached to the input
and output units, the designer does not associate a meaning with the hidden
units. What the hidden units actually represent is something that is learned.
After a neural network has been trained, it is often possible to look inside the
network to determine what a particular hidden unit actually represents. Some-
times it is easy to express concisely in language what it represents, but often
it is not. However, arguably, the computer has an internal meaning; it can ex-
plain its internal meaning by showing how examples map into the values of
the hidden unit.

7.4.2 Ensemble Learning

In ensemble learning, an agent takes a number of learning algorithms and
combines their output to make a prediction. The algorithms being combined
are called base-level algorithms.

The simplest case of ensemble learning is to train the base-level algorithms
on random subsets of the data and either let these vote for the most popular
classification (for definitive predictions) or average the predictions of the base-
level algorithm. For example, one could train a number of decision trees, each
on random samples of, say, 50% of the training data, and then either vote for the
most popular classification or average the numerical predictions. The outputs
of the decision trees could even be inputs to a linear classifier, and the weights
of this classifier could be learned.

This approach works well when the base-level algorithms are unstable:
they tend to produce different representations depending on which subset of
the data is chosen. Decision trees and neural networks are unstable, but linear
classifiers tend to be stable and so would not work well with ensembles.

In bagging, if there are m training examples, the base-level algorithms are
trained on sets of m randomly drawn, with replacement, sets of the training
examples. In each of these sets, some examples are not chosen, and some are
duplicated. On average, each set contains about 63% of the original examples.

320 7. Learning: Overview and Supervised Learning

Figure 7.13: Error as a function of training time. On the x-axis is the step count
of a run of back-propagation with three hidden units on the data of Figure 7.9
(page 309), using unseen examples as the test set. On the y-axis is the sum-of-
squares error for the training set (gray line) and the test set (black line).

In boosting there is a sequence of classifiers in which each classifier uses a
weighted set of examples. Those examples that the previous classifiers misclas-
sified are weighted more. Weighting examples can either be incorporated into
the base-level algorithms or can affect which examples are chosen as training
examples for the future classifiers.

Another way to create base-level classifiers is to manipulate the input fea-
tures. Different base-level classifiers can be trained on different features. Often
the sets of features are hand-tuned.

Another way to get diverse base-level classifiers is to randomize the algo-
rithm. For example, neural network algorithms that start at different parame-
ter settings may find different local minima, which make different predictions.
These different networks can be combined.

7.5 Avoiding Overfitting

Overfitting can occur when some regularities appear in the training data that
do not appear in the test data, and when the learner uses those regularities for
prediction.

Example 7.17 Figure 7.13 shows a typical plot of how the sum-of-squares
error changes with the number of iterations of linear regression. The sum-of-
squares error on the training set decreases as the number of iterations increases.
For the test set, the error reaches a minimum and then increases as the number
of iterations increases. The same behavior occurs in decision-tree learning as a
function of the number of splits.

7.5. Avoiding Overfitting 321

We discuss two ways to avoid overfitting. The first is to have an explicit
trade-off between model complexity and fitting the data. The second approach
is to use some of the training data to detect overfitting.

7.5.1 Maximum A Posteriori Probability and Minimum
Description Length

One way to trade off model complexity and fit to the data is to choose the
model that is most likely, given the data. That is, choose the model that max-
imizes the probability of the model given the data, P(model|data). The model
that maximizes P(model|data) is called the maximum a posteriori probability
model, or the MAP model.

The probability of a model (or a hypothesis) given some data is obtained by
using Bayes’ rule (page 227):

P(model|data) =
P(data|model)× P(model)

P(data)
. (7.3)

The likelihood, P(data|model), is the probability that this model would have
produced this data set. It is high when the model is a good fit to the data,
and it is low when the model would have predicted different data. The prior
P(model) encodes the learning bias and specifies which models are a priori
more likely. The prior probability of the model, P(model), is required to bias the
learning toward simpler models. Typically simpler models have a higher prior
probability. The denominator P(data) is a normalizing constant to make sure
that the probabilities sum to 1.

Because the denominator of Equation (7.3) is independent of the model, it
can be ignored when choosing the most likely model. Thus, the MAP model is
the model that maximizes

P(data|model)× P(model) . (7.4)

One alternative is to choose the maximum likelihood model – the model
that maximizes P(data|model). The problem with choosing the most likely
model is that, if the space of models is rich enough, a model exists that speci-
fies that this particular data set will be produced, which has P(data|model) = 1.
Such a model may be a priori very unlikely. However, we do not want to ex-
clude it, because it may be the true model. Choosing the maximum-likelihood
model is equivalent to choosing the maximum a posteriori model with a uni-
form prior over hypotheses.

MAP Learning of Decision Trees

To understand MAP learning, consider how it can be used to learn decision
trees (page 298). If there are no examples with the same values for the input
features and different values for the target features, there are always decision
trees that fit the data perfectly. If the training examples do not cover all of the
assignments to the input variables, multiple trees will fit the data perfectly.

322 7. Learning: Overview and Supervised Learning

However, with noise, none of these may be the best model. Not only do we
want to compare the models that fit the data perfectly; we also want to compare
those models with the models that do not necessarily fit the data perfectly.
MAP learning provides a way to compare these models.

Suppose there are multiple decision trees that accurately fit the data. If
model denotes one of those decision trees, P(data|model) = 1. The preference
for one decision tree over another depends on the prior probabilities of the
decision trees; the prior probability encodes the learning bias (page 284). The
preference for simpler decision trees over more complicated decision trees oc-
curs because simpler decision trees have a higher prior probability.

Bayes’ rule gives a way to trade off simplicity and ability to handle noise.
Decision trees can handle noisy data by having probabilities at the leaves.
When there is noise, larger decision trees fit the training data better, because
the tree can account for random regularities (noise) in the training data. In
decision-tree learning, the likelihood favors bigger decision trees; the more
complicated the tree, the better it can fit the data. The prior distribution can
favor smaller decision trees. When there is a prior distribution over decision
trees, Bayes’ rule specifies how to trade off model complexity and accuracy:
The posterior probability of the model given the data is proportional to the
product of the likelihood and the prior.

Example 7.18 Consider the data of Figure 7.1 (page 289), where the learner is
to predict the user’s actions.

One possible decision tree is the one given on the left of Figure 7.4
(page 298). Call this decision tree d2. The likelihood of the data is P(data|d2) = 1.
That is, d2 accurately fits the data.

Another possible decision tree is one with no internal nodes, and a leaf that
says to predict reads with probability 1

2 . This is the most likely tree with no
internal nodes, given the data. Call this decision tree d0. The likelihood of the
data given this model is

P(data|d0) =
(

1
2

)9

×
(

1
2

)9

≈ 0.00000149.

Another possible decision tree is one on the right of Figure 7.4 (page 298),
which just splits on Length, and with probabilities on the leaves given by
P(reads|Length=long) = 0 and P(reads|Length=short) = 9

11 . Note that 9
11 is the

empirical frequency of reads among the training set with Length=short. Call this
decision tree d1a. The likelihood of the data given this model is

P(data|d1a) = 17 ×
(

9
11

)9

×
(

2
11

)2

≈ 0.0543.

Another possible decision tree is one that just splits on Thread, and
with probabilities on the leaves given by P(reads|Thread=new) = 7

10 (as
7 out of the 10 examples with Thread=new have UserAction=reads), and

7.5. Avoiding Overfitting 323

P(reads|Thread=followUp) = 2
8 . Call this decision tree d1t. The likelihood of the

data given d1t is

P(data|d1t) =
(

7
10

)7

×
(

3
10

)3

×
(

6
8

)6

×
(

2
8

)2

≈ 0.000025.

These are just four of the possible decision trees. Which is best depends on the
prior on trees. The likelihood of the data is multiplied by the prior probability
of the decision trees to determine the posterior probability of the decision tree.

Description Length

The negative of the logarithm (base 2) of Formula (7.4) is

(− log2 P(data|model)) + (− log2 P(model)).

This can be interpreted in terms of information theory (page 231). The left-
hand side of this expression is the number of bits it takes to describe the data
given the model. The right-hand side is the number of bits it takes to describe
the model. A model that minimizes this sum is a minimum description length
(MDL) model. The MDL principle is to choose the model that minimizes the
number of bits it takes to describe both the model and the data given the model.

One way to think about the MDL principle is that the aim is to communicate
the data as succinctly as possible. The use of the model is to make communi-
cation shorter. To communicate the data, first communicate the model, then
communicate the data in terms of the model. The number of bits it takes to
communicate the data using a model is the number of bits it takes to commu-
nicate the model plus the number of bits it takes to communicate the data in
terms of the model. The MDL principle is used to choose the model that lets us
communicate the data in as few bits as possible.

As the logarithm function is monotonically increasing, the MAP model is
the same the MDL model. The idea of choosing a model with the highest pos-
terior probability is the same as choosing a model with a minimum description
length.

Example 7.19 In Example 7.18, the definition of the priors on decision trees
was left unspecified. The notion of a description length provides a basis for
assigning priors to decision trees; consider how many bits it takes to describe
a decision tree [see Exercise 7.11 (page 346)]. One must be careful defining the
codes, because each code should describe a decision tree, and each decision tree
should be described by a code.

7.5.2 Cross Validation

The problem with the previous methods is that they require a notion of simplic-
ity to be known before the agent has seen any data. It would seem as though

324 7. Learning: Overview and Supervised Learning

an agent should be able to determine, from the data, how complicated a model
needs to be. Such a method could be used when the learning agent has no prior
information about the world.

The idea of cross validation is to split the training set into two: a set of
examples to train with, and a validation set. The agent trains using the new
training set. Prediction on the validation set is used to determine which model
to use.

Consider a graph such as the one in Figure 7.13 (page 320). The error of
the training set gets smaller as the size of the tree grows. The idea of cross
validation is to choose the representation in which the error of the validation
set is a minimum. In these cases, learning can continue until the error of the
validation set starts to increase.

The validation set that is used as part of training is not the same as the test
set. The test set is used to evaluate how well the learning algorithm works as
a whole. It is cheating to use the test set as part of learning. Remember that
the aim is to predict examples that the agent has not seen. The test set acts as
a surrogate for these unseen examples, and so it cannot be used for training or
validation.

Typically, we want to train on as many examples as possible, because then
we get better models. However, having a small validation set means that the
validation set may fit well, or not fit well, just by luck. There are various
methods that have been used to reuse examples for both training and vali-
dation.

One method, k-fold cross validation, is used to determine the best model
complexity, such as the depth of a decision tree or the number of hidden units
in a neural network. The method of k-fold cross validation partitions the train-
ing set into k sets. For each model complexity, the learner trains k times, each
time using one of the sets as the validation set and the remaining sets as the
training set. It then selects the model complexity that has the smallest average
error on the validation set (averaging over the k runs). It can return the model
with that complexity, trained on all of the data.

7.6 Case-Based Reasoning

The previous methods tried to find a compact representation of the data that
can be used for future prediction. In case-based reasoning, the training exam-
ples – the cases – are stored and accessed to solve a new problem. To get a
prediction for a new example, those cases that are similar, or close to, the new
example are used to predict the value of the target features of the new example.
This is at one extreme of the learning problem where, unlike decision trees and
neural networks, relatively little work must be done offline, and virtually all of
the work is performed at query time.

Case-based reasoning can be used for classification and regression. It is also
applicable when the cases are complicated, such as in legal cases, where the

7.6. Case-Based Reasoning 325

cases are complex legal rulings, and in planning, where the cases are previous
solutions to complex problems.

If the cases are simple, one algorithm that works well is to use the k-nearest
neighbors for some given number k. Given a new example, the k training ex-
amples that have the input features closest to that example are used to predict
the target value for the new example. The prediction can be the mode, aver-
age, or some interpolation between the prediction of these k training examples,
perhaps weighting closer examples more than distant examples.

For this method to work, a distance metric is required that measures the
closeness of two examples. First define a metric for the domain of each fea-
ture, in which the values of the features are converted to a numerical scale that
can be used to compare values. Suppose val(e, Xi) is a numerical representa-
tion of the value of feature Xi for the example e. Then (val(e1, Xi)− val(e2, Xi))
is the difference between example e1 and e2 on the dimension defined by fea-
ture Xi. The Euclidean distance, the square root of the sum of the squares of
the dimension differences, can be used as the distance between two examples.
One important issue is the relative scales of different dimensions; increasing
the scale of one dimension increases the importance of that feature. Let wi be a
non-negative real-valued parameter that specifies the weight of feature Xi. The
distance between examples e1 and e2 is then

d(e1, e2) =
√

∑
i

wi × (val(e1, Xi)− val(e2, Xi))2 .

The feature weights can be provided as input. It is also possible to learn these
weights. The learning agent can try to find a parameter setting that minimizes
the error in predicting the value of each element of the training set, based on
every other instance in the training set. This is called the leave-one-out cross-
validation error measure.

Example 7.20 Consider using case-based reasoning on the data of Figure 7.1
(page 289). Rather than converting the data to a secondary representation as in
decision-tree or neural-network learning, case-based reasoning uses the exam-
ples directly to predict the value for the user action in a new case.

Suppose a learning agent wants to classify example e20, for which the au-
thor is unknown, the thread is a follow-up, the length is short, and it is read
at home. First the learner tries to find similar cases. There is an exact match
in example e11, so it may want to predict that the user does the same action
as for example e11 and thus skips the article. It could also include other close
examples.

Consider classifying example e19, where the author is unknown, the thread
is new, the length is long, and it was read at work. In this case there are no
exact matches. Consider the close matches. Examples e2, e8, and e18 agree on the
features Author, Thread, and WhereRead. Examples e10 and e12 agree on Thread,
Length, and WhereRead. Example e3 agrees on Author, Length, and WhereRead.
Examples e2, e8, and e18 predict Reads, but the other examples predict Skips. So
what should be predicted? The decision-tree algorithm says that Length is the

326 7. Learning: Overview and Supervised Learning

best predictor, and so e2, e8, and e18 should be ignored. For the sigmoid linear
learning algorithm, the parameter values in Example 7.10 (page 307) similarly
predict that the reader skips the article. A case-based reasoning algorithm to
predict whether the user will or will not read this article must determine the
relative importance of the dimensions.

One of the problems in case-based reasoning is accessing the relevant cases.
A kd-tree is a way to index the training examples so that training examples
that are close to a given example can be found quickly. Like a decision tree,
a kd-tree splits on input features, but at the leaves are subsets of the training
examples. In building a kd-tree from a set of examples, the learner tries to find
an input feature that partitions the examples into set of approximately equal
size and then builds kd-trees for the examples in each partition. This division
stops when all of the examples at a leaf are the same. A new example can be
filtered down the tree, as in a decision tree. The exact matches will be at the
leaf found. However, the examples at the leaves of the kd-tree could possibly be
quite distant from the example to be classified; they agree on the values down
the branch of the tree but could disagree on the values of all other features.
The same tree can be used to search for those examples that have one feature
different from the ones tested in the tree. See Exercise 7.16 (page 347).

Case-based reasoning is also applicable when the cases are more compli-
cated, for example, when they are legal cases or previous solutions to planning
problems. In this scenario, the cases can be carefully chosen and edited to be
useful. Case-based reasoning can be seen as a cycle of the following four tasks.

Retrieve: Given a new case, retrieve similar cases from the case base.

Reuse: Adapt the retrieved cases to fit to the new case.

Revise: Evaluate the solution and revise it based on how well it works.

Retain: Decide whether to retain this new case in the case base.

The revision can involve other reasoning techniques, such as using the pro-
posed solution as a starting point to search for a solution, or a human could do
the adaptation in an interactive system. Retaining can then save the new case
together with the solution found.

Example 7.21 A common example of a case-based reasoning system is a
helpdesk that users call with problems to be solved. For example, case-based
reasoning could be used by the diagnostic assistant to help users diagnose
problems on their computer systems. When a user gives a description of their
problem, the closest cases in the case base are retrieved. The diagnostic assis-
tant can recommend some of these to the user, adapting each case to the user’s
particular situation. An example of adaptation is to change the recommenda-
tion based on what software the user has, what method they use to connect to
the Internet, and the brand of printer. If one of the cases suggested works, that
can be recorded in the case base to make that case be more important when

7.7. Learning as Refining the Hypothesis Space 327

another user asks a similar question. If none of the cases found works, some
other problem solving can be done to solve the problem, perhaps by adapting
other cases or having a human help diagnose the problem. When the problem
is finally fixed, what worked in that case can be added to the case base.

7.7 Learning as Refining the Hypothesis Space

So far, learning is either choosing the best representation – for example, the
best decision tree or the best values for parameters in a neural network – or
predicting the value of the target features of a new case from a database of
previous cases. This section considers a different notion of learning, namely
learning as delineating those hypotheses that are consistent with the examples.
Rather than choosing a hypothesis, the aim is to find all hypotheses that are
consistent. This investigation will shed light on the role of a bias and provide a
mechanism for a theoretical analysis of the learning problem.

We make three assumptions:

• There is a single target feature, Y, that is Boolean. This is not really a restric-
tion for classification, because any discrete feature can be made into Boolean
features using indicator variables (page 141).

• The hypotheses make definitive predictions, predicting true or false for each
example, rather than probabilistic prediction.

• There is no noise in the data.

Given these assumptions, it is possible to write a hypothesis in terms of a
proposition, where the primitive propositions are assignments to the input
features.

Example 7.22 The decision tree of Figure 7.4 (page 298) can be seen as a rep-
resentation reads defined by the proposition

pval(e, Reads) = val(e, Short) ∧ (val(e, New) ∨ val(e, Known)) .

For the rest of this section, we write this more simply as

reads↔ short∧ (new∨ known) .

The goal is to try to find a proposition on the input features that correctly
classifies the training examples.

Example 7.23 Consider the trading agent trying to infer which books or ar-
ticles the user reads based on keywords supplied in the article. Suppose the
learning agent has the following data:

article Crime Academic Local Music Reads
a1 true false false true true
a2 true false false false true
a3 false true false false false
a4 false false true false false
a5 true true false false true

328 7. Learning: Overview and Supervised Learning

The aim is to learn which articles the user reads.
In this example, reads is the target feature, and the aim is to find a definition

such as

reads↔ crime∧ (¬academic∨ ¬music) .

This definition may be used to classify the training examples as well as future
examples.

Hypothesis space learning assumes the following sets:

• I, the instance space, is the set of all possible examples.

• H, the hypothesis space, is a set of Boolean functions on the input fea-
tures.

• E ⊆ I is the set of training examples. Values for the input features and
the target feature are given for the training example.

If h ∈ H and i ∈ I, we write h(i) to mean the value that h predicts for i on the
target variable Y.

Example 7.24 In Example 7.23, I is the set of the 25 = 32 possible examples,
one for each combination of values for the features.

The hypothesis spaceH could be all Boolean combinations of the input fea-
tures or could be more restricted, such as conjunctions or propositions defined
in terms of fewer than three features.

In Example 7.23, the training examples are E = {a1, a2, a3, a4, a5}. The target
feature is Reads. Because the table specifies some of the values of this feature,
and the learner will make predictions on unseen cases, the learner requires a
bias (page 286). In hypothesis space learning, the bias is imposed by the hy-
pothesis space.

Hypothesis h is consistent with a set of training examples E if ∀e ∈ E, h ac-
curately predicts the target feature of e. That is, h(e) = val(e, Y); the predicted
value is the same as the actual value for each example. The problem is to find
the subset of H or just an element of H consistent with all of the training ex-
amples.

Example 7.25 Consider the data of Example 7.23, and suppose H is the set of
conjunctions of literals. An example hypothesis inH that is consistent with {a1}
is ¬academic ∧music. This hypothesis means that the person reads an article if
and only if ¬academic∧music is true of the article. This concept is not the target
concept because it is inconsistent with {a1, a2}.

7.7.1 Version-Space Learning

Rather than enumerating all of the hypotheses, the subset ofH consistent with
the examples can be found more efficiently by imposing some structure on the
hypothesis space.

7.7. Learning as Refining the Hypothesis Space 329

Hypothesis h1 is a more general hypothesis than hypothesis h2 if h2 implies
h1. In this case, h2 is a more specific hypothesis than h1. Any hypothesis is both
more general than itself and more specific than itself.

Example 7.26 The hypothesis ¬academic ∧ music is more specific than music
and is also more specific than ¬academic. Thus, music is more general than
¬academic ∧ music. The most general hypothesis is true. The most specific hy-
pothesis is false.

The “more general than” relation forms a partial ordering over the hypoth-
esis space. The version-space algorithm that follows exploits this partial order-
ing to search for hypotheses that are consistent with the training examples.

Given hypothesis space H and examples E, the version space is the subset
ofH that is consistent with the examples.

The general boundary of a version space, G, is the set of maximally gen-
eral members of the version space (i.e., those members of the version space
such that no other element of the version space is more general). The specific
boundary of a version space, S, is the set of maximally specific members of the
version space.

These concepts are useful because the general boundary and the specific
boundary completely determine the version space:

Proposition 7.2. The version space, given hypothesis space H and examples E, can
be derived from its general boundary and specific boundary. In particular, the version
space is the set of h ∈ H such that h is more general than an element of S and more
specific than an element of G.

Candidate Elimination Algorithm

The candidate elimination algorithm incrementally builds the version space
given a hypothesis space H and a set E of examples. The examples are added
one by one; each example possibly shrinks the version space by removing the
hypotheses that are inconsistent with the example. The candidate elimination
algorithm does this by updating the general and specific boundary for each
new example. This is described in Figure 7.14 (on the next page).

Example 7.27 Consider how the candidate elimination algorithm handles Ex-
ample 7.23 (page 327), whereH is the set of conjunctions of literals.

Before it has seen any examples, G0 = {true} – the user reads everything –
and S0 = {false} – the user reads nothing. Note that true is the empty conjunc-
tion and false is the conjunction of an atom and its negation.

After considering the first example, a1, G1 = {true} and

S1 = {crime∧ ¬academic∧ ¬local∧music}.

Thus, the most general hypothesis is that the user reads everything, and the
most specific hypothesis is that the user only reads articles exactly like this one.

330 7. Learning: Overview and Supervised Learning

1: procedure CandidateEliminationLearner(X, Y, E,H)
2: Inputs
3: X: set of input features, X = {X1, . . . , Xn}
4: Y: target feature
5: E: set of examples from which to learn
6: H: hypothesis space

7: Output
8: general boundary G ⊆ H
9: specific boundary S ⊆ H consistent with E

10: Local
11: G: set of hypotheses inH
12: S: set of hypotheses inH
13: Let G = {true}, S = {false};
14: for each e ∈ E do
15: if e is a positive example then
16: Elements of G that classify e as negative are removed from G;
17: Each element s of S that classifies e as negative is removed and

replaced by the minimal generalizations of s that classify e as positive and
are less general than some member of G;

18: Non-maximal hypotheses are removed from S;
19: else
20: Elements of S that classify e as positive are removed from S;
21: Each element g of G that classifies e as positive is removed and

replaced by the minimal specializations of g that classifies e as negative and
are more general than some member of S.

22: Non-minimal hypotheses are removed from G.

Figure 7.14: Candidate elimination algorithm

After considering the first two examples, G2 = {true} and

S2 = {crime∧ ¬academic∧ ¬local}.
Since a1 and a2 disagree on music, it has concluded that music cannot be rele-
vant.

After considering the first three examples, the general boundary becomes

G3 = {crime,¬academic}
and S3 = S2. Now there are two most general hypotheses; the first is that the
user reads anything about crime, and the second is that the user reads anything
non-academic.

After considering the first four examples,

G4 = {crime,¬academic∧ ¬local}
and S4 = S3.

7.7. Learning as Refining the Hypothesis Space 331

After considering all five examples, we have

G5 = {crime},
S5 = {crime∧ ¬local}.

Thus, after five examples, only two hypotheses exist in the version space. They
differ only on their prediction on an example that has crime ∧ local true. If
the target concept can be represented as a conjunction, only an example with
crime ∧ local true will change G or S. This version space can make predictions
about all other examples.

The Bias Involved in Version-Space Learning

Recall (page 286) that a bias is necessary for any learning to generalize beyond
the training data. There must have been a bias in Example 7.27 (page 329) be-
cause, after observing only 5 of the 16 possible assignments to the input vari-
ables, an agent was able to make predictions about examples it had not seen.

The bias involved in version-space learning is a called a language bias or a
restriction bias because the bias is obtained from restricting the allowable hy-
potheses. For example, a new example with crime false and music true will be
classified as false (the user will not read the article), even though no such ex-
ample has been seen. The restriction that the hypothesis must be a conjunction
of literals is enough to predict its value.

This bias should be contrasted with the bias involved in decision-tree learn-
ing (page 298). The decision tree can represent any Boolean function. Decision-
tree learning involves a preference bias, in that some Boolean functions are
preferred over others; those with smaller decision trees are preferred over those
with larger decision trees. A decision-tree learning algorithm that builds a sin-
gle decision tree top-down also involves a search bias in that the decision tree
returned depends on the search strategy used.

The candidate elimination algorithm is sometimes said to be an unbiased
learning algorithm because the learning algorithm does not impose any bias
beyond the language bias involved in choosing H. It is easy for the version
space to collapse to the empty set – for example, if the user reads an article
with crime false and music true. This means that the target concept is not inH.
Version-space learning is not tolerant to noise; just one misclassified example
can throw off the whole system.

The bias-free hypothesis space is where H is the set of all Boolean func-
tions. In this case, G always contains one concept: the concept which says that
all negative examples have been seen and every other example is positive. Sim-
ilarly, S contains the single concept which says that all unseen examples are
negative. The version space is incapable of concluding anything about exam-
ples it has not seen; thus, it cannot generalize. Without a language bias or a
preference bias, no generalization and therefore no learning will occur.

332 7. Learning: Overview and Supervised Learning

7.7.2 Probably Approximately Correct Learning

So far, we have seen a number of different learning algorithms. This section
covers some of the theoretical aspects of learning, developed in an area called
computational learning theory.

Some relevant questions that we can ask about a theory of computational
learning include the following:

• Is the learner guaranteed to converge to the correct hypothesis as the number
of examples increases?

• How many examples are required to identify a concept?
• How much computation is required to identify a concept?

In general, the answer to the first question is “no,” unless it can be guaranteed
that the examples always eventually rule out all but the correct hypothesis.
Someone out to trick the learner could choose examples that do not help dis-
criminate correct hypotheses from incorrect hypotheses. So if such a person
cannot be ruled out, a learner cannot guarantee to find a consistent hypothesis.
However, given randomly chosen examples, a learner that always chooses a
consistent hypothesis can get arbitrarily close to the correct concept. This re-
quires a notion of closeness and a specification of what is a randomly chosen
example.

Consider a learning algorithm that chooses a hypothesis consistent with
all of the training examples. Assume a probability distribution over possible
examples and that the training examples and the test examples are chosen from
the same distribution. The distribution does not have to be known. We will
prove a result that holds for all distributions.

Define the error of hypothesis h ∈ H, written error(h), to be the probability
of choosing an element i of I such that h(i) �= val(i, Y), where h(i) is the pre-
dicted value of target variable Y on possible example i, and val(i, Y) is the actual
value of Y. Recall that I, the instance space, is the set of all possible examples.
That is,

error(h) = P(h(i) �= val(i, Y)|i ∈ I) .

An agent typically does not know P or val(i, Y) for all i and, thus, does not
actually know the error of a particular hypothesis.

Given ε > 0, hypothesis h is approximately correct if error(h) ≤ ε.
We make the following assumption.

Assumption 7.3. The training and test examples are chosen independently from the
same probability distribution as the population.

It is still possible that the examples do not distinguish hypotheses that are
far away from the concept – it is just very unlikely that they do not. A learner
that chooses a hypothesis that is consistent with the training examples is
probably approximately correct if, for an arbitrary number δ (0 < δ ≤ 1),
the algorithm is not approximately correct in at most δ of the cases. That is, the
hypothesis generated is approximately correct at least 1− δ of the time.

7.7. Learning as Refining the Hypothesis Space 333

Under the preceding assumption, for arbitrary ε and δ, we can guarantee
that an algorithm that returns a consistent hypothesis will find a hypothesis
with error less than ε, in at least 1 − δ of the cases. Moreover, this outcome
does not depend on the probability distribution.

Suppose ε > 0 and δ > 0 are given. Partition the hypothesis space H into

H0 = {h ∈ H : error(h) ≤ ε}
H1 = {h ∈ H : error(h) > ε} .

We want to guarantee that the learner does not choose an element of H1 in
more than δ of the cases.

Suppose h ∈ H1, then

P(h is wrong for a single example) ≥ ε

P(h is correct for a single example) ≤ 1− ε

P(h is correct for m examples) ≤ (1− ε)m

Thus,

P(H1 contains a hypothesis that is correct for m examples)
≤ |H1| (1− ε)m

≤ |H| (1− ε)m

≤ |H| e−εm

using the inequality that (1− ε) ≤ e−ε if 0 ≤ ε ≤ 1.
Thus, if we ensure that |H| e−εm ≤ δ, we guarantee thatH1 does not contain

a hypothesis that is correct for m examples in more than δ of the cases. Thus,
H0 contains all of the correct hypotheses in all but δ is the cases.

Solving for m gives

m ≥ 1
ε

(
ln |H|+ ln

1
δ

)
.

Thus, we can conclude the following proposition.

Proposition 7.4. If a hypothesis is consistent with at least

1
ε

(
ln |H|+ ln

1
δ

)

training examples, it has error at most ε, at least 1− δ of the time.

The number of examples required to guarantee this error bound is called
the sample complexity. The number of examples required according to this
proposition is a function of ε, δ, and the size of the hypothesis space.

Example 7.28 Suppose the hypothesis space H is the set of conjunctions of
literals on n Boolean variables. In this case |H| = 3n + 1 because, for each con-
junction, each variable in is one of three states: (1) it is unnegated in the conjunc-
tion, (2) it is negated, or (3) it does not appear; the “+1” is needed to represent

334 7. Learning: Overview and Supervised Learning

false, which is the conjunction of any atom and its negation. Thus, the sample

complexity is 1
ε

(
n ln 3 + ln 1

δ

)
examples, which is polynomial in n, 1

ε , and ln 1
δ .

If we want to guarantee at most a 5% error 99% of the time and have
30 Boolean variables, then ε = 1/20, δ = 1/100, and n = 30. The bound
says that we can guarantee this performance if we find a hypothesis that
is consistent with 20 × (30 ln 3 + ln 100) ≈ 752 examples. This is much less
than the number of possible instances, which is 230 = 1, 073, 741, 824, and the
number of hypotheses, which is 330 + 1 = 205, 891, 132, 094, 650.

Example 7.29 If the hypothesis space H is the set of all Boolean functions on

n variables, then |H| = 22n
; thus, we require 1

ε

(
2n ln 2 + ln 1

δ

)
examples. The

sample complexity is exponential in n.
If we want to guarantee at most a 5% error 99% of the time and have 30

Boolean variables, then ε = 1/20, δ = 1/100, and n = 30. The bound says that
we can guarantee this performance if we find a hypothesis that is consistent
with 20× (230 ln 2 + ln 100) ≈ 14, 885, 222, 452 examples.

Consider the third question raised at the start of this section, namely, how
quickly a learner can find the probably approximately correct hypothesis.
First, if the sample complexity is exponential in the size of some parameter
(e.g., n above), the computational complexity must be exponential because an
algorithm must at least consider each example. To show an algorithm with
polynomial complexity, we must find a hypothesis space with polynomial
sample complexity and show that the algorithm uses polynomial time for each
example.

7.8 Bayesian Learning

Rather than choosing the most likely model or delineating the set of all models
that are consistent with the training data, another approach is to compute the
posterior probability of each model given the training examples.

The idea of Bayesian learning is to compute the posterior probability distri-
bution of the target features of a new example conditioned on its input features
and all of the training examples.

Suppose a new case has inputs X=x and has target features, Y; the aim
is to compute P(Y|X=x ∧ e), where e is the set of training examples. This is
the probability distribution of the target variables given the particular inputs
and the examples. The role of a model is to be the assumed generator of the
examples. If we let M be a set of disjoint and covering models, then reasoning
by cases (page 224) and the chain rule give

P(Y|x∧ e) = ∑
m∈M

P(Y ∧m|x∧ e)

= ∑
m∈M

P(Y|m∧ x∧ e)× P(m|x∧ e)

= ∑
m∈M

P(Y|m∧ x)× P(m|e) .

7.8. Bayesian Learning 335

The first two equalities are theorems from the definition of probability
(page 223). The last equality makes two assumptions: the model includes all
of the information about the examples that is necessary for a particular pre-
diction [i.e., P(Y|m ∧ x ∧ e) = P(Y|m ∧ x)], and the model does not change
depending on the inputs of the new example [i.e., P(m|x ∧ e) = P(m|e)]. This
formula says that we average over the prediction of all of the models, where
each model is weighted by its posterior probability given the examples.

P(m|e) can be computed using Bayes’ rule:

P(m|e) =
P(e|m)× P(m)

P(e)
.

Thus, the weight of each model depends on how well it predicts the data (the
likelihood) and its prior probability. The denominator, P(e), is a normalizing
constant to make sure the posterior probabilities of the models sum to 1. Com-
puting P(e) can be very difficult when there are many models.

A set {e1, . . . , ek} of examples are i.i.d. (independent and identically dis-
tributed), where the distribution is given by model m if, for all i and j, exam-
ples ei and ej are independent given m, which means P(ei ∧ ej|m) = P(ei|m)×
P(ej|m). We usually assume that the examples are i.i.d.

Suppose the set of training examples e is {e1, . . . , ek}. That is, e is the con-
junction of the ei, because all of the examples have been observed to be true.
The assumption that the examples are i.i.d. implies

P(e|m) =
k

∏
i=1

P(ei|m) .

The set of models may include structurally different models in addition
to models that differ in the values of the parameters. One of the techniques
of Bayesian learning is to make the parameters of the model explicit and to
determine the distribution over the parameters.

Example 7.30 Consider the simplest learning task under uncertainty. Suppose
there is a single Boolean random variable, Y. One of two outcomes, a and ¬a,
occurs for each example. We want to learn the probability distribution of Y
given some examples.

There is a single parameter, φ, that determines the set of all models. Suppose
that φ represents the probability of Y=true. We treat this parameter as a real-
valued random variable on the interval [0, 1]. Thus, by definition of φ, P(a|φ) =
φ and P(¬a|φ) = 1− φ.

Suppose an agent has no prior information about the probability of Boolean
variable Y and no knowledge beyond the training examples. This ignorance can
be modeled by having the prior probability distribution of the variable φ as a
uniform distribution over the interval [0, 1]. This is the the probability density
function labeled n0=0, n1=0 in Figure 7.15.

We can update the probability distribution of φ given some examples. As-
sume that the examples, obtained by running a number of independent exper-
iments, are a particular sequence of outcomes that consists of n0 cases where Y
is false and n1 cases where Y is true.

336 7. Learning: Overview and Supervised Learning

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

n0=0, n1=0
n0=1, n1=2
n0=2, n1=4
n0=4, n1=8

φ

P(φ|e)

Figure 7.15: Beta distribution based on different samples

The posterior distribution for φ given the training examples can be derived
by Bayes’ rule. Let the examples e be the particular sequence of observation
that resulted in n1 occurrences of Y=true and n0 occurrences of Y=false. Bayes’
rule gives us

P(φ|e) =
P(e|φ)× P(φ)

P(e)
.

The denominator is a normalizing constant to make sure the area under the
curve is 1.

Given that the examples are i.i.d.,

P(e|φ) = φn1 × (1− φ)n0

because there are n0 cases where Y=false, each with a probability of 1− φ, and
n1 cases where Y=true, each with a probability of φ.

One possible prior probability, P(φ), is a uniform distribution on the inter-
val [0, 1]. This would be reasonable when the agent has no prior information
about the probability.

Figure 7.15 gives some posterior distributions of the variable φ based on
different sample sizes, and given a uniform prior. The cases are (n0 = 1, n1 = 2),
(n0 = 2, n1 = 4), and (n0 = 4, n1 = 8). Each of these peak at the same place,
namely at 2

3 . More training examples make the curve sharper.

7.8. Bayesian Learning 337

The distribution of this example is known as the beta distribution; it is
parametrized by two counts, α0 and α1, and a probability p. Traditionally, the
αi parameters for the beta distribution are one more than the counts; thus, αi =
ni + 1. The beta distribution is

Betaα0,α1(p) =
1
K

pα1−1 × (1− p)α0−1

where K is a normalizing constant that ensures the integral over all values is 1.
Thus, the uniform distribution on [0, 1] is the beta distribution Beta1,1.

The generalization of the beta distribution to more than two parameters
is known as the Dirichlet distribution. The Dirichlet distribution with two
sorts of parameters, the “counts” α1, . . . , αk, and the probability parameters
p1, . . . , pk, is

Dirichletα1,...,αk(p1, . . . , pk) =
1
K

k

∏
j=1

p
αj−1
j

where K is a normalizing constant that ensures the integral over all values is
1; pi is the probability of the ith outcome (and so 0 ≤ pi ≤ 1) and αi is one
more than the count of the ith outcome. That is, αi = ni + 1. The Dirichlet
distribution looks like Figure 7.15 along each dimension (i.e., as each pj varies
between 0 and 1).

For many cases, summing over all models weighted by their posterior dis-
tribution is difficult, because the models may be complicated (e.g., if they are
decision trees or even belief networks). However, for the Dirichlet distribution,
the expected value for outcome i (averaging over all pj’s) is

αi

∑j αj
.

The reason that the αi parameters are one more than the counts is to make
this formula simple. This fraction is well defined only when the αj are all non-
negative and not all are zero.

Example 7.31 Consider Example 7.30 (page 335), which determines the value
of φ based on a sequence of observations made up of n0 cases where Y is false
and n1 cases where Y is true. Consider the posterior distribution as shown in
Figure 7.15. What is interesting about this is that, whereas the most likely pos-
terior value of φ is n1

n0+n1
, the expected value (page 230) of this distribution is

n1+1
n0+n1+2 .

Thus, the expected value of the n0=1, n1=2 curve is 3
5 , for the n0=2, n1=4

case the expected value is 5
8 , and for the n0=4, n1=8 case it is 9

14 . As the learner
gets more training examples, this value approaches n

m .
This estimate is better than n

m for a number of reasons. First, it tells us what
to do if the learning agent has no examples: Use the uniform prior of 1

2 . This
is the expected value of the n=0, m=0 case. Second, consider the case where

338 7. Learning: Overview and Supervised Learning

n=0 and m=3. The agent should not use P(y)=0, because this says that Y is
impossible, and it certainly does not have evidence for this! The expected value
of this curve with a uniform prior is 1

5 .

An agent does not have to start with a uniform prior; it can start with any
prior distribution. If the agent starts with a prior that is a Dirichlet distribu-
tion, its posterior will be a Dirichlet distribution. The posterior distribution can
be obtained by adding the observed counts to the αi parameters of the prior
distribution.

The i.i.d. assumption can be represented as a belief network, where each of
the ei are independent given model m. This independence assumption can be
represented by the belief network shown on the left side of Figure 7.16. If m
is made into a discrete variable, any of the inference methods of the previous
chapter can be used for inference in this network. A standard reasoning tech-
nique in such a network is to condition on all of the observed ei and to query
the model variable or an unobserved ei variable.

The problem with specifying a belief network for a learning problem is that
the model grows with the number of observations. Such a network can be spec-
ified before any observations have been received by using a plate model. A
plate model specifies what variables will be used in the model and what will
be repeated in the observations. The right side of Figure 7.16 shows a plate
model that represents the same information as the left side. The plate is drawn
as a rectangle that contains some nodes, and an index (drawn on the bottom
right of the plate). The nodes in the plate are indexed by the index. In the plate
model, there are multiple copies of the variables in the plate, one for each value
of the index. The intuition is that there is a pile of plates, one for each value of
the index. The number of plates can be varied depending on the number of ob-
servations and what is queried. In this figure, all of the nodes in the plate share
a common parent. The probability of each copy of a variable in a plate given
the parents is the same for each index.

A plate model lets us specify more complex relationships between the vari-
ables. In a hierarchical Bayesian model, the parameters of the model can

e1 e2 ek

m

... ei

m

i

Figure 7.16: Belief network and plate models of Bayesian learning

7.8. Bayesian Learning 339

depend on other parameters. Such a model is hierarchical in the sense that
some parameters can depend on other parameters.

Example 7.32 Suppose a diagnostic assistant agent wants to model the proba-
bility that a particular patient in a hospital is sick with the flu before symptoms
have been observed for this patient. This prior information about the patient
can be combined with the observed symptoms of the patient. The agent wants
to learn this probability, based on the statistics about other patients in the same
hospital and about patients at different hospitals. This problem can range from
the cases where a lot of data exists about the current hospital (in which case,
presumably, that data should be used) to the case where there is no data about
the particular hospital that the patient is in. A hierarchical Bayesian model can
be used to combine the statistics about the particular hospital the patient is in
with the statistics about the other hospitals.

Suppose that for patient X in hospital H there is a random variable SHX that
is true when the patient is sick with the flu. (Assume that the patient identi-
fication number and the hospital uniquely determine the patient.) There is a
value φH for each hospital H that will be used for the prior probability of be-
ing sick with the flu for each patient in H. In a Bayesian model, φH is treated
as a real-valued random variable with domain [0, 1]. SHX depends on φH, with
P(SHX|φH) = φH. Assume that φH is distributed according to a beta distribu-
tion (page 337). We don’t assume that φhi

and φh2 are independent of each other,
but depend on hyperparameters. The hyperparameters can be the prior counts
α0 and α1. The parameters depend on the hyperparameters in terms of the con-
ditional probability P(φhi

|α0, α1) = Betaα0,α1(φhi
); α0 and α1 are real-valued ran-

dom variables, which require some prior distribution.
The plate model and the corresponding belief network are shown in Figure

7.17 . Part (a) shows the plate model, where there is a copy of the outside plate

φH

α1

X H

SXH

α2

φ1 φ2 φk

α1

...

α2

S11 S12

...

S21 S22

...

S1k

...

(a) (b)

Figure 7.17: Hierarchical Bayesian model

340 7. Learning: Overview and Supervised Learning

for each hospital and a copy of the inside plate for each patient in the hospital.
Part of the resulting belief network is shown in part (b). Observing some of the
SHX will affect the φH and so α0 and α1, which will in turn affect the other φH
variables and the unobserved SHX variables.

Sophisticated methods exist to evaluate such networks. However, if the
variables are made discrete, any of the methods of the previous chapter can
be used.

In addition to using the posterior distribution of φ to derive the expected
value, we can use it to answer other questions such as: What is the probability
that the posterior probability of φ is in the range [a, b]? In other words, derive
P((φ ≥ a ∧ φ ≤ b)|e). This is the problem that the Reverend Thomas Bayes
solved more than 200 years ago [Bayes, 1763]. The solution he gave – although
in much more cumbersome notation – was∫ b

a pn × (1− p)m−n∫ 1
0 pn × (1− p)m−n

.

This kind of knowledge is used in surveys when it may be reported that a
survey is correct with an error of at most 5%, 19 times out of 20. It is also the
same type of information that is used by probably approximately correct (PAC)
learning (page 332), which guarantees an error at most ε at least 1− δ of the
time. If an agent chooses the midpoint of the range [a, b], namely a+b

2 , as its
hypothesis, it will have error less than or equal to b−a

2 , just when the hypothesis
is in [a, b]. The value 1− δ corresponds to P(φ ≥ a ∧ φ ≤ b|e). If ε = b−a

2 and
δ = 1 − P(φ ≥ a ∧ φ ≤ b|e), choosing the midpoint will result in an error
at most ε in 1− δ of the time. PAC learning gives worst-case results, whereas
Bayesian learning gives the expected number. Typically, the Bayesian estimate
is more accurate, but the PAC results give a guarantee of the error. The sample
complexity (see Section 7.7.2) required for Bayesian learning is typically much
less than that of PAC learning – many fewer examples are required to expect to
achieve the desired accuracy than are needed to guarantee the desired accuracy.

7.9 Review

The following are the main points you should have learned from this chapter:

• Learning is the ability of an agent improve its behavior based on experience.

• Supervised learning is the problem that involves predicting the output of a
new input, given a set of input–output pairs.

• Given some training examples, an agent builds a representation that can be
used for new predictions.

• Linear classifiers, decision trees, and Bayesian classifiers are all simple rep-
resentations that are the basis for more sophisticated models.

7.10. References and Further Reading 341

• An agent can choose the best hypothesis given the training examples, delin-
eate all of the hypotheses that are consistent with the data, or compute the
posterior probability of the hypotheses given the training examples.

7.10 References and Further Reading

For good overviews of machine learning see Mitchell [1997], Duda, Hart, and
Stork [2001], Bishop [2008], and Hastie, Tibshirani, and Friedman [2009].

The collection of papers by Shavlik and Dietterich [1990] contains many
classic learning papers. Michie, Spiegelhalter, and Taylor [1994] give empir-
ical evaluation of many learning algorithms on many different problems.
Briscoe and Caelli [1996] discuss many different machine learning algorithms.
Weiss and Kulikowski [1991] overview techniques for classification learning.
Davis and Goadrich [2006] discusses precision, recall, and ROC curves.

The approach to combining expert knowledge and data was proposed by
Spiegelhalter, Franklin, and Bull [1990].

Decision-tree learning is discussed by Quinlan [1986]. For an overview of
a mature decision-tree learning tool see Quinlan [1993]. The Gini index [Exer-
cise 7.10 (page 345)] is the splitting criteria used in CART [Breiman, Friedman,
Olshen, and Stone, 1984].

TAN networks are described by Friedman, Greiger, and Goldszmidt [1997].
Latent tree models are described by Zhang [2004].

For overviews of neural networks see Bishop [1995], Hertz, Krogh, and
Palmer [1991], and Jordan and Bishop [1996]. Back-propagation is introduced
in Rumelhart, Hinton, and Williams [1986]. Minsky and Papert [1988] analyze
the limitations of neural networks.

For reviews of ensemble learning see Dietterich [2002]. Boosting is de-
scribed in Schapire [2002] and Meir and Rätsch [2003].

For reviews on case-based reasoning see Aamodt and Plaza [1994], Kolod-
ner and Leake [1996], and Lopez De Mantaras, Mcsherry, Bridge, Leake, Smyth,
Craw, Faltings, Maher, Cox, Forbus, Keane, Aamodt, and Watson [2005]. For a
review of nearest-neighbor algorithms, see Duda et al. [2001] and Dasarathy
[1991]. The dimension-weighting learning nearest-neighbor algorithm is from
Lowe [1995]. For a classical review of case-based reasoning, see Riesbeck and
Schank [1989], and for recent reviews see Aha, Marling, and Watson [2005].

Version spaces were defined by Mitchell [1977]. PAC learning was intro-
duced by Valiant [1984]. The analysis here is due to Haussler [1988]. Kearns
and Vazirani [1994] give a good introduction to computational learning theory
and PAC learning. For more details on version spaces and PAC learning, see
Mitchell [1997].

For overviews of Bayesian learning, see Jaynes [2003], Loredo [1990], How-
son and Urbach [2006], and Cheeseman [1990]. See also books on Bayesian
statistics such as Gelman, Carlin, Stern, and Rubin [2004] and Bernardo and
Smith [1994]. Bayesian learning of decision trees is described in Buntine [1992].
Grünwald [2007] discusses the MDL principle.

342 7. Learning: Overview and Supervised Learning

For research results on machine learning, see the journals Journal of Machine
Learning Research (JMLR), Machine Learning, the annual International Conference
on Machine Learning (ICML), the Proceedings of the Neural Information Process-
ing Society (NIPS), or general AI journals such as Artificial Intelligence and the
Journal of Artificial Intelligence Research, and many specialized conferences and
journals.

7.11 Exercises

Exercise 7.1 The aim of this exercise is to fill in the table of Figure 7.3 (page 295).

(a) Prove the optimal prediction for training data. To do this, find the minimum
value of the absolute error, the sum-of-squares error, the entropy, and the
value that gives the maximum likelihood. The maximum or minimum value
is either an end point or where the derivative is zero.

(b) To determine the best prediction for the test data, assume that the data cases
are generated stochastically according to some true parameter p0. Try the
following for a number of different values for p0 ∈ [0, 1]. Generate k training
examples (try various values for k, some small, say 5, and some large, say
1,000) by sampling with probability p0; from these generate n0 and n1. Gen-
erate a test set that contains many test cases using the same parameter p0.
For each of the optimality criteria – sum of absolute values, sum of squares,
and likelihood (or entropy) – which of the following gives a lower error on
the test set:

i) the mode
ii) n1/(n0 + n1)

iii) if n1 = 0, use 0.001, if n0 = 0, use 0.999, else use n1/(n0 + n1). (Try this
for different numbers when the counts are zero.)

iv) (n1 + 1)/(n0 + n1 + 2)
v) (n1 + α)/(n0 + n1 + 2α) for different values of α > 0

vi) another predictor that is a function of n0 and n1.

You may have to generate many different training sets for each parameter.
(For the mathematically sophisticated, can you prove what the optimal pre-
dictor is for each criterion?)

Exercise 7.2 In the context of a point estimate of a feature with domain {0, 1}
with no inputs, it is possible for an agent to make a stochastic prediction with a
parameter p ∈ [0, 1] such that the agent predicts 1 with probability p and predicts
0 otherwise. For each of the following error measures, give the expected error on
a training set with n0 occurrences of 0 and n1 occurrences of 1 (as a function of p).
What is the value of p that minimizes the error? Is this worse or better than the
prediction of Figure 7.3 (page 295)?

(a) sum of absolute errors
(b) sum-of-squares error
(c) worst-case error

7.11. Exercises 343

Example Comedy Doctors Lawyers Guns Likes
e1 false true false false false
e2 true false true false true
e3 false false true true true
e4 false false true false false
e5 false false false true false
e6 true false false true false
e7 true false false false true
e8 false true true true true
e9 false true true false false
e10 true true true false true
e11 true true false true false
e12 false false false false false

Figure 7.18: Training examples for Exercise 7.3

Exercise 7.3 Suppose we have a system that observes a person’s TV watching
habits in order to recommend other TV shows the person may like. Suppose that
we have characterized each show by whether it is a comedy, whether it features
doctors, whether it features lawyers, and whether it has guns. Suppose we are
given the examples of Figure 7.18 about whether the person likes various TV
shows. We want to use this data set to learn the value of Likes (i.e., to predict
which TV shows the person would like based on the attributes of the TV show).

You may find the AIspace.org applets useful for this assignment. (Before you
start, see if you can see the pattern in what shows the person likes.)

(a) Suppose the error is the sum of absolute errors. Give the optimal decision
tree with only one node (i.e., with no splits). What is the error of this tree?

(b) Do the same as in part (a), but with the sum-of-squares error.

(c) Suppose the error is the sum of absolute errors. Give the optimal decision
tree of depth 2 (i.e., the root node is the only node with children). For each
leaf in the tree, give the examples that are filtered to that node. What is the
error of this tree?

(d) Do the same as in part (c) but with the sum-of-squares error.

(e) What is the smallest tree that correctly classifies all training examples? Does
a top-down decision tree that optimizes the information gain at each step
represent the same function?

(f) Give two instances that do not appear in the examples of Figure 7.18 and
show how they are classified using the smallest decision tree. Use this to
explain the bias inherent in the tree. (How does the bias give you these par-
ticular predictions?)

(g) Is this data set linearly separable? Explain why or why not.

Exercise 7.4 Consider the decision-tree learning algorithm of Figure 7.5
(page 300) and the data of Figure 7.1 (page 289). Suppose, for this question, the

AIspace.org

344 7. Learning: Overview and Supervised Learning

stopping criterion is that all of the examples have the same classification. The tree
of Figure 7.4 (page 298) was built by selecting a feature that gives the maximum
information gain. This question considers what happens when a different feature
is selected.

(a) Suppose you change the algorithm to always select the first element of the
list of features. What tree is found when the features are in the order [Author,
Thread, Length, WhereRead]? Does this tree represent a different function than
that found with the maximum information gain split? Explain.

(b) What tree is found when the features are in the order [WhereRead, Thread,
Length, Author]? Does this tree represent a different function than that found
with the maximum information gain split or the one given for the preceding
part? Explain.

(c) Is there a tree that correctly classifies the training examples but represents a
different function than those found by the preceding algorithms? If so, give
it. If not, explain why.

Exercise 7.5 Consider Equation (7.1) (page 304), which gives the error of a linear
prediction.

(a) Give a formula for the weights that minimize the error for the case where
n = 1 (i.e., when there is only one input feature). [Hint: For each weight,
differentiate with respect to that weight and set to zero.]

(b) Give a set of equations for the weights that minimize the error for arbitrary
n.

(c) Why is it hard to minimize the error analytically when using a sigmoid linear
function (i.e., a squashed linear function when the activation function is a
sigmoid or logistic function)?

Exercise 7.6 Suppose that, in the output of a neural network, we assign any value
greater than 0.5 to be true and any less than 0.5 to be false (i.e., any positive value
before the activation function is true, and a negative value is false).

Run the AIspace.org neural network learning applet on the data of Figure 7.9
(page 309) for a neural network with two hidden nodes. Given the final parameter
settings found, give a logical formula (or a decision tree or a set of rules) that rep-
resents the Boolean function that is the value for the hidden units and the output
units. This formula or set of rules should not refer to any real numbers.

[Hint: One brute-force method is to go through the 16 combinations of values
for the inputs to each hidden unit and determine the truth value of the output. A
better method is to try to understand the functions themselves.]

Does the neural network learn the same function as the decision tree?

Exercise 7.7 The aim of this exercise is to determine the size of the space of deci-
sion trees. Suppose there are n binary features in a learning problem. How many
different decision trees are there? How many different functions are represented
by these decision trees? Is it possible that two different decision trees give rise to
the same function?

Exercise 7.8 Extend the decision-tree learning algorithm of Figure 7.5 (page 300)
so that multivalued features can be represented. Make it so that the rule form of
the decision tree is returned.

AIspace.org

7.11. Exercises 345

One problem that must be overcome is when no examples correspond to one
particular value of a chosen feature. You must make a reasonable prediction for
this case.

Exercise 7.9 The decision-tree learning algorithm of Figure 7.5 (page 300) has to
stop if it runs out of features and not all examples agree.

Suppose that you are building a decision tree and you have come to the stage
where there are no remaining features to split on and there are examples in the
training set, n1 of which are positive and n0 of which are negative. Three strategies
have been suggested:

i) Return whichever value has the most examples – return true if n1 > n0, false
if n1 < n0, and either if n1 = n0.

ii) Return the empirical frequency, n1/(n0 + n1).
iii) Return (n1 + 1)/(n0 + n1 + 2).

Which of the following strategies has the least error on the training set?

(a) The error is defined as the sum of the absolute differences between the value
of the example (1 = true and 0 = false) and the predicted values in the tree
(either 1 = true and 0 = false or the probability).

(b) The error is defined as the sum of the squares of the differences in values.
(c) The error is the entropy of the data.

Explain how you derived this answer.

Exercise 7.10 In choosing which feature to split on in decision-tree search, an
alternative heuristic to the max information split of Section 7.3.1 is to use the Gini
index.

The Gini index of a set of examples (with respect to target feature Y) is a mea-
sure of the impurity of the examples:

giniY(Examples) = 1−∑
Val

(|{e ∈ Examples : val(e, Y) = Val}|
|Examples|

)2

where |{e ∈ Examples : val(e, Y) = Val}| is the number of examples with value Val
of feature Y, and |Examples| is the total number of examples. The Gini index is al-
ways non-negative and has value zero only if all of the examples have the same
value on the feature. The Gini index reaches its maximum value when the exam-
ples are evenly distributed among the values of the features.

One heuristic for choosing which property to split on is to choose the split
that minimizes the total impurity of the training examples on the target feature,
summed over all of the leaves.

(a) Implement a decision-tree search algorithm that uses the Gini index.
(b) Try both the Gini index algorithm and the maximum information split algo-

rithm on some databases and see which results in better performance.
(c) Find an example database where the Gini index finds a different tree than

the maximum information gain heuristic. Which heuristic seems to be better
for this example? Consider which heuristic seems more sensible for the data
at hand.

346 7. Learning: Overview and Supervised Learning

(d) Try to find an example database where the maximum information split
seems more sensible than the Gini index, and try to find another example
for which the Gini index seems better. [Hint: Try extreme distributions.]

Exercise 7.11 As outlined in Example 7.18 (page 322), define a code for describ-
ing decision trees. Make sure that each code corresponds to a decision tree (for
every sufficiently long sequence of bits, the initial segment of the sequence will
describe a unique decision tree), and each decision tree has a code. How does this
code translate into a prior distribution on trees? In particular, how much does the
likelihood of introducing a new split have to increase to offset the reduction in
prior probability of the split (assuming that smaller trees are easier to describe
than large trees in your code)?

Exercise 7.12 Show how gradient descent can be used for learning a linear func-
tion that minimizes the absolute error. [Hint: Do a case analysis of the error. The
error is differentiable at every point except when the error is zero, in which case it
does not need to be updated.]

Exercise 7.13 Give an example where a naive Bayesian classifier can give incon-
sistent results when using empirical frequencies as probabilities. [Hint: You re-
quire two features, say A and B, and a binary classification, say C, that has domain
{0, 1}. Construct a data set where the empirical probabilities give P(a|C = 0) = 0
and P(b|C = 1) = 0.] What observation is inconsistent with the model?

Exercise 7.14 Run the AIspace.org neural network learner on the data of Figure
7.1 (page 289).

(a) Suppose that you decide to use any predicted value from the neural network
greater than 0.5 as true, and any value less than 0.5 as false. How many
examples are misclassified initially? How many examples are misclassified
after 40 iterations? How many examples are misclassified after 80 iterations?

(b) Try the same example and the same initial values, with different step sizes
for the gradient descent. Try at least η = 0.1, η = 1.0, and η = 5.0. Comment
on the relationship between step size and convergence.

(c) Given the final parameter values you found, give a logical formula for what
each of the units is computing. You can do this by considering, for each of the
units, the truth tables for the input values and by determining the output for
each combination, then reducing this formula. Is it always possible to find
such a formula?

(d) All of the parameters were set to different initial values. What happens if the
parameter values were all set to the same (random) value? Test it out for this
example, and hypothesize what occurs in general.

(e) For the neural network algorithm, comment on the following stopping
criteria:

i) Learn for a limited number of iterations, where the limit is set initially.

ii) Stop when the sum-of-squares error is less than 0.25. Explain why 0.25
may be an appropriate number.

iii) Stop when the derivatives all become within some ε of zero.

AIspace.org

7.11. Exercises 347

iv) Split the data into training data and test data, and stop when the error
on the test data increases.

Which would you expect to better handle overfitting? Which criteria guar-
antee the gradient descent will stop? Which criteria would guarantee that, if
it stops, the network can be used to predict the test data accurately?

Exercise 7.15 In the neural net learning algorithm, the parameters are updated
for each example. To compute the derivative accurately, the parameters should
be updated only after all examples have been seen. Implement such a learning
algorithm and compare it to the incremental algorithm, with respect to both rate
of convergence and to speed of the algorithm.

Exercise 7.16

(a) Draw a kd-tree for the data of Figure 7.1 (page 289). The topmost feature to
split on should be the one that most divides the examples into two equal
classes. Assume that you know that the UserAction feature does not appear
in subsequent queries, and so it should not be split on. Show which training
examples are at which leaf nodes.

(b) Show the locations in this tree that contain the closest training examples to a
new case where the author is unknown, the thread is new, the length is long,
and it was read at work.

(c) Based on this example, discuss which examples should be returned from a
lookup on a kd-tree. Why is this different from a lookup on a decision tree?

Exercise 7.17 Implement a nearest-neighbor learning system that stores the
training examples in a kd-tree and uses the neighbors that differ in the fewest num-
ber of features, weighted evenly. How well does this work in practice?

Chapter 8

Planning with Certainty

He who every morning plans the transaction of the day and follows out
that plan, carries a thread that will guide him through the maze of the
most busy life. But where no plan is laid, where the disposal of time is
surrendered merely to the chance of incidence, chaos will soon reign.

– Victor Hugo (1802–1885)

Planning is about how an agent achieves its goals. To achieve anything but the
simplest goals, an agent must reason about its future. Because an agent does
not usually achieve its goals in one step, what it should do at any time depends
on what it will do in the future. What it will do in the future depends on the
state it is in, which, in turn, depends on what it has done in the past. This
chapter considers how an agent can represent its actions and their effects and
use these models to find a plan to achieve its goals.

In particular, this chapter considers the case where

• the agent’s actions are deterministic; that is, the agent can predict the conse-
quences of its actions.

• there are no exogenous events beyond the control of the agent that change
the state of the world.

• the world is fully observable; thus, the agent can observe the current state of
the world.

• time progresses discretely from one state to the next.

• goals are predicates of states that must be achieved or maintained.

Some of these assumptions are relaxed in the following chapters.

349

350 8. Planning with Certainty

Coffee
Shop

Mail
Room

Lab

Sam's
Office

Features to describe states

RLoc – Rob’s location
RHC – Rob has coffee
SWC – Sam wants coffee
MW – Mail is waiting
RHM – Rob has mail

Actions

mc – move clockwise
mcc – move counterclockwise
puc – pickup coffee
dc – deliver coffee
pum – pickup mail
dm – deliver mail

Figure 8.1: The delivery robot domain

8.1 Representing States, Actions, and Goals

To reason about what to do, an agent must have goals, some model of the
world, and a model of the consequences of its actions.

A deterministic action is a partial function from states to states. It is partial
because not every action can be carried out in every state. For example, a robot
cannot carry out the action to pick up a particular object if it is nowhere near the
object. The precondition of an action specifies when the action can be carried
out. The effect of an action specifies the resulting state.

Example 8.1 Consider a delivery robot world (page 30) with mail and coffee
to deliver. Assume a simplified domain with four locations as shown in Figure
8.1. The robot, called Rob, can buy coffee at the coffee shop, pick up mail in
the mail room, move, and deliver coffee and/or mail. Delivering the coffee to
Sam’s office will stop Sam from wanting coffee. There can be mail waiting at
the mail room to be delivered to Sam’s office. This domain is quite simple, yet
it is rich enough to demonstrate many of the problems in representing actions
and in planning.

The state can be described in terms of the following features:
• the robot’s location (RLoc), which is one of the coffee shop (cs), Sam’s office

(off), the mail room (mr), or the laboratory (lab).
• whether the robot has coffee (RHC). Let rhc mean Rob has coffee and rhc

mean Rob does not have coffee.

8.1. Representing States, Actions, and Goals 351

• whether Sam wants coffee (SWC). Let swc mean Sam wants coffee and swc
mean Sam does not want coffee.

• whether mail is waiting at the mail room (MW). Let mw mean there is mail
waiting and mw mean there is no mail waiting.

• whether the robot is carrying the mail (RHM). Let rhm mean Rob has mail,
and rhm mean Rob does not have mail.

Suppose Rob has six actions:
• Rob can move clockwise (mc).
• Rob can move counterclockwise (mcc).
• Rob can pick up coffee if Rob is at the coffee shop. Let puc mean that Rob

picks up coffee. The precondition of puc is rhc ∧ RLoc = cs; that is, Rob
can pick up coffee in any state where its location is cs, and it is not already
holding coffee. The effect of this action is to make RHC true. It does not
affect the other features.

• Rob can deliver coffee if Rob is carrying coffee and is at Sam’s office. Let dc
mean that Rob delivers coffee. The precondition of dc is rhc ∧ RLoc = off .
The effect of this action is to make RHC true and make SWC false.

• Rob can pick up mail if Rob is at the mail room and there is mail waiting
there. Let pum mean Rob picks up the mail.

• Rob can deliver mail if Rob is carrying mail and at Sam’s office. Let dm
mean Rob delivers mail.

Assume that it is only possible for Rob to do one action at a time. We assume
that a lower-level controller can implement these actions.

8.1.1 Explicit State-Space Representation

One possible representation of the effect and precondition of actions is to ex-
plicitly enumerate the states and, for each state, specify the actions that are
possible in that state and, for each state–action pair, specify the state that re-
sults from carrying out the action in that state. This would require a table such
as the following:

State Action Resulting State
s7 act47 s94
s7 act14 s83
s94 act5 s33
.

The first tuple in this relation specifies that it is possible to carry out action
act47 in state s7 and, if it were to be carried out in state s7, the resulting state
would be s94.

Thus, this is the explicit representation of the actions in terms of a graph.
This is called a state-space graph. This is the sort of graph that was used in
Chapter 3.

352 8. Planning with Certainty

Example 8.2 In Example 8.1 (page 350), the states are the quintuples spec-
ifying the robot’s location, whether the robot has coffee, whether Sam wants
coffee, whether mail is waiting, and whether the robot is carrying the mail. For
example, the tuple

〈
lab, rhc, swc, mw, rhm

〉
represents the state where Rob is at the Lab, does not have coffee, Sam wants
coffee, there is no mail waiting, and Sam has mail.

〈
lab, rhc, swc, mw, rhm

〉
represents the state where Rob is at the Lab, carrying coffee, Sam wants coffee,
there is mail waiting, and Rob is not holding any mail.

In this example, there are 4× 2× 2× 2× 2 = 64 states. Intuitively, all of
them are possible, even if you would not expect that some of them would be
reached by an intelligent robot.

There are six actions, not all of which are applicable in each state.
The actions can be defined in terms of the state transitions:

State Action Resulting State〈
lab, rhc, swc, mw, rhm

〉
mc

〈
mr, rhc, swc, mw, rhm

〉
〈

lab, rhc, swc, mw, rhm
〉

mcc
〈

off , rhc, swc, mw, rhm
〉

〈
off , rhc, swc, mw, rhm

〉
dm

〈
off , rhc, swc, mw, rhm

〉
〈

off , rhc, swc, mw, rhm
〉

mcc
〈

cs, rhc, swc, mw, rhm
〉

〈
off , rhc, swc, mw, rhm

〉
mc

〈
lab, rhc, swc, mw, rhm

〉
.

This table shows the transitions for two of the states. The complete problem
representation includes the transitions for the other 62 states.

This is not a good representation for three main reasons:

• There are usually too many states to represent, to acquire, and to reason
with.

• Small changes to the model mean a large change to the representation. Mod-
eling another feature means changing the whole representation. For exam-
ple, to model the level of power in the robot, so that it can recharge itself in
the Lab, every state has to change.

• There is also usually much more structure and regularity in the effects of
actions. This structure can make the specification of the preconditions and
the effects of actions, and reasoning about them, more compact and efficient.

An alternative is to model the effects of actions in terms of how the actions
affect the features.

8.1. Representing States, Actions, and Goals 353

8.1.2 Feature-Based Representation of Actions

A feature-based representation of actions models

• which actions are possible in a state, in terms of the values of the features of
the state, and

• how the feature values in the next state are affected by the feature values of
the current state and the action.

The precondition of an action is a proposition that must be true before the
action can be carried out. In terms of constraints, the robot is constrained to
only be able to choose an action for which the precondition is true.

Example 8.3 In Example 8.1 (page 350), the action of Rob to pick up coffee
(puc) has precondition cs ∧ rhc. That is, Rob must be at the coffee shop (cs), not
carrying coffee (rhc). As a constraint, this means that puc is not available for any
other location or when rhc is true.

The action move clockwise is always possible. Its precondition is true.

The feature-based representation of actions uses rules to specify the value
of each variable in the state resulting from an action. The bodies of these rules
can include the action carried out and the values of features in the previous
state.

The rules have two forms:

• A causal rule specifies when a feature gets a new value.
• A frame rule specifies when a feature keeps its value.

It is useful to think of these as two separate cases: what makes the feature
change its value, and what makes it keep its value.

Example 8.4 In Example 8.1 (page 350), Rob’s location depends on its previ-
ous location and where it moved. Let RLoc′ be the variable that specifies the
location in the resulting state. The following rules specify the conditions under
which Rob is at the coffee shop:

RLoc′ = cs← RLoc = off ∧Act = mcc.
RLoc′ = cs← RLoc = mr∧Act = mc.
RLoc′ = cs← RLoc = cs∧Act �= mcc∧Act �= mc.

The first two rules are causal rules and the last rule is a frame rule.
Whether the robot has coffee in the resulting state depends on whether it

has coffee in the previous state and its action:

rhc′ ← rhc∧Act �= dc.
rhc′ ← Act = puc.

The first of these is a frame rule that specifies that the robot having coffee per-
sists unless the robot delivers the coffee. The rule implicitly implies that the
robot cannot drop the coffee or lose it, or it cannot be stolen. The second is the
causal rule specifying that picking up the coffee causes the robot to have coffee
in the next time step.

354 8. Planning with Certainty

Causal rules and frame rules do not specify when an action is possible.
What is possible is defined by the precondition of the actions.

8.1.3 The STRIPS Representation

The previous representation was feature-centric in that, for each feature, there
were rules that specified its value in the state resulting from an action. An al-
ternative is an action-centric representation which, for each action, specifies
the effect of the action. One such representation is the STRIPS representation.
STRIPS, which stands for “STanford Research Institute Problem Solver,” was
the planner used in Shakey, one of the first robots built using AI technology.

First, divide the features that describe the world into primitive and derived
features. Definite clauses are used to determine the value of derived features
from the values of the primitive features in any given state. The STRIPS repre-
sentation is used to determine the values of primitive features in a state based
on the previous state and the action taken by the agent.

The STRIPS representation is based on the idea that most things are not
affected by a single action. For each action, STRIPS models when the action is
possible and what primitive features are affected by the action. The effect of
the action relies on the STRIPS assumption: All of the primitive features not
mentioned in the description of the action stay unchanged.

The STRIPS representation for an action consists of

• the precondition, which is a set of assignments of values to features that
must be true for the action to occur, and

• the effect, which is a set of resulting assignments of values to those primitive
features that change as the result of the action.

Primitive feature V has value v after the action act if V = v was on the effect
list of act or if V was not mentioned in the effect list of act, and V had value v
immediately before act. Non-primitive features can be derived from the values
of the primitive features for each time.

When the variables are Boolean, it is sometimes useful to divide the effects
into a delete list, which includes those variables made false, and an add list,
which includes those variables made true.

Example 8.5 In Example 8.1 (page 350), the action of Rob to pick up coffee
(puc) has the following STRIPS representation:

precondition [cs, rhc]

effect [rhc]

That is, the robot must be at the coffee shop and not have coffee. After the
action, rhc holds (i.e., RHC = true), and all other feature values are unaffected
by this action.

8.1. Representing States, Actions, and Goals 355

Example 8.6 The action of delivering coffee (dc) can be defined by

precondition [off , rhc]
effect [rhc, swc]

The robot can deliver coffee when it is in the office and has coffee. It can deliver
coffee whether Sam wants coffee or not. If Sam wanted coffee before the action,
Sam no longer wants it after. Thus, the effects are to make RHC = false and
SWC = false.

The feature-based representation is more powerful than the STRIPS repre-
sentation because it can represent anything representable in STRIPS. It can be
more verbose because it requires explicit frame axioms, which are implicit in
the STRIPS representation.

A STRIPS representation of a set of actions can be translated into the
feature-based representation as follows. If the effects list of an action act is
[e1, . . . , ek], the STRIPS representation is equivalent to the causal rules

e′i ← act.

for each ei that is made true by the action and the frame rules

c′ ← c∧ act.

for each condition c that does not involve a variable on the effects list. The
precondition of each action in the representations is the same.

A conditional effect is an effect of an action that depends on the value of
other features. The feature-based representation can specify conditional effects,
whereas STRIPS cannot represent these directly.

Example 8.7 Consider representing the action mc. The effect of mc depends
on the robot’s location before mc was carried out.

The feature-based representation is as in Example 8.4 (page 353).
To represent this in the STRIPS representation, we construct multiple ac-

tions that differ in what is true initially. For example, mc cs (move clockwise
from coffee shop) has a precondition [RLoc = cs] and effect [RLoc = off].

8.1.4 Initial States and Goals

In a typical planning problem, where the world is fully observable and deter-
ministic, the initial state is defined by specifying the value for each feature for
the initial time.

The are two sorts of goals:

• An achievement goal is a proposition that must be true in the final state.
• A maintenance goal is a proposition that must be true in every state through

which the agent passes. These are often safety goals – the goal of staying
away from bad states.

356 8. Planning with Certainty

There may be other kinds of goals such as transient goals (that must be
achieved somewhere in the plan but do not have to hold at the end) or resource
goals, such as wanting to minimize energy used or time traveled.

8.2 Forward Planning

A deterministic plan is a sequence of actions to achieve a goal from a given
starting state. A deterministic planner is a problem solver that can produce a
plan. The input to a planner is an initial world description, a specification of
the actions available to the agent, and a goal description. The specification of
the actions includes their preconditions and their effects.

One of the simplest planning strategies is to treat the planning problem as a
path planning problem in the state-space graph. In a state-space graph, nodes
are states, and arcs correspond to actions from one state to another. The arcs
coming out of a state s correspond to all of the legal actions that can be carried
out in that state. That is, for each state s, there is an arc for each action a whose
precondition holds in state s, and where the resulting state does not violate a
maintenance goal. A plan is a path from the initial state to a state that satisfies
the achievement goal.

A forward planner searches the state-space graph from the initial state
looking for a state that satisfies a goal description. It can use any of the search
strategies described in Chapter 3.

Example 8.8 Figure 8.2 shows part of the search space starting from the state
where Rob is at the coffee shop, Rob does not have coffee, Sam wants coffee,
there is mail waiting, and Rob does not have mail. The search space is the same
irrespective of the goal state.

Using a forward planner is not the same as making an explicit state-based
representation of the actions (page 351), because the relevant part of the graph
can be created dynamically from the representations of the actions.

A complete search strategy, such as A∗ with multiple-path pruning or iter-
ative deepening, is guaranteed to find a solution. The complexity of the search
space is defined by the forward branching factor (page 75) of the graph. The
branching factor is the set of all possible actions at any state, which may be
quite large. For the simple robot delivery domain, the branching factor is 3 for
the initial situation and is up to 4 for other situations. When the domain be-
comes bigger, the branching factor increases and so the search space explodes.
This complexity may be reduced by finding good heuristics [see Exercise 8.6
(page 369)], but the heuristics have to be very good to overcome the combina-
torial explosion.

A state can be represented as either

(a) a complete world description, in terms of an assignment of a value to each prim-
itive proposition or as a proposition that defines the state, or

8.3. Regression Planning 357

mc

mcc

mcc

mcc

mcc

mc

mc
mc

puc

〈cs,rhc,swc,mw,rhm〉

〈cs,rhc,swc,mw,rhm〉 〈off,rhc,swc,mw,rhm〉 〈mr,rhc,swc,mw,rhm〉

〈off,rhc,swc,mw,rhm〉

〈mr,rhc,swc,mw,rhm〉

〈lab,rhc,swc,mw,rhm〉
〈cs,rhc,swc,mw,rhm〉

dc

〈off,rhc,swc,mw,rhm〉

〈lab,rhc,swc,mw,rhm〉

〈cs,rhc,swc,mw,rhm〉

cs=coffee shop
off=office
lab=laboratory
rhc=robot has coffee

Figure 8.2: Part of the search space for a state-space planner

(b) a path from an initial state; that is, by the sequence of actions that were used
to reach that state from the initial state. In this case, what holds in a state can
be deduced from the axioms that specify the effects of actions.

The difference between representations (a) and (b) amounts to the difference
between computing a whole new world description for each world created, or
by calculating what holds in a world as necessary. Alternative (b) may save
on space (particularly if there is a complex world description) and will allow
faster creation of a new node, but it will be slower to determine what actually
holds in any given world. Another difficulty with option (b) is that determin-
ing whether two states are the same (e.g., for loop detection or multiple-path
pruning) is expensive.

We have presented state-space searching as a forward search method, but
it is also possible to search backward from the set of states that satisfy the goal.
Whereas the initial state is usually fully specified and so the frontier starts off
containing a single state, the goal does not usually fully specify a state and so
there would be many goal states that satisfy the goal. This would mean that the
frontier is initially very large. Thus, backward search in the state space is often
not practical.

8.3 Regression Planning

It is often more efficient to search in a different search space – one where the
nodes are not states but rather are goals to be achieved. Once the problem has

358 8. Planning with Certainty

been transformed into a search problem, any of the algorithms of Chapter 3 can
be used. We will only consider achievement goals and not maintenance goals;
see Exercise 8.9 (page 369).

Regression planning is searching in the graph defined by the following:

• The nodes are goals that must be achieved. A goal is a set of assignments to
(some of) the features.

• The arcs correspond to actions. In particular, an arc from node g to g′, labeled
with action act, means act is the last action that is carried out before goal g is
achieved, and the node g′ is the goal that must be true immediately before
act so that g is true immediately after act.

• The start node is the goal to be achieved. Here we assume it is a conjunction
of assignments of values to features.

• The goal condition for the search, goal(g), is true if all of the elements of g
are true of the initial state.

Given a node that represents goal g, a neighbor of g exists for every action
act such that

• act is possible: it is possible for act to be carried out and for g to be true
immediately after act; and

• act is useful: act achieves part of g.

The neighbor of g along the arc labeled with action act is the node g′ defined
by the weakest precondition. The weakest precondition for goal g to hold after
action act is a goal g′ such that

• g′ is true before act implies that g is true immediately after act.

• g′ is “weakest” in the sense that any proposition that satisfies the first condi-
tion must imply g′. This precludes, for example, having unnecessary condi-
tions conjoined onto a precondition.

A set of assignments of values to variables is consistent if it assigns at most
one value to any variable. That is, it is inconsistent if it assigns two different
values to any variable.

Suppose goal g = {X1 = v1, . . . , Xn = vn} is the node being considered.
Consider computing the neighbors of a node given the feature-based repre-

sentation of actions. An action act is useful if there is a causal rule that achieves
Xi = vi for some i, using action act. The neighbor of this node along the arc
labeled with action act is the proposition

precondition(act) ∧ body(X1 = v1, act) ∧ · · · ∧ body(Xn = vn, act)

where body(Xi = vi, act) is the set of assignments of variables in the body of
a rule that specifies when Xi = vi is true immediately after act. There is no
such neighbor if there is no corresponding rule for some i, or if the propo-
sition is inconsistent (i.e., assigns different values to a variable). Note that,

8.3. Regression Planning 359

mcc

dc

mc

mccmc mcc

mcpuc

[swc]

[off,rhc]

[cs,rhc] [lab,rhc]

[mr,rhc] [off,rhc]

[off,rhc]

[mr,rhc]

[cs]

Figure 8.3: Part of the search space for a regression planner

if multiple rules are applicable for the same action, there will be multiple
neighbors.

In terms of the STRIPS representation, act is useful for solving g if Xi = vi
is an effect of action act, for some i. Action act is possible unless there is an
effect Xj = vj of act and g contains Xj = v′j where v′j �= vj. Immediately before
act, the preconditions of act, as well as any Xk = vk not achieved by act, must
hold.

Thus, the neighbor of the goal g on an arc labeled with act is

precondition(act) ∪ (g \ effects(act))}

as long as it is consistent.

Example 8.9 Suppose the goal is to achieve swc. The start node is [swc]. If
this is true in the initial state, the planner stops. If not, it chooses an action
that achieves swc. In this case, there is only one: dc. The preconditions of dc are
off ∧ rhc. Thus, there is one arc:

〈[swc], [off , rhc]〉 labeled with dc.

Consider the node [off , rhc]. There are two actions that can achieve off , namely
mc from cs and mcc from lab. There is one action that can achieve rhc, namely
puc. However, puc has as a precondition cs ∧ rhc, but cs and off are inconsistent
(because they involve different assignments to the variable RLoc). Thus, puc
is not a possible last action; it is not possible that, immediately after puc, the
condition [off , rhc] holds.

Figure 8.3 shows the first two levels of the search space (without multipath
pruning or loop detection). Note that the search space is the same no matter
what the initial state is. The starting state has two roles, first as a stopping cri-
terion and second as a source of heuristics.

360 8. Planning with Certainty

The following example shows how a regression planner can recognize what
the last action of a plan must be.

Example 8.10 Suppose the goal was for Sam to not want coffee and for the
robot to have coffee: [swc, rhc]. The last action cannot be dc to achieve swc, be-
cause this achieves rhc. The only last action must be puc to achieve rhc. Thus,
the resulting goal is [swc, cs]. Again, the last action before this goal cannot be
to achieve swc because this has as a precondition off , which is inconsistent
with cs. Therefore, the second-to-last action must be a move action to ach-
ieve cs.

A problem with the regression planner is that a goal may not be achievable.
Deciding whether a set of goals is achievable is often difficult to infer from
the definitions of the actions. For example, you may be required to know that
an object cannot be at two different places at the same time; sometimes this is
not explicitly represented and is only implicit in the effects of an action, and
the fact that the object is only in one position initially. To perform consistency
pruning, the regression planner can use domain knowledge to prune the search
space.

Loop detection and multiple-path pruning may be incorporated into a re-
gression planner. The regression planner does not have to visit exactly the same
node to prune the search. If the goal represented by a node n implies a goal on
the path to n, node n can be pruned. Similarly, for multiple-path pruning, see
Exercise 8.11 (page 369).

A regression planner commits to a particular total ordering of actions, even
if no particular reason exists for one ordering over another. This commit-
ment to a total ordering tends to increase the complexity of the search space
if the actions do not interact much. For example, it tests each permutation
of a sequence of actions when it may be possible to show that no ordering
succeeds.

8.4 Planning as a CSP

In forward planning, the search is constrained by the initial state and only uses
the goal as a stopping criterion and as a source for heuristics. In regression
planning, the search is constrained by the goal and only uses the start state as
a stopping criterion and as a source for heuristics. It is possible to go forward
and backward in the same planner by using the initial state to prune what is
not reachable and the goal to prune what is not useful. This can be done by
converting a planning problem to a constraint satisfaction problem (CSP) and
using one of the CSP methods from Chapter 4.

For the CSP representation, it is also useful to describe the actions in
terms of features – to have a factored representation of actions as well
as a factored representation of states. The features representing actions are
called action features and the features representing states are called state
features.

8.4. Planning as a CSP 361

Example 8.11 Another way to model the actions of Example 8.1 (page 350) is
that, at each step, Rob gets to choose

• whether it will pick up coffee. Let PUC be a Boolean variable that is true
when Rob picks up coffee.

• whether it will deliver coffee. Let DelC be a Boolean variable that is true
when Rob delivers coffee.

• whether it will pick up mail. Let PUM be a Boolean variable that is true
when Rob picks up mail.

• whether it will deliver mail. Let DelM be a Boolean variable that is true
when Rob delivers mail.

• whether it moves. Let Move be a variable with domain {mc, mcc, nm} that
specifies whether Rob moves clockwise, moves counterclockwise, or does
not move (nm means “not move”).

To construct a CSP from a planning problem, first choose a fixed horizon,
which is the number of time steps over which to plan. Suppose this number is
k. The CSP has the following variables:

• a variable for each state feature and each time from 0 to k. If there are n such
features, there are n(k + 1) such variables.

• a variable for each action feature for each time in the range 0 to k− 1. These
are called action variables. The action at time t represents the action that
takes the agent from the state at time t to the state at time t + 1.

There are a number of types of constraints:

• State constraints are constraints among variables at the same time step.
These can include physical constraints on the state or can ensure that states
that violate maintenance goals (page 355) are forbidden.

• Precondition constraints between state variables at time t and action vari-
ables at time t specify constraints on what actions are available from a state.

• Effect constraints among state variables at time t, action variables at time t,
and state variables at time t + 1 constrain the values of the state variables at
time t + 1 in terms of the actions and the previous state.

• Action constraints specify which actions cannot co-occur. These are some-
times called mutual exclusion or mutex constraints.

• Initial-state constraints are constraints on the initial state (at time 0). These
constrain the initial state to be the current state of the agent. If there is a
unique initial state, it can be represented as a set of domain constraints on
the state variables at time 0.

• Goal constraints constrain the final state to be a state that satisfies the
achievement goal. These are domain constraints if the goal is for certain
variables to have particular values at the final step, but they can also be
more general constraints – for example, if two variables must have the same
value.

362 8. Planning with Certainty

RLoci – Rob’s location
RHCi – Rob has coffee
SWCi – Sam wants coffee
MWi – Mail is waiting
RHMi – Rob has mail

Movei – Rob’s move action
PUCi – Rob picks up coffee
DelC – Rob delivers coffee
PUMi – Rob picks up mail
DelMi – Rob delivers mail

Figure 8.4: The delivery robot CSP planner for a planning horizon of 2

Example 8.12 Figure 8.4 shows a CSP representation of the delivery robot
example, with a planning horizon of 2. There are three copies of the state vari-
ables: one at time 0, the initial state; one at time 1; and one at time 2, the final
state. There are action variables for times 0 and 1.

There are no domain constraints in this example. You could make a con-
straint that says Rob cannot carry both the mail and coffee, or that Rob cannot
carry mail when there is mail waiting, if these were true in the domain. They
are not included here.

The constraints to the left of the actions are the precondition constraints,
which specify what values the action variables can take (i.e., what actions are
available for each of the action variables). The Movei variables have no precon-
ditions: all moves are available in all states. The PUMi variable, which specifies
whether Rob can pick up mail, depends on Rob’s location at time i (i.e., the
value of RLoci) and whether there is mail waiting at time i (MWi). The negation
of an action (e.g., PUMi = false, written as pumi) is always available, assuming
that the agent can choose not to perform an action. The action PUMi = true,
written as pumi, is only available when the location is mr and MWi = true.
When the precondition of an action is a conjunction, it can be written as a set of
constraints, because the constraints in a CSP are implicitly conjoined. If the pre-
condition is a more complex proposition, it can be represented as a constraint
involving more than two variables.

The constraints to the left of the state variables at times 1 and later indi-
cate the values of the state variables as a function of the previous state and the

8.5. Partial-Order Planning 363

action. For example, the following constraint is among RHCi, DCi, PUCi, and
whether the robot has coffee in the subsequent state, RHCi+1:

RHCi DCi PUCi RHCi+1
true true true true
true true false false
true false true true
true false false true
false true true true
false true false false
false false true true
false false false false

This table represents the same constraint as the rules of Example 8.4 (page 353).

Example 8.13 Consider finding a plan to get Sam coffee, with a planning hori-
zon of 2.

Initially, Sam wants coffee but the robot does not have coffee. This can be
represented as two domain constraints: one on SWC0 and one on RHC0. The
goal is that Sam no longer wants coffee. This can be represented as the domain
constraint SWC2 = false.

Just running arc consistency on this network results in RLoc0 = cs (the robot
has to start in the coffee shop), PUC0 = true (the robot has to pick up coffee
initially), Move0 = mc (the robot has to move to the office), and DC1 = true (the
robot has to deliver coffee at time 1).

The CSP representation assumes a fixed planning horizon (i.e., a fixed num-
ber of steps). To find a plan over any number of steps, the algorithm can be run
for a horizon of k = 0, 1, 2, until a solution is found. For the stochastic local
searching algorithm, it is possible to search multiple horizons at once, search-
ing for all horizons, k from 0 to n, and allowing n to increase slowly. When
solving the CSP using arc consistency and search, it may be possible to de-
termine that trying a longer plan will not help. That is, by analyzing why no
solution exists for a horizon of n steps, it may be possible to show that there
can be no plan for any length greater than n. This will enable the planner to
halt when there is no plan. See Exercise 8.12 (page 369).

8.5 Partial-Order Planning

The forward and regression planners enforce a total ordering on actions at all
stages of the planning process. The CSP planner commits to the particular time
that the action will be carried out. This means that those planners have to com-
mit to an ordering of actions that cannot occur concurrently when adding them
to a partial plan, even if there is no particular reason to put one action before
another.

The idea of a partial-order planner is to have a partial ordering between
actions and only commit to an ordering between actions when forced. This is

364 8. Planning with Certainty

sometimes also called a non-linear planner, which is a misnomer because such
planners often produce a linear plan.

A partial ordering is a less-than relation that is transitive and asymmetric. A
partial-order plan is a set of actions together with a partial ordering, represent-
ing a “before” relation on actions, such that any total ordering of the actions,
consistent with the partial ordering, will solve the goal from the initial state.
Write act0 < act1 if action act0 is before action act1 in the partial order. This
means that action act0 must occur before action act1.

For uniformity, treat start as an action that achieves the relations that are
true in the initial state, and treat finish as an action whose precondition is the
goal to be solved. The pseudoaction start is before every other action, and finish
is after every other action. The use of these as actions means that the algorithm
does not require special cases for the initial situation and for the goals. When
the preconditions of finish hold, the goal is solved.

An action, other than start or finish, will be in a partial-order plan to achieve
a precondition of an action in the plan. Each precondition of an action in the
plan is either true in the initial state, and so achieved by start, or there will be
an action in the plan that achieves it.

We must ensure that the actions achieve the conditions they were assigned
to achieve. Each precondition P of an action act1 in a plan will have an action
act0 associated with it such that act0 achieves precondition P for act1. The triple
〈act0, P, act1〉 is a causal link. The partial order specifies that action act0 occurs
before action act1, which is written as act0 < act1. Any other action A that makes
P false must either be before act0 or after act1.

Informally, a partial-order planner works as follows: Begin with the actions
start and finish and the partial order start < finish. The planner maintains an
agenda that is a set of 〈P, A〉 pairs, where A is an action in the plan and P is
an atom that is a precondition of A that must be achieved. Initially the agenda
contains pairs 〈G, finish〉, where G is an atom that must be true in the goal state.

At each stage in the planning process, a pair 〈G, act1〉 is selected from the
agenda, where P is a precondition for action act1. Then an action, act0, is chosen
to achieve P. That action is either already in the plan – it could be the start
action, for example – or it is a new action that is added to the plan. Action act0
must happen before act1 in the partial order. It adds a causal link that records
that act0 achieves P for action act1. Any action in the plan that deletes P must
happen either before act0 or after act1. If act0 is a new action, its preconditions
are added to the agenda, and the process continues until the agenda is empty.

This is a non-deterministic procedure. The “choose” and the “either . . . or
. . . ” form choices that must be searched over. There are two choices that require
search:

• which action is selected to achieve G and

• whether an action that deletes G happens before act0 or after act1.

The algorithm PartialOrderPlanner is given in Figure 8.5.

8.5. Partial-Order Planning 365

1: non-deterministic procedure PartialOrderPlanner(Gs)
2: Inputs
3: Gs: set of atomic propositions to achieve

4: Output
5: linear plan to achieve Gs
6: Local
7: Agenda: set of 〈P, A〉 pairs where P is atom and A an action
8: Actions: set of actions in the current plan
9: Constraints: set of temporal constraints on actions

10: CausalLinks: set of 〈act0, P, act1〉 triples

11: Agenda := {〈G, finish〉 : G ∈ Gs}
12: Actions := {start, finish}
13: Constraints := {start < finish}
14: CausalLinks := {}
15: repeat
16: select and remove 〈G, act1〉 from Agenda
17: either
18: choose act0 ∈ Actions such that act0 achieves G
19: Or
20: choose act0 /∈ Actions such that act0 achieves G
21: Actions := Actions∪ {act0}
22: Constraints := add const(start < act0, Constraints)
23: for each CL ∈ CausalLinks do
24: Constraints := protect(CL, act0, Constraints)
25: Agenda := Agenda∪ {〈P, act0〉 : P is a precondition of act0}
26: Constraints := add const(act0 < act1, Constraints)
27: CausalLinks := CausalLinks∪ {〈acto, G, act1〉}
28: for each A ∈ Actions do
29: Constraints := protect(〈acto, G, act1〉 , A, Constraints)
30: until Agenda = {}
31: return total ordering of Actions consistent with Constraints

Figure 8.5: Partial-order planner

The function add const(act0 < act1, Constraints) returns the constraints
formed by adding the constraint act0 < act1 to Constraints, and it fails if
act0 < act1 is incompatible with Constraints. There are many ways this func-
tion can be implemented. See Exercise 8.13.

The function protect(〈acto, G, act1〉 , A) checks whether A �= act0 and A �=
act1 and A deletes G. If so, either A < act0 is added to the set of constraints or
act1 < A is added to the set of constraints. This is a non-deterministic choice
that is searched over.

366 8. Planning with Certainty

Example 8.14 Consider the goal swc ∧ mw, where the initial state contains
RLoc = lab, swc, rhc, mw, rhm.

Initially the agenda is

〈swc, finish〉 , 〈mw, finish〉 .

Suppose 〈swc, finish〉 is selected and removed from the agenda. One action
exists that can achieve swc, namely deliver coffee, dc, with preconditions off and
rhc. At the end of the repeat loop, Agenda contains

〈off , dc〉 , 〈rhc, dc〉 , 〈mw, finish〉 .

Constraints is {start < finish, start < dc, dc < finish}. There is one causal link,
〈dc, swc, finish〉. This causal link means that no action that undoes swc is allowed
to happen after dc and before finish.

Suppose 〈mw, finish〉 is selected from the agenda. One action exists that can
achieve this, pum, with preconditions mw and RLoc = mr. The causal link
〈pum, mw, finish〉 is added to the set of causal links; 〈mw, pum〉 and 〈mr, pum〉
are added to the agenda.

Suppose 〈mw, pum〉 is selected from the agenda. The action start achieves
mw, because mw is true initially. The causal link 〈start, mw, pum〉 is added to the
set of causal links. Nothing is added to the agenda.

At this stage, there is no ordering imposed between dc and pum.
Suppose 〈off , dc〉 is removed from the agenda. There are two actions that

can achieve off : mc cs with preconditions cs, and mcc lab with preconditions lab.
The algorithm searches over these choices. Suppose it chooses mc cs. Then the
causal link 〈mc cs, off , dc〉 is added.

The first violation of a causal link occurs when a move action is used to
achieve 〈mr, pum〉. This action violates the causal link 〈mc cs, off , dc〉, and so
must happen after dc (the robot goes to the mail room after delivering coffee)
or before mc cs.

The preceding algorithm has glossed over one important detail. It is some-
times necessary to perform some action more than once in a plan. The pre-
ceding algorithm will not work in this case, because it will try to find a par-
tial ordering with both instances of the action occurring at the same time. To
fix this problem, the ordering should be between action instances, and not ac-
tions themselves. To implement this, assign an index to each instance of an
action in the plan, and the ordering is on the action instance indexes and not
the actions themselves. This is left as an exercise.

8.6 Review

The following are the main points you should have learned from this chapter:

• Planning is the process of choosing a sequence of actions to achieve a goal.
• An action is a function from a state to a state. A number of representations

exploit structure in representation of states. In particular, the feature-based

8.8. Exercises 367

representation of actions represents what must be true in the previous state
for a feature to have a value in the next state. The STRIPS representation is
an action-based representation that specifies the effects of actions.

• Different planning algorithms can be used to convert a planning problem
into a search problem.

8.7 References and Further Reading

The STRIPS representation was developed by Fikes and Nilsson [1971].
There is much ongoing research into how to plan sequences of actions. Yang

[1997] presents a textbook overview of planning. For a collection of classic pa-
pers, see Allen, Hendler, and Tate [1990].

Forward planning has been used successfully for planning in the blocks
world, where some good heuristics have been identified by Bacchus and Ka-
banza [1996]. (See Exercise 8.6 (page 369).)

Regression planning was pioneered by Waldinger [1977]. The use of weak-
est preconditions is based on the work of Dijkstra [1976], where it was used to
define the semantics of imperative programming languages. This should not
be too surprising because the commands of an imperative language are actions
that change the state of the computer.

Planning as CSP is based on Graphplan [Blum and Furst, 1997] and Satplan
[Kautz and Selman, 1996]. The treatment of planning as a CSP is also investi-
gated by Lopez and Bacchus [2003] and van Beek and Chen [1999]. Bryce and
Kambhampati [2007] give a recent survey.

Partial-order planning was introduced in Sacerdoti’s [1975] NOAH and fol-
lowed up in Tate’s [1977] NONLIN system, Chapman’s [1987] TWEAK algo-
rithm, and McAllester and Rosenblitt’s [1991] systematic non-linear planning
(SNLP) algorithm. See Weld [1994] for an overview of partial-order planning
and see Kambhampati, Knoblock, and Yang [1995] for a comparison of the al-
gorithms. The version presented here is basically SNLP (but see Exercise 8.15).

See Wilkins [1988] for a discussion on practical issues in planning. See Weld
[1999], McDermott and Hendler [1995], and Nau [2007] and associated papers
for a recent overview.

8.8 Exercises

Exercise 8.1 Consider the planning domain in Figure 8.1 (page 350).

(a) Give the feature-based representation of the MW and RHM features.
(b) Give the STRIPS representations for the pick up mail and deliver mail

actions.

Exercise 8.2 Suppose the robot cannot carry both coffee and mail at the same
time. Give two different ways that the CSP that represents the planning problem
can be changed to reflect this constraint. Test it by giving a problem where the
answer is different when the robot has this limitation than when it does not.

368 8. Planning with Certainty

Exercise 8.3 Write a complete description of the limited robot delivery world,
and then draw a state-space representation that includes at least two instances of
each of the blocks-world actions discussed in this chapter. Notice that the number
of different arcs depends on the number of instances of actions.

Exercise 8.4 Change the representation of the delivery robot world [Example 8.1
(page 350)] so that

(a) the agent cannot carry both mail and coffee at the same time;

(b) the agent can carry a box in which it can place objects (so it can carry the box
and the box can hold the mail and coffee).

Test it on an example that gives a different solution than the original representa-
tion.

Exercise 8.5 Suppose we must solve planning problems for cleaning a house.
Various rooms can be dusted (making the room dust-free) or swept (making the
room have a clean floor), but the robot can only sweep or dust a room if it is in that
room. Sweeping causes a room to become dusty (i.e., not dust-free). The robot can
only dust a room if the dustcloth is clean; but dusting rooms that are extra-dusty,
like the garage, cause the dustcloth to become dirty. The robot can move directly
from any room to any other room.

Assume there only two rooms, the garage – which, if it is dusty, it is extra-
dusty – and the living room – which is not extra-dusty. Assume the following
features:

• Lr dusty is true when the living room is dusty.

• Gar dusty is true when the garage is dusty.

• Lr dirty floor is true when the living room floor is dirty.

• Gar dirty floor is true when the garage floor is dirty.
• Dustcloth clean is true when the dust cloth is clean.

• Rob loc is the location of the robot.

Suppose the robot can do one of the following actions at any time:

• move: move to the other room,

• dust lr: dust the living room (if the robot is in the living room and the living
room is dusty),

• dust gar: dust the garage (if the robot is in the garage and the garage is
dusty),

• sweep lr: sweep the living room floor (if the robot is in the living room), or

• sweep gar: sweep the garage floor (if the robot is in the garage).

(a) Give the STRIPS representation for dust gar.

(b) Give the feature-based representation for lr dusty

(c) Suppose that, instead of the two actions sweep lr and sweep gar, there was
just the action sweep, which means to sweep whatever room the robot is in.
Explain how the previous answers can be modified to handle the new rep-
resentation or why they cannot use the new representation.

8.8. Exercises 369

Exercise 8.6 Suggest a good heuristic for a forward planner to use in the robot
delivery domain. Implement it. How well does it work?

Exercise 8.7 Suppose you have a STRIPS representation for actions a1 and a2, and
you want to define the STRIPS representation for the composite action a1; a2, which
means that you do a1 then do a2.

(a) What is the effects list for this composite action?
(b) What are the preconditions for this composite action? You can assume that

the preconditions are specified as a list of Variable = value pairs (rather than
as arbitrary logical formulas).

(c) Using the delivery robot domain of Example 8.1 (page 350), give the STRIPS
representation for the composite action puc; mc.

(d) Give the STRIPS representation for the composite action puc; mc; dc made up
of three primitive actions.

(e) Give the STRIPS representation for the composite action mcc; puc; mc; dc
made up of four primitive actions.

Exercise 8.8 In a forward planner, you can represent a state in terms of the se-
quence of actions that lead to that state.

(a) Explain how to check if the precondition of an action is satisfied, given such
a representation.

(b) Explain how to do cycle detection in such a representation. You can assume
that all of the states are legal. (Some other program has ensured that the
preconditions hold.)

[Hint: Consider the composite action (Exercise 8.7) consisting of the first k or the
last k actions at any stage.]

Exercise 8.9 Explain how the regression planner can be extended to include
maintenance goals, for either the feature-based representation of actions or the
STRIPS representation. [Hint: Consider what happens when a maintenance goal
mentions a feature that does not appear in a node.]

Exercise 8.10 For the delivery robot domain, give a heuristic function for the re-
gression planner that is non-zero and an underestimate of the actual path cost. Is
it admissible?

Exercise 8.11 Explain how multiple-path pruning can be incorporated into a re-
gression planner. When can a node be pruned?

Exercise 8.12 Give a condition for the CSP planner that, when arc consistency
with search fails at some horizon, implies there can be no solutions for any longer
horizon. [Hint: Think about a very long horizon where the forward search and the
backward search do not influence each other.] Implement it.

Exercise 8.13 To implement the function add constraint(A0 < A1, Constraints)
used in the partial-order planner, you have to choose a representation for a par-
tial ordering. Implement the following as different representations for a partial
ordering:

(a) Represent a partial ordering as a set of less-than relations that entail the or-
dering – for example, as the list [1 < 2, 2 < 4, 1 < 3, 3 < 4, 4 < 5].

370 8. Planning with Certainty

(b) Represent a partial ordering as the set of all the less-than relations entailed
by the ordering – for example, as the list [1 < 2, 2 < 4, 1 < 4, 1 < 3, 3 <
4, 1 < 5, 2 < 5, 3 < 5, 4 < 5].

(c) Represent a partial ordering as a set of pairs 〈E, L〉, where E is an element
in the partial ordering and L is the list of all elements that are after E in the
partial ordering. For every E, there exists a unique term of the form 〈E, L〉.
An example of such a representation is [〈1, [2, 3, 4, 5]〉, 〈2, [4, 5]〉, 〈3, [4, 5]〉,
〈4, [5]〉, 〈5, [])〉.

For each of these representations, how big can the partial ordering be? How easy is
it to check for consistency of a new ordering? How easy is it to add a new less-than
ordering constraint? Which do you think would be the most efficient representa-
tion? Can you think of a better representation?

Exercise 8.14 The selection algorithm used in the partial-order planner is not
very sophisticated. It may be sensible to order the selected subgoals. For example,
in the robot world, the robot should try to achieve a carrying subgoal before an
at subgoal because it may be sensible for the robot to try to carry an object as
soon as it knows that it should carry it. However, the robot does not necessarily
want to move to a particular place unless it is carrying everything it is required to
carry. Implement a selection algorithm that incorporates such a heuristic. Does this
selection heuristic actually work better than selecting, say, the last added subgoal?
Can you think of a general selection algorithm that does not require each pair of
subgoals to be ordered by the knowledge engineer?

Exercise 8.15 The SNLP algorithm is the same as the partial-order planner pre-
sented here but, in the protect procedure, the condition is

A �= A0 and A �= A1 and (A deletes G or A achieves G).

This enforces systematicity, which means that for every linear plan there is a unique
partial-ordered plan. Explain why systematicity may or may not be a good thing
(e.g., discuss how it changes the branching factor or reduces the search space). Test
the different algorithms on different examples.

Chapter 9

Planning Under Uncertainty

A plan is like the scaffolding around a building. When you’re putting up
the exterior shell, the scaffolding is vital. But once the shell is in place and
you start to work on the interior, the scaffolding disappears. That’s how I
think of planning. It has to be sufficiently thoughtful and solid to get the
work up and standing straight, but it cannot take over as you toil away on
the interior guts of a piece. Transforming your ideas rarely goes according
to plan.

– Twyla Tharp [2003]

In the quote above, Tharp is referring to dance, but the same idea holds for
any agent when there is uncertainty. An agent cannot just plan a sequence of
steps; the result of planning needs to be more sophisticated. Planning must take
into account the fact that the agent does not know what will actually happen
when it acts. The agent should plan to react to its environment. What it does is
determined by the plan and the actual environment encountered.

Consider what an agent should do when it does not know the exact effects
of its actions. Determining what to do is difficult because what an agent should
do at any time depends on what it will do in the future. However, what it will
do in the future depends on what it does now and what it will observe in the
future.

With uncertainty, an agent typically cannot guarantee to satisfy its goals,
and even trying to maximize the probability of achieving a goal may not be
sensible. For example, an agent whose goal is not to be injured in a car accident
would not get in a car or travel down a sidewalk or even go to the ground floor
of a building, which most people would agree is not very intelligent. An agent
that does not guarantee to satisfy a goal can fail in many ways, some of which
may be much worse than others.

This chapter is about how to take these issues into account simultaneously.
An agent’s decision on what to do depends on three things:

• the agent’s ability. The agent has to select from the options available to it.

371

372 9. Planning Under Uncertainty

• what the agent believes. You may be tempted to say “what is true in the world,”
but when an agent does not know what is true in the world, it can act based
only on its beliefs. Sensing the world updates an agent’s beliefs by condi-
tioning on what is sensed.

• the agent’s preferences. When an agent must reason under uncertainty, it has to
consider not only what will most likely happen but also what may happen.
Some possible outcomes may have much worse consequences than others.
The notion of a “goal” here is richer than the goals considered in Chapter 8
because the designer of an agent must specify trade-offs between different
outcomes. For example, if some action results in a good outcome most of the
time, but sometimes results in a disastrous outcome, it must be compared
with performing an alternative action that results in the good outcome less

Whose Values?

Any computer program or person who acts or gives advice is using some
value system of what is important and what is not.

Alice . . . went on “Would you please tell me, please, which way I
ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.
“I don’t much care where –” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll (1832–1898)
Alice’s Adventures in Wonderland, 1865

We all, of course, want computers to work on our value system, but they can-
not act according to everyone’s value system! When you build programs to
work in a laboratory, this is not usually a problem. The program acts accord-
ing to the goals and values of the program’s designer, who is also the pro-
gram’s user. When there are multiple users of a system, you must be aware
of whose value system is incorporated into a program. If a company sells a
medical diagnostic program to a doctor, does the advice the program gives re-
flect the values of society, the company, the doctor, or the patient (all of whom
may have very different value systems)? Does it determine the doctor’s or the
patient’s values?

If you want to build a system that gives advice to someone, you should
find out what is true as well as what their values are. For example, in a medical
diagnostic system, the appropriate procedure depends not only on patients’
symptoms but also on their priorities. Are they prepared to put up with some
pain in order to be more aware of their surroundings? Are they willing to put
up with a lot of discomfort to live a bit longer? What risks are they prepared
to take? Always be suspicious of a program or person that tells you what to
do if it does not ask you what you want to do! As builders of programs that
do things or give advice, you should be aware of whose value systems are
incorporated into the actions or advice.

9.1. Preferences and Utility 373

often and the disastrous outcome less often and some mediocre outcome
most of the time. Decision theory specifies how to trade off the desirability
of outcomes with the probabilities of these outcomes.

9.1 Preferences and Utility

What an agent decides to do should depend on its preferences. In this section,
we specify some intuitive properties of preferences that we want and give a
consequence of these properties. The properties that we give are axioms of
rationality from which we prove a theorem about how to measure these pref-
erences. You should consider whether each axiom is reasonable for a rational
agent to follow; if you accept them all as reasonable, you should accept their
consequence. If you do not accept the consequence, you should question which
of the axioms you are willing to give up.

An agent chooses actions based on their outcomes. Outcomes are whatever
the agent has preferences over. If the agent does not have preferences over any-
thing, it does not matter what the agent does. Initially, we consider outcomes
without considering the associated actions. Assume there are only a finite num-
ber of outcomes.

We define a preference relation over outcomes. Suppose o1 and o2 are out-
comes. We say that o1 is weakly preferred to outcome o2, written o1 � o2, if
outcome o1 is at least as desirable as outcome o2. The axioms that follow are
arguably reasonable properties of such a preference relation.

Define o1 ∼ o2 to mean o1 � o2 and o2 � o1. That is, o1 ∼ o2 means outcomes
o1 and o2 are equally preferred. In this case, we say that the agent is indifferent
between o1 and o2.

Define o1 � o2 to mean o1 � o2 and o2 �� o1. That is, the agent prefers
outcome o1 to outcome o2 and is not indifferent between them. In this case, we
say that o1 is strictly preferred to outcome o2.

Typically, an agent does not know the outcome of its actions. A lottery is
defined to be a finite distribution over outcomes, written as

[p1 : o1, p2 : o2, . . . , pk : ok],

where oi are outcomes and pi are non-negative real numbers such that

∑
i

pi = 1.

The lottery specifies that outcome oi occurs with probability pi. In all that fol-
lows, assume that outcomes include lotteries. This includes the case of having
lotteries over lotteries.

Axiom 9.1. [Completeness] An agent has preferences between all pairs of outcomes:

∀o1∀o2 o1 � o2 or o2 � o1.

The rationale for this axiom is that an agent must act; if the actions avail-
able to it have outcomes o1 and o2 then, by acting, it is explicitly or implicitly
preferring one outcome over the other.

374 9. Planning Under Uncertainty

Axiom 9.2. [Transitivity] Preferences must be transitive:

if o1 � o2 and o2 � o3 then o1 � o3.

To see why this is reasonable, suppose it is false, in which case o1 � o2 and
o2 � o3 and o3 � o1. Because o3 is strictly preferred to o1, the agent should
be prepared to pay some amount to get from o1 to o3. Suppose the agent has
outcome o3; then o2 is at least as good so the agent would just as soon have o2.
o1 is at least as good as o2 so the agent would just as soon have o1 as o2. Once the
agent has o1 it is again prepared to pay to get to o3. It has gone through a cycle
of preferences and paid money to end up where it is. This cycle that involves
paying money to go through it is known as a money pump because, by going
through the loop enough times, the amount of money that agent must pay can
exceed any finite amount. It seems reasonable to claim that being prepared to
pay money to cycle through a set of outcomes is irrational; hence, a rational
agent should have transitive preferences.

Also assume that monotonicity holds for mixes of � and �, so that if one
or both of the preferences in the premise of the transitivity axiom is strict, then
the conclusion is strict. That is, if o1 � o2 and o2 � o3 then o1 � o3. Also, if
o1 � o2 and o2 � o3 then o1 � o3.

Axiom 9.3. [Monotonicity] An agent prefers a larger chance of getting a better out-
come than a smaller chance of getting the better outcome. That is, if o1 � o2 and p > q
then

[p : o1, (1− p) : o2] � [q : o1, (1− q) : o2].

Note that, in this axiom,� between outcomes represents the agent’s prefer-
ence, whereas > between p and q represents the familiar comparison between
numbers.

Axiom 9.4. [Decomposability] (“no fun in gambling”). An agent is indifferent be-
tween lotteries that have the same probabilities over the same outcomes, even if one or
both is a lottery over lotteries. For example:

[p : o1, (1− p) : [q : o2, (1− q) : o3]]
∼ [p : o1, (1− p)q : o2, (1− p)(1− q) : o3].

Also o1 ∼ [1 : o1, 0 : o2] for any outcomes o1 and o2.

This axiom specifies that it is only the outcomes and their probabilities that
define a lottery. If an agent had a preference for gambling, that would be part
of the outcome space.

These axioms can be used to characterize much of an agent’s preferences
between outcomes and lotteries. Suppose that o1 � o2 and o2 � o3. Consider
whether the agent would prefer

• o2 or

• the lottery [p : o1, (1− p) : o3]

9.1. Preferences and Utility 375

0 1

o2

[p:o1,1-p:o3]

p2

Probability in lottery

Preferred

Outcome

Figure 9.1: The preference between o2 and the lottery, as a function of p.

for different values of p ∈ [0, 1]. When p = 1, the agent prefers the lottery
(because the lottery is equivalent to o1 and o1 � o2). When p = 0, the agent
prefers o2 (because the lottery is equivalent to o3 and o2 � o3). At some stage,
as p is varied, the agent’s preferences flip between preferring o2 and preferring
the lottery. Figure 9.1 shows how the preferences must flip as p is varied. On
the X-axis is p and the Y-axis shows which of o2 or the lottery is preferred.

Proposition 9.1. If an agent’s preferences are complete, transitive, and follow the
monotonicity and decomposability axioms, and if o1 � o2 and o2 � o3, there exists a
number p2 such that 0 ≤ p2 ≤ 1 and

• for all p < p2, the agent prefers o2 to the lottery (i.e., o2 � [p : o1, (1− p) : o3])
and
• for all p > p2, the agent prefers the lottery (i.e., [p : o1, (1− p) : o3] � o2).

Proof. By monotonicity and transitivity, if o2 � [p : o1, (1− p) : o3] for any p
then, for all p′ < p, o2 � [p′ : o1, (1− p′) : o3]. Similarly, if [p : o1, (1− p) : o3] �
o2 for any p then, for all p′ > p, [p′ : o1, (1− p′) : o3] � o2. By completeness,
for each value of p, either o2 � [p : o1, (1− p) : o3], o2 ∼ [p : o1, (1− p) : o3] or
[p : o1, (1− p) : o3] � o2. If there is some p such that o2 ∼ [p : o1, (1− p) : o3],
then the theorem holds. Otherwise a preference for either o2 or the lottery with
parameter p implies preferences for either all values greater than p or for all
values less than p. By repeatedly subdividing the region that we do not know
the preferences for, we will approach, in the limit, a value that fills the criteria
for p2.

The preceding proposition does not specify what the preference of the agent
is at the point p2. The following axiom specifies that the agent is indifferent at
this point.

Axiom 9.5. [Continuity] Suppose o1 � o2 and o2 � o3, then there exists a p2 ∈ [0, 1]
such that

o2 ∼ [p2 : o1, (1− p2) : o3].

376 9. Planning Under Uncertainty

The next axiom specifies that, if you replace an outcome in a lottery with
another outcome that is not worse, the lottery does not become worse.

Axiom 9.6. [Substitutability] If o1 � o2 then the agent weakly prefers lotteries that
contain o1 instead of o2, everything else being equal. That is, for any number p and
outcome o3:

[p : o1, (1− p) : o3] � [p : o2, (1− p) : o3].

A direct corollary of this is that you can substitutes outcomes for which the
agent is indifferent and not change preferences:

Proposition 9.2. If an agent obeys the substitutability axiom and o1 ∼ o2 then the
agent is indifferent between lotteries that only differ by o1 and o2. That is, for any
number p and outcome o3 the following indifference relation holds:

[p : o1, (1− p) : o3] ∼ [p : o2, (1− p) : o3].

This follows because o1 ∼ o2 is equivalent to o1 � o2 and o2 � o1.
An agent is defined to be rational if it obeys the completeness, transitivity,

monotonicity, decomposability, continuity, and substitutability axioms.
It is up to you to determine if this technical definition of rational matches

your intuitive notion of rational. In the rest of this section, we show conse-
quences of this definition.

Although preferences may seem to be very complicated, the following the-
orem shows that a rational agent’s value for an outcome can be measured by
a real number and that these numbers can be combined with probabilities so
that preferences under uncertainty can be compared using expectation. This is
surprising because

• it may seem that preferences are too multifaceted to be modeled by a sin-
gle number. For example, although one may try to measure preferences in
terms of dollars, not everything is for sale or easily converted into dollars
and cents.

• you would not expect that values could be combined with probabilities. An
agent that is indifferent between $(px + (1 − p)y) and the lottery [p : $x,
(1− p)$y] for all monetary values x and y and for all p ∈ [0, 1] is known as
an expected monetary value (EMV) agent. Most people are not EMV agents,
because they have, for example, a strict preference between $1,000,000 and
the lottery [0.5 : $0, 0.5 : $2, 000, 000]. (Think about whether you would pre-
fer a million dollars or a coin toss where you would get nothing if the coin
lands heads or two million if the coin lands tails.) Money cannot be simply
combined with probabilities, so it may be surprising that there is a value that
can be.

Proposition 9.3. If an agent is rational, then for every outcome oi there is a real
number u(oi), called the utility of oi, such that

• oi � oj if and only if u(oi) > u(oj) and

9.1. Preferences and Utility 377

• utilities are linear with probabilities:

u([p1 : o1, p2 : o2, . . . , pk : ok]) = p1u(o1) + p2u(o2) + · · ·+ pku(ok).

Proof. If the agent has no strict preferences (i.e., the agent is indifferent between
all outcomes) then define u(o) = 0 for all outcomes o.

Otherwise, choose the best outcome, obest, and the worst outcome, oworst, and
define, for any outcome o, the utility of o to be the value p such that

o ∼ [p : obest, (1− p) : oworst].

The first part of the proposition follows from substitutability and monotonicity.
The second part can be proved by replacing each oi by its equivalent lottery

between obest and oworst. This composite lottery can be reduced to a single lottery
between obest and oworst, with the utility given in the theorem. The details are left
as an exercise.

In this proof the utilities are all in the range [0, 1], but any linear scaling
gives the same result. Sometimes [0, 100] is a good scale to distinguish it from
probabilities, and sometimes negative numbers are useful to use when the out-
comes have costs. In general, a program should accept any scale that is intuitive
to the user.

A linear relationship does not usually exist between money and utility, even
when the outcomes have a monetary value. People often are risk averse when
it comes to money. They would rather have $n in their hand than some random-
ized setup where they expect to receive $n but could possibly receive more or
less.

Example 9.1 Figure 9.2 (on the next page) shows a possible money-utility
trade-off for a risk-averse agent. Risk aversion corresponds to a concave utility
function.

This agent would rather have $300,000 than a 50% chance of getting either
nothing or $1,000,000, but would prefer the gamble on the million dollars to
$275,000. They would also require more than a 73% chance of winning a million
dollars to prefer this gamble to half a million dollars.

Note that, for this utility function, u($999000) ≈ 0.9997. Thus, given this
utility function, the person would be willing to pay $1,000 to eliminate a 0.03%
chance of losing all of their money. This is why insurance companies exist. By
paying the insurance company, say $600, the agent can change the lottery that is
worth $999,000 to them into one worth $1,000,000 and the insurance companies
expect to pay out, on average, about $300, and so expect to make $300. The
insurance company can get its expected value by insuring enough houses. It is
good for both parties.

As presented here, rationality does not impose any conditions on what the
utility function looks like.

378 9. Planning Under Uncertainty

0 100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U
til

ity

Money (thousands of dollars)

Figure 9.2: Possible money-utility trade-off for a risk-averse agent

Example 9.2 Figure 9.3 shows a possible money-utility trade-off for someone
who really wants a toy worth $30, but who would also like one worth $20.
Apart from these, money does not matter much to this agent. This agent is
prepared to take risks to get what it wants. For example, if it had $29, it would
be very happy to bet $19 of its own against a single dollar of another agent on
a fair bet, such as a coin toss. It does not want more than $60, because this will
leave it open to extortion.

9.1.1 Factored Utility

Utility, as defined, is a function of outcomes or states. Often too many states
exist to represent this function directly in terms of states, and it is easier to
specify it in terms of features.

Suppose each outcome can be described in terms of features X1, . . . , Xn. An
additive utility is one that can be decomposed into set of factors:

u(X1, . . . , Xn) = f1(X1) + · · ·+ fn(Xn).

Such a decomposition is making the assumption of additive independence.

9.1. Preferences and Utility 379

10 20 30 40 50 60 70 80 90 100

0

1

dollars

utility

Figure 9.3: Possible money-utility trade-off from Example 9.2

When this can be done, it greatly simplifies preference elicitation – the
problem of acquiring preferences from the user. Note that this decomposition
is not unique, because adding a constant to one of the factors and subtracting
it from another factor gives the same utility. To put this decomposition into
canonical form, we can have a local utility function ui(Xi) that has a value of 0
for the value of Xi in the worst outcome, and 1 for the value of Xi in the best
outcome, and a series of weights, wi, that are non-negative numbers that sum
to 1 such that

u(X1, . . . , Xn) = w1 × u1(X1) + · · ·+ wn × un(Xn).

To elicit such a utility function requires eliciting each local utility function and
assessing the weights. Each feature, if it is relevant, must have a best value for
this feature and a worst value for this feature. Assessing the local functions
and weights can be done as follows. We consider just X1; the other features
then can be treated analogously. For feature X1, values x1 and x′1 for X1, and
values x2, . . . , xn for X2, . . . , Xn:

u(x1, x2 . . . , xn)− u(x′1, x2 . . . , xn) = w1 × (u1(x1)− u1(x′1)). (9.1)

The weight w1 can be derived when x1 is the best outcome and x′1 is the worst
outcome (because then u1(x1) − u1(x′1) = 1). The values of u1 for the other
values in the domain of X1 can be computed using Equation (9.1) , making x′1
the worst outcome (as then u1(x′1) = 0).

380 9. Planning Under Uncertainty

Challenges to Expected Utility

There have been a number of challenges to the theory of expected utility.
The Allais Paradox, presented in 1953 [Allais and Hagen, 1979], is as follows.
Which would you prefer out of the following two alternatives?

A: $1m – one million dollars
B: lottery [0.10 : $2.5m, 0.89 : $1m, 0.01 : $0]

Similarly, what would you choose between the following two alternatives?

C: lottery [0.11 : $1m, 0.89 : $0]
D: lottery [0.10 : $2.5m, 0.9 : $0]

It turns out that many people prefer A to B, and prefer D to C. This choice
is inconsistent with the axioms of rationality. To see why, both choices can be
put in the same form:

A,C: lottery [0.11 : $1m, 0.89 : X]
B,D: lottery [0.10 : $2.5m, 0.01 : $0, 0.89 : X]

In A and B, X is a million dollars. In C and D, X is zero dollars. Concentrating
just on the parts of the alternatives that are different seems like an appropriate
strategy, but people seem to have a preference for certainty.

Tversky and Kahneman [1974], in a series of human experiments, showed
how people systematically deviate from utility theory. One such deviation is
the framing effect of a problem’s presentation. Consider the following:
• A disease is expected to kill 600 people. Two alternative programs have

been proposed:

Program A: 200 people will be saved
Program B: with probability 1/3, 600 people will be saved, and with prob-

ability 2/3, no one will be saved

Which program would you favor?
• A disease is expected to kill 600 people. Two alternative programs have

been proposed:

Program C: 400 people will die
Program D: with probability 1/3 no one will die, and with probability 2/3

600 will die

Which program would you favor?
Tversky and Kahneman showed that 72% of people in their experiments
chose A over B, and 22% chose C over D. However, these are exactly the same
choice, just described in a different way.

An alternative to expected utility is prospect theory, developed by Kah-
neman and Tversky, that takes into account an agent’s current wealth at each
time. That is, a decision is based on the agent’s gains and losses, rather than
the outcome. However, just because this better matches a human’s choices
does not mean it is the best for an artificial agent, but an artificial agent that
must interact with humans should take into account how humans reason.

9.2. One-Off Decisions 381

Assuming additive independence entails making a strong independence
assumption. In particular, in Equation (9.1) (page 379), the difference in utilities
must be the same for all values x2, . . . , xn for X2, . . . , Xn.

Additive independence is often not a good assumption. Two values of two
binary features are complements if having both is better than the sum of the
two. Suppose the features are X and Y, with domains {x0, x1} and {y0, y1}.
Values x1 and y1 are complements if getting one when the agent has the other
is more valuable than when the agent does not have the other:

u(x1, y0)− u(x0, y0) < u(x1, y1)− u(x0, y1).

Note that this implies y1 and x1 are also complements.
Two values for binary features are substitutes if having both is not worth

as much as the sum of having each one. If values x1 and y1 are substitutes,
it means that getting one when the agent has the other is less valuable than
getting one when the agent does not have the other:

u(x1, y0)− u(x0, y0) > u(x1, y1)− u(x0, y1).

This implies y1 and x1 are also substitutes.

Example 9.3 For a purchasing agent in the travel domain, having a plane
booking for a particular day and a hotel booking for the same day are comple-
ments: one without the other does not give a good outcome.

Two different outings on the same day would be substitutes, assuming the
person taking the holiday would enjoy one outing, but not two, on the same
day. However, if the two outings are in close proximity to each other and re-
quire a long traveling time, they may be complements (the traveling time may
be worth it if the person gets two outings).

Additive utility assumes there are no substitutes or complements. When
there is interaction, we require a more sophisticated model, such as a general-
ized additive independence model, which represents utility as a sum of fac-
tors. This is similar to the optimization models of Section 4.10 (page 144); how-
ever, we want to use these models to compute expected utility. Elicitation of the
generalized additive independence model is much more involved than elicit-
ing an additive model, because a feature can appear in many factors.

9.2 One-Off Decisions

Basic decision theory applied to intelligent agents relies on the following as-
sumptions:

• Agents know what actions they can carry out.
• The effect of each action can be described as a probability distribution over

outcomes.
• An agent’s preferences are expressed by utilities of outcomes.

382 9. Planning Under Uncertainty

It is a consequence of Proposition 9.3 (page 376) that, if agents only act for one
step, a rational agent should choose an action with the highest expected utility.

Example 9.4 Consider the problem of the delivery robot in which there is un-
certainty in the outcome of its actions. In particular, consider the problem of
going from position o109 in Figure 3.1 (page 73) to the mail position, where
there is a chance that the robot will slip off course and fall down the stairs.
Suppose the robot can get pads that will not change the probability of an acci-
dent but will make an accident less severe. Unfortunately, the pads add extra
weight. The robot could also go the long way around, which would reduce the
probability of an accident but make the trip much slower.

Thus, the robot has to decide whether to wear the pads and which way to go
(the long way or the short way). What is not under its direct control is whether
there is an accident, although this probability can be reduced by going the long
way around. For each combination of the agent’s choices and whether there
is an accident, there is an outcome ranging from severe damage to arriving
quickly without the extra weight of the pads.

To model one-off decision making, a decision variable can be used to
model an agent’s choice. A decision variable is like a random variable, with
a domain, but it does not have an associated probability distribution. Instead,
an agent gets to choose a value for a decision variable. A possible world spec-
ifies values for both random and decision variables, and for each combination
of values to decision variables, there is a probability distribution over the ran-
dom variables. That is, for each assignment of a value to each decision variable,
the measures of the worlds that satisfy that assignment sum to 1. Conditional
probabilities are only defined when a value for every decision variable is part
of what is conditioned on.

Figure 9.4 shows a decision tree that depicts the different choices available
to the agent and their outcomes. [These are different from the decision trees
used for classification (page 298)]. To read the decision tree, start at the root (on
the left in this figure). From each node one of the branches can be followed. For
the decision nodes, shown as squares, the agent gets to choose which branch to
take. For each random node, shown as a circle, the agent does not get to choose
which branch will be taken; rather there is a probability distribution over the
branches from that node. Each path to a leaf corresponds to a world, shown as
wi, which is the outcome that will be true if that path is followed.

Example 9.5 In Example 9.4 there are two decision variables, one corre-
sponding to the decision of whether the robot wears pads and one to the de-
cision of which way to go. There is one random variable, whether there is an
accident or not. Eight possible worlds exist, corresponding to the eight paths in
the decision tree of Figure 9.4.

What the agent should do depends on how important it is to arrive quickly,
how much the pads’ weight matters, how much it is worth to reduce the dam-
age from severe to moderate, and the likelihood of an accident.

9.2. One-Off Decisions 383

wear pads

don't wear pads

short way

long way

short way

long way

accident

no accident

accident

no accident

accident

no accident

accident

no accident

w0 - moderate damage

w2 - moderate damage

w4 - severe damage

w6 - severe damage

w1 - quick, extra weight

w3 - slow, extra weight

w5 - quick, no weight

w7 - slow, no weight

Figure 9.4: A decision tree for the delivery robot. Square boxes represent decisions
that the robot can make. Circles represent random variables that the robot cannot
observe before making its decision.

The proof of Proposition 9.3 (page 376) specifies how to measure the desir-
ability of the outcomes. Suppose we decide to have utilities in the range [0,100].
First, choose the best outcome, which would be w5, and give it a utility of 100.
The worst outcome is w6, so assign it a utility of 0. For each of the other worlds,
consider the lottery between w6 and w5. For example, w0 may have a utility of
35, meaning the agent is indifferent between w0 and [0.35 : w5, 0.65 : w6], which
is slightly better than w2, which may have a utility of 30. w1 may have a utility
of 95, because it is only slightly worse than w5.

Example 9.6 In diagnosis, decision variables correspond to various treat-
ments and tests. The utility may depend on the costs of tests and treatment and
whether the patient gets better, stays sick, or dies, and whether they have short-
term or chronic pain. The outcomes for the patient depend on the treatment the
patient receives, the patient’s physiology, and the details of the disease, which
may not be known with certainty. Although we have used the vocabulary of
medical diagnosis, the same approach holds for diagnosis of artifacts such as
airplanes.

In a one-off decision, the agent chooses a value for each decision variable.
This can be modeled by treating all the decision variables as a single composite
decision variable. The domain of this decision variable is the cross product of
the domains of the individual decision variables. Call the resulting composite
decision variable D.

Each world ω specifies an assignment of a value to the decision variable D
and an assignment of a value to each random variable.

384 9. Planning Under Uncertainty

A single decision is an assignment of a value to the decision variable. The
expected utility of single decision D = di is

E(U|D = di) = ∑
ω|=(D=di)

U(ω)× P(ω),

where P(ω) is the probability of world ω, and U(ω) is the value of the utility
U in world ω; ω |= (D = di) means that the decision variable D has value di in
world ω. Thus, the expected-utility computation involves summing over the
worlds that select the appropriate decision.

An optimal single decision is the decision whose expected utility is maxi-
mal. That is, D = dmax is an optimal decision if

E(U|D = dmax) = max
di∈dom(D)

E(U|D = di),

where dom(D) is the domain of decision variable D. Thus,

dmax = arg max
di∈dom(D)

E(U|D = di).

Example 9.7 The delivery robot problem of Example 9.4 (page 382) is a single
decision problem where the robot has to decide on the values for the variables
Wear Pads and Which Way. The single decision is the complex decision variable
〈Wear Pads, Which Way〉. Each assignment of a value to each decision variable
has an expected value. For example, the expected utility of Wear Pads = true ∧
Which Way = short is given by

E(U|wear pads∧Which Way = short)
= P(accident|wear pads∧Which way = short)× utility(w0)
+ (1− P(accident|wear pads∧Which way = short))× utility(w1),

where the worlds w0 and w1 are as in Figure 9.4, and wear pads means Wear
Pads = true.

9.2.1 Single-Stage Decision Networks

The decision tree is a state-based representation because the worlds correspond
to the resulting state. It is, however, often more natural and more efficient to
represent and reason in terms of features, represented as variables.

A single-stage decision network is an extension of a belief network that
has three kinds of nodes:

• Decision nodes, drawn as rectangles, represent decision variables. The
agent gets to choose a value for each decision variable. Where there are mul-
tiple decision variables, we assume there is a total ordering of the decision
nodes, and the decision nodes before a decision node D in the total ordering
are the parents of D.

• Chance nodes, drawn as ovals, represent random variables. These are the
same as the nodes in a belief network. Each chance node has an associated
domain and a conditional probability of the variable, given its parents. As in

9.2. One-Off Decisions 385

Which

Way

Accident

Utility

Wear

Pads

WhichWay Accident Value
short true 0.2
short false 0.8
long true 0.01
long false 0.99

WearPads WhichWay Accident Utility
true short true 35
true short false 95
true long true 30
true long false 75
false short true 3
false short false 100
false long true 0
false long false 80

Figure 9.5: Single-stage decision network for the delivery robot

a belief network, the parents of a chance node represent conditional depen-
dence: a variable is independent of its non-descendants, given its parents. In
a decision network, both chance nodes and decision nodes can be parents of
a chance node.

• A utility node, drawn as a diamond, represents the utility. The parents of
the utility node are the variables on which the utility depends. Both chance
nodes and decision nodes can be parents of the utility node.

Each chance variable and each decision variable has an associated domain.
There is no domain associated with the utility node. Whereas the chance nodes
represent random variables and the decision nodes represent decision vari-
ables, there are no associated utility variables. The utility provides a function
of its parents.

Associated with a decision network is a conditional probability for each
chance node given its parents (as in a belief network) and a representation of
the utility as a function of the utility node’s parents. In the specification of the
network, there are no tables associated with the decision nodes.

Example 9.8 Figure 9.5 gives a decision network representation of Exam-
ple 9.4 (page 382). There are two decisions to be made: which way to go and
whether to wear padding. Whether the agent has an accident only depends on
which way they go. The utility depends on all three variables.

386 9. Planning Under Uncertainty

This network requires two factors: a factor representing the conditional
probability, P(Accident|WhichWay), and a factor representing the utility as a
function of WhichWay, Accident, and WearPads. Tables for these factors are
shown in Figure 9.5.

A policy for a single-stage decision network is an assignment of a value
to each decision variable. Each policy has an expected utility, which is the
conditional expected value (page 231) of the utility conditioned on the policy.
An optimal policy is a policy whose expected utility is maximal. That is, it is a
policy such that no other policy has a higher expected utility.

Figure 9.6 shows how variable elimination can be used to find an optimal
policy in a single-stage decision network. After pruning irrelevant nodes and
summing out all random variables, there will be a single factor that represents
the expected utility for each combination of decision variables. This factor does
not have to be a factor on all of the decision variables; however, those decision
variables that are not included are not relevant to the decision.

Example 9.9 Consider running OptimizeSSDN on the decision network of
Figure 9.5. No nodes can be pruned, so it sums out the only random vari-
able, Accident. To do this, it multiplies both factors because they both contain
Accident, and sums out Accident, giving the following factor:

WearPads WhichWay Value
true short 0.2* 35+ 0.8*95=83
true long 0.01*30+0.99*75=74.55
false short 0.2*3+0.8*100=80.6
false long 0.01*0+0.99*80=79.2

Thus, the policy with the maximum value – the optimal policy – is to take the
short way and wear pads, with an expected utility of 83.

9.3 Sequential Decisions

Generally, agents do not make decisions in the dark without observing some-
thing about the world, nor do they make just a single decision. A more typical
scenario is that the agent makes an observation, decides on an action, carries
out that action, makes observations in the resulting world, then makes another
decision conditioned on the observations, and so on. Subsequent actions can
depend on what is observed, and what is observed can depend on previous
actions. In this scenario, it is often the case that the sole reason for carrying out
an action is to provide information for future actions.

A sequential decision problem is a sequence of decisions, where for each
decision you should consider

• what actions are available to the agent;

• what information is, or will be, available to the agent when it has to act;

9.3. Sequential Decisions 387

1: procedure OptimizeSSDN(DN)
2: Inputs
3: DN a single stage decision network

4: Output
5: An optimal policy and the expected utility of that policy.
6: Prune all nodes that are not ancestors of the utility node.
7: Sum out all chance nodes.
8: – at this stage there is a single factor F that was derived from utility
9: Let v be the maximum value in F

10: Let d be an assignment that gives the maximum value
11: return d, v

Figure 9.6: Variable elimination for a single-stage decision network

• the effects of the actions; and

• the desirability of these effects.

Example 9.10 Consider a simple case of diagnosis where a doctor first gets to
choose some tests and then gets to treat the patient, taking into account the out-
come of the tests. The reason the doctor may decide to do a test is so that some
information (the test results) will be available at the next stage when treatment
may be performed. The test results will be information that is available when
the treatment is decided, but not when the test is decided. It is often a good
idea to test, even if testing itself can harm the patient.

The actions available are the possible tests and the possible treatments.
When the test decision is made, the information available will be the symptoms
exhibited by the patient. When the treatment decision is made, the information
available will be the patient’s symptoms, what tests were performed, and the
test results. The effect of the test is the test result, which depends on what test
was performed and what is wrong with the patient. The effect of the treatment
is some function of the treatment and what is wrong with the patient. The utility
includes, for example, costs of tests and treatments, the pain and inconvenience
to the patient in the short term, and the long-term prognosis.

9.3.1 Decision Networks

A decision network (also called an influence diagram) is a graphical represen-
tation of a finite sequential decision problem. Decision networks extend belief
networks to include decision variables and utility. A decision network extends
the single-stage decision network (page 384) to allow for sequential decisions.

In particular, a decision network is a directed acyclic graph (DAG) with
chance nodes, decision nodes, and a utility node. This extends single-stage
decision networks by allowing both chance nodes and decision nodes to be

388 9. Planning Under Uncertainty

Umbrella

Weather

UtilityForecast

Figure 9.7: Decision network for decision of whether to take an umbrella

parents of decision nodes. Arcs coming into decision nodes represent the in-
formation that will be available when the decision is made. Arcs coming into
chance nodes represents probabilistic dependence. Arcs coming into the utility
node represent what the utility depends on.

A no-forgetting agent is an agent whose decisions are totally ordered, and
the agent remembers its previous decisions and any information that was avail-
able to a previous decision. A no-forgetting decision network is a decision
network in which the decision nodes are totally ordered and, if decision node
Di is before Dj in the total ordering, then Di is a parent of Dj, and any par-
ent of Di is also a parent of Dj. Thus, any information available to Di is avail-
able to Dj, and the action chosen for decision Di is part of the information
available at decision Dj. The no-forgetting condition is sufficient to make sure
that the following definitions make sense and that the following algorithms
work.

Example 9.11 Figure 9.7 shows a simple decision network for a decision of
whether the agent should take an umbrella when it goes out. The agent’s utility
depends on the weather and whether it takes an umbrella. However, it does
not get to observe the weather. It only gets to observe the forecast. The forecast
probabilistically depends on the weather.

As part of this network, the designer must specify the domain for each ran-
dom variable and the domain for each decision variable. Suppose the random
variable Weather has domain {norain, rain}, the random variable Forecast has
domain {sunny, rainy, cloudy}, and the decision variable Umbrella has domain
{takeIt, leaveIt}. There is no domain associated with the utility node. The de-
signer also must specify the probability of the random variables given their
parents. Suppose P(Weather) is defined by

P(Weather=rain) = 0.3.

P(Forecast|Weather) is given by

Weather Forecast Probability
norain sunny 0.7
norain cloudy 0.2
norain rainy 0.1
rain sunny 0.15
rain cloudy 0.25
rain rainy 0.6

9.3. Sequential Decisions 389

Disease

Symptoms

Test Result

Test

Treatment

Utility

Outcome

Figure 9.8: Decision network for diagnosis

Suppose the utility function, Utility(Weather, Umbrella), is

Weather Umbrella Utility
norain takeIt 20
norain leaveIt 100
rain takeIt 70
rain leaveIt 0

There is no table specified for the Umbrella decision variable. It is the task of
the planner to determine which value of Umbrella to select, depending on the
forecast.

Example 9.12 Figure 9.8 shows a decision network that represents the sce-
nario of Example 9.10 (page 387). The symptoms depend on the disease. What
test to perform is decided based on the symptoms. The test result depends
on the disease and the test performed. The treatment decision is based on the
symptoms, the test performed, and the test result. The outcome depends on the
disease and the treatment. The utility depends on the costs and the side effects
of the test and on the outcome.

Note that the diagnostic assistant that is deciding on the tests and the treat-
ments never actually finds out what disease the patient has, unless the test re-
sult is definitive, which it typically is not.

Example 9.13 Figure 9.9 (on the next page) gives a decision network that is an
extension of the belief network of Figure 6.1 (page 237). The agent can receive
a report of people leaving a building and has to decide whether or not to call
the fire department. Before calling, the agent can check for smoke, but this has
some cost associated with it. The utility depends on whether it calls, whether
there is a fire, and the cost associated with checking for smoke.

In this sequential decision problem, there are two decisions to be made.
First, the agent must decide whether to check for smoke. The information that
will be available when it makes this decision is whether there is a report of peo-
ple leaving the building. Second, the agent must decide whether or not to call
the fire department. When making this decision, the agent will know whether
there was a report, whether it checked for smoke, and whether it can see smoke.
Assume that all of the variables are binary.

390 9. Planning Under Uncertainty

Tampering Fire

Alarm

Leaving

Report

Smoke

SeeSmoke
Check

Smoke

Call

Utility

Figure 9.9: Decision network for the alarm problem

The information necessary for the decision network includes the condi-
tional probabilities of the belief network and

• P(SeeSmoke|Smoke, CheckSmoke); how seeing smoke depends on whether
the agent looks for smoke and whether there is smoke. Assume that the
agent has a perfect sensor for smoke. It will see smoke if and only if it
looks for smoke and there is smoke. [See Exercise 9.6 (page 415).]

• Utility(CheckSmoke, Fire, Call); how the utility depends on whether the
agent checks for smoke, whether there is a fire, and whether the fire de-
partment is called. Figure 9.10 provides this utility information. This util-
ity function expresses the cost structure that calling has a cost of 200,
checking has a cost of 20, but not calling when there is a fire has a cost
of 5,000. The utility is the negative of the cost.

9.3.2 Policies

A policy specifies what the agent should do under all contingencies. An agent
wants to find an optimal policy – one that maximizes its expected utility.

CheckSmoke Fire Call Utility
yes yes call −220
yes yes do not call −5020
yes no call −220
yes no do not call −20
no yes call −200
no yes do not call −5000
no no call −200
no no do not call 0

Figure 9.10: Utility for alarm decision network

9.3. Sequential Decisions 391

A policy consists of a decision function for each decision variable. A deci-
sion function for a decision variable is a function that specifies a value for the
decision variable for each assignment of values of its parents. Thus, a policy
specifies what the agent will do for each possible value that it could sense.

Example 9.14 In Example 9.11 (page 388), some of the policies are

• Always bring the umbrella.

• Bring the umbrella only if the forecast is “rainy.”

• Bring the umbrella only if the forecast is “sunny.”

There are eight different policies, because there are three possible forecasts and
there are two choices for each of the forecasts.

Example 9.15 In Example 9.13 (page 389), a policy specifies a decision func-
tion for CheckSmoke and a decision function for Call. Some of the policies are

• Never check for smoke, and call only if there is a report.

• Always check for smoke, and call only if it sees smoke.

• Check for smoke if there is a report, and call only if there is a report and it
sees smoke.

• Check for smoke if there is no report, and call when it does not see smoke.

• Always check for smoke and never call.

In this example, there are 1,024 different policies (given that each variable is
binary). There are 4 decision functions for CheckSmoke. There are 28 decision
functions for Call; for each of the 8 assignments of values to the parents of Call,
the agent can choose to call or not.

Expected Utility of a Policy

A policy can be evaluated by determining its expected utility for an agent fol-
lowing the policy. A rational agent should adopt the policy that maximizes its
expected utility.

A possible world specifies a value for each random variable and each de-
cision variable. A possible world does not have a probability unless values for
all of the decision variables are specified. A possible world satisfies a policy if
the value of each decision variable in the possible world is the value selected
in the decision function for that decision variable in the policy. If ω is a possi-
ble world, and π is a policy, ω |= π is defined to mean that possible world ω
satisfies policy π.

It is important to realize that a possible world corresponds to a complete
history and specifies the values of all random and decision variables, includ-
ing all observed variables, for a complete sequence of actions. Possible world
ω satisfies policy π if ω is one possible unfolding of history given that the
agent follows policy π. The satisfiability constraint enforces the intuition that

392 9. Planning Under Uncertainty

the agent will actually do the action prescribed by π for each of the possible
observations.

The expected utility of policy π is

E(π) = ∑
ω|=π

U(ω)× P(ω),

where P(ω), the probability of world ω, is the product of the probabilities of
the values of the chance nodes given their parents’ values in ω, and U(ω) is
the value of the utility U in world ω.

Example 9.16 In Example 9.11 (page 388), let π1 be the policy to take the um-
brella if the forecast is cloudy and to leave it at home otherwise. The expected
utility of this policy is obtained by averaging the utility over the worlds that
satisfy this policy:

E(π1) = P(norain)P(sunny|norain)Utility(norain, leaveIt)
+ P(norain)P(cloudy|norain)Utility(norain, takeIt)
+ P(norain)P(rainy|norain)Utility(norain, leaveIt)
+ P(rain)P(sunny|rain)Utility(rain, leaveIt)
+ P(rain)P(cloudy|rain)Utility(rain, takeIt)
+ P(rain)P(rainy|rain)Utility(rain, leaveIt),

where norain means Weather = norain, sunny means Forecast = sunny, and sim-
ilarly for the other values. Notice how the value for the decision variable is the
one chosen by the policy. It only depends on the forecast.

An optimal policy is a policy π∗ such that E(π∗) ≥ E(π) for all policies
E(π). That is, an optimal policy is a policy whose expected utility is maximal
over all policies.

Suppose a binary decision node has n binary parents. There are 2n different
assignments of values to the parents and, consequently, there are 22n

different
possible decision functions for this decision node. The number of policies is the
product of the number of decision functions for each of the decision variables.
Even small examples can have a huge number of policies. Thus, an algorithm
that enumerates the set of policies looking for the best one will be very ineffi-
cient.

9.3.3 Variable Elimination for Decision Networks

Fortunately, we do not have to enumerate all of the policies; we can use variable
elimination (VE) to find an optimal policy. The idea is to first consider the last
decision, find an optimal decision for each value of its parents, and produce a
factor of these maximum values. It then has a new decision network, with one
less decision, that can be solved recursively.

9.3. Sequential Decisions 393

1: procedure VE DN(DN):
2: Inputs
3: DN a single stage decision network

4: Output
5: An optimal policy and its expected utility
6: Local
7: DFs: a set of decision functions, initially empty
8: Fs: a set of factors
9: Remove all variables that are not ancestors of the utility node

10: Create a factor in Fs for each conditional probability
11: Create a factor in Fs for the utility
12: while there are decision nodes remaining do
13: Sum out each random variable that is not an ancestor of a decision

node
14: � at this stage there is one decision node D that is in a factor F with a

subset of its parents
15: Add maxD F to Fs.
16: Add arg maxD F to DFs.

17: Sum out all remaining random variables
18: Return DFs and the product of remaining factors

Figure 9.11: Variable elimination for decision networks

Figure 9.11 shows how to use VE for decision networks. Essentially it com-
putes the expected utility of an optimal decision. It eliminates the random vari-
ables that are not parents of a decision node by summing them out according
to some elimination ordering. The elimination ordering does not affect correct-
ness and so it can be chosen for efficiency.

After eliminating all of the random variables that are not parents of a de-
cision node, there must be one decision variable that is in a factor with some
subset of its parents because of the no-forgetting condition. This is the last ac-
tion in the ordering of actions.

To eliminate that decision node, VE DN chooses the values for the decision
that result in the maximum utility. This maximization creates a new factor on
the remaining variables and a decision function for the decision variable being
eliminated. This decision function created by maximizing is a component of an
optimal policy.

Example 9.17 In Example 9.11 (page 388), there are three initial factors repre-
senting P(Weather), P(Forecast|Weather), and Utility(Weather, Umbrella). First, it
eliminates Weather: by multiplying all three factors and summing out Weather,
giving a factor on Forecast and Umbrella,

394 9. Planning Under Uncertainty

Forecast Umbrella Value
sunny takeIt 12.95
sunny leaveIt 49.0
cloudy takeIt 8.05
cloudy leaveIt 14.0
rainy takeIt 14.0
rainy leaveIt 7.0

To maximize over Umbrella, for each value of Forecast, VE DN selects the value
of Umbrella that maximizes the value of the factor. For example, when the fore-
cast is sunny, the agent should leave the umbrella at home for a value of 49.0.

VE DN constructs an optimal decision function for Umbrella by selecting a
value of Umbrella that results in the maximum value for each value of Forecast:

Forecast Umbrella
sunny leaveIt
cloudy leaveIt
rainy takeIt

It also creates a new factor that contains the maximal value for each value of
Forecast:

Forecast Value
sunny 49.0
cloudy 14.0
rainy 14.0

It now sums out Forecast from this factor, which gives the value 77.0. This is the
expected value of the optimal policy.

Example 9.18 Consider Example 9.13 (page 389). Before summing out any
variables it has the following factors:

Meaning Factor
P(Tampering) f0(Tampering)
P(Fire) f1(Fire)
P(Alarm|Tampering, Fire) f2(Tampering, Fire, Alarm)
P(Smoke|Fire) f3(Fire, Smoke)
P(Leaving|Alarm) f4(Alarm, Leaving)
P(Report|Leaving) f5(Leaving, Report)
P(SeeSmoke|CheckSmoke, Smoke) f6(Smoke, SeeSmoke, CheckSmoke)
utility(Fire, CheckSmoke, Call) f7(Fire, CheckSmoke, Call)

The expected utility is the product of the probability and the utility, as long as
the appropriate actions are chosen.

VE DN sums out the random variables that are not ancestors of a decision
node. Thus, it sums out Tampering, Fire, Alarm, Smoke, and Leaving. After these

9.3. Sequential Decisions 395

have been eliminated, there is a single factor, part of which (to two decimal
places) is:

Report SeeSmoke CheckSmoke Call Value
t t t t −1.33
t t t f −29.30
t t f t 0
t t f f 0
t f t t −4.86
t f t f −3.68
.

From this factor, an optimal decision function can be created for Call by se-
lecting a value for Call that maximizes Value for each assignment to Report,
SeeSmoke, and CheckSmoke. The maximum of −1.33 and −29.3 is −1.33, so
when Report = t, SeeSmoke = t, and CheckSmoke = t, the optimal action is
Call = t with value −1.33. The method is the same for the other values of
Report, SeeSmoke and CheckSmoke.

An optimal decision function for Call is

Report SeeSmoke CheckSmoke Call
t t t t
t t f t
t f t f
.

Note that the value for Call when SeeSmoke = t and CheckSmoke = f is arbitrary.
It does not matter what the agent plans to do in this situation, because the
situation never arises.

The factor resulting from maximizing Call contains the maximum values
for each combination of Report, SeeSmoke, and CheckSmoke:

Report SeeSmoke CheckSmoke Value
t t t −1.33
t t f 0
t f t −3.68
.

It can then sum out SeeSmoke, which gives the factor

Report CheckSmoke Value
t t −5.01
t f −5.65
f t −23.77
f f −17.58

Maximizing CheckSmoke for each value of Report gives the decision function

Report CheckSmoke
t t
f f

396 9. Planning Under Uncertainty

and the factor

Report Value
t −5.01
f −17.58

Summing out Report gives the expected utility of −22.60 (taking into account
rounding errors).

Thus, the policy returned can be seen as

checkSmoke← report.
call fire department← see smoke.
call fire department← report∧ ¬check smoke∧ ¬see smoke.

The last of these rules is never used because the agent following the optimal
policy does check for smoke if there is a report. However, when executing
VE DN, the agent does not know an optimal policy for CheckSmoke when it
is optimizing Call. Only by considering what to do with the information on
smoke does the agent determine whether to check for smoke.

Note also that, in this case, even though checking for smoke has a cost as-
sociated with it, checking for smoke is worthwhile because the information ob-
tained is valuable.

The following example shows how the factor containing a decision vari-
able can contain a subset of its parents when the VE algorithm optimizes the
decision.

Example 9.19 Consider Example 9.11 (page 388), but with an extra arc from
Weather to Umbrella. That is, the agent gets to observe both the weather and
the forecast. In this case, there are no random variables to sum out, and the
factor that contains the decision node and a subset of its parents is the original
utility factor. It can then maximize Umbrella, giving the decision function and
the factor:

Weather Umbrella
norain leaveIt
rain takeIt

Weather Value
norain 100
rain 70

Note that the forecast is irrelevant to the decision. Knowing the forecast does
not give the agent any useful information.

Summing out Forecast gives a factor that contains ones. Summing out
Weather, where P(Weather=norain) = 0.7, gives the expected utility 0.7× 100 +
0.3× 70 = 91.

9.4 The Value of Information and Control

Example 9.20 In Example 9.18 (page 394), the action CheckSmoke provides in-
formation about fire. Checking for smoke costs 20 units and does not provide
any direct reward; however, in an optimal policy, it is worthwhile to check for
smoke when there is a report because the agent can condition its further actions

9.4. The Value of Information and Control 397

on the information obtained. Thus, the information about smoke is valuable to
the agent. Even though smoke provides imperfect information about whether
there is fire, that information is still very useful for making decisions.

One of the important lessons from this example is that an information-seeking
action, such as check for smoke, can be treated in the same way as any other
action, such as call fire department. An optimal policy often includes actions
whose only purpose is to find information as long as subsequent actions can
condition on some effect of the action. Most actions do not just provide infor-
mation; they also have a more direct effect on the world.

Information is valuable to agents because it helps them make better deci-
sions.

The value of information i for decision D is the expected value of an opti-
mal policy that can condition decision D, and subsequent decisions, on knowl-
edge of i minus the expected value of an optimal policy that cannot observe
i. Thus, in a decision network, it is the value of an optimal policy with i as a
parent of D and subsequent decisions minus the value of an optimal policy
without i as a parent of D.

Example 9.21 In Example 9.11 (page 388), consider how much it could be
worth to get a better forecast. The value of getting perfect information about
the weather for the decision about whether to take an umbrella is the differ-
ence between the value of the network with an arc from Weather to Umbrella
which, as calculated in Example 9.19, is 91 and the original network, which, as
computed in Example 9.11 (page 388), is 77. Thus, perfect information would
be worth 91− 77 = 14. This is an upper bound on how much another sensor of
the weather could be worth.

The value of information is a bound on the amount the agent would be
willing to pay (in terms of loss of utility) for information i at stage d. It is an
upper bound on the amount that imperfect information about the value of i at
decision d would be worth. Imperfect information is, for example, information
available from a noisy sensor of i. It is not worth paying more for a sensor of i
than the value of information i.

The value of information has some interesting properties:

• The value of information is never negative. The worst that can happen is
that the agent can ignore the information.

• If an optimal decision is to do the same thing no matter which value of i is
observed, the value of information i is zero. If the value of information i is
zero, there is an optimal policy that does not depend on the value of i (i.e.,
the same action is chosen no matter which value of i is observed).

Within a decision network, the value of information i at decision d can be eval-
uated by considering both

• the decision network with arcs from i to d and from i to subsequent deci-
sions and
• the decision network without such arcs.

398 9. Planning Under Uncertainty

The differences in the values of the optimal policies of these two decision net-
works is the value of information i at d. Something more sophisticated must be
done when adding the arc from i to d causes a cycle.

Example 9.22 In the alarm problem [Example 9.18 (page 394)], the agent may
be interested in knowing whether it is worthwhile to install a relay for the alarm
so that the alarm can be heard directly instead of relying on the noisy sensor of
people leaving. To determine how much a relay could be worth, consider how
much perfect information about the alarm would be worth. If the information
is worth less than the cost of the relay, it is not worthwhile to install the relay.

The value of information about the alarm for checking for smoke and for
calling can be obtained by solving the decision network of Figure 9.9 (page 390)
together with the same network, but with an arc from Alarm to Check for smoke
and an arc from Alarm to Call fire department. The original network has a value
of−22.6. This new decision network has an optimal policy whose value is−6.3.
The difference in the values of the optimal policies for the two decision net-
works, namely 16.3, is the value of Alarm for the decision Check for smoke. If the
relay costs 20 units, the installation will not be worthwhile.

The value of the network with an arc from Alarm to Call fire department is
−6.3, the same as if there was also an arc from Alarm to Check for smoke. In the
optimal policy, the information about Alarm is ignored in the optimal decision
function for Check for smoke; the agent never checks for smoke in the optimal
policy when Alarm is a parent of Call fire department.

The value of control specifies how much it is worth to control a variable.
In its simplest form, it is the change in value of a decision network where a
random variable is replaced by a decision variable, and arcs are added to make
it a no-forgetting network. If this is done, the change in utility is non-negative;
the resulting network always has an equal or higher expected utility.

Example 9.23 In the alarm decision network of Figure 9.9 (page 390), you
may be interested in the value of controlling tampering. This could, for exam-
ple, be used to estimate how much it is worth to add security guards to prevent
tampering. To compute this, compare the value of the decision network of Fig-
ure 9.9 (page 390) to the decision network where Tampering is a decision node
and a parent of the other two decision nodes.

The value of the initial decision network is −22.6. First, consider the value
of information. If Tampering is made a parent of Call, the value is −21.30. If
Tampering is made a parent of Call and CheckSmoke, the value is −20.87.

To determine the value of control, turn the Tampering node into a decision
node and make it a parent of the other two decisions. The value of the resulting
network is −20.71. Notice here that control is more valuable than information.

The value of controlling tampering in the original network is −20.71 −
(−22.6) = 1.89. The value of controlling tampering in the context of observ-
ing tampering is 20.71− (−20.87) = 0.16.

The previous description applies when the parents of the random vari-
able that is being controlled become parents of the decision variable. In this

9.5. Decision Processes 399

scenario, the value of control is never negative. However, if the parents of the
decision node do not include all of the parents of the random variable, it is
possible that control is less valuable than information. In general one must be
explicit about what information will be available when considering controlling
a variable.

Example 9.24 Consider controlling the variable Smoke in Figure 9.9
(page 390). If Fire is a parent of the decision variable Smoke, it has to be a parent
of Call to make it a no-forgetting network. The expected utility of the resulting
network with Smoke coming before checkSmoke is −2.0. The value of controlling
Smoke in this situation is due to observing Fire. The resulting optimal decision
is to call if there is a fire and not call otherwise.

Suppose the agent were to control Smoke without conditioning on Fire. That
is, the agent has to either make smoke or not, and Fire is not a parent of the other
decisions. This situation can be modeled by making Smoke a decision variable
with no parents. In this case, the expected utility is−23.20, which is worse than
the initial decision network, because blindly controlling Smoke loses its ability
to act as a sensor from Fire.

9.5 Decision Processes

The decision networks of the previous section were for finite-stage, partially
observable domains. In this section, we consider indefinite horizon and infinite
horizon problems.

Often an agent must reason about an ongoing process or it does not know
how many actions it will be required to do. These are called infinite horizon
problems when the process may go on forever or indefinite horizon problems
when the agent will eventually stop, but where it does not know when it will
stop. To model these situations, we augment the Markov chain (page 266) with
actions. At each stage, the agent decides which action to perform; the resulting
state depends on both the previous state and the action performed.

For ongoing processes, you do not want to consider only the utility at the
end, because the agent may never get to the end. Instead, an agent can receive
a sequence of rewards. These rewards incorporate the action costs in addition
to any prizes or penalties that may be awarded. Negative rewards are called
punishments. Indefinite horizon problems can be modeled using a stopping
state. A stopping state or absorbing state is a state in which all actions have
no effect; that is, when the agent is in that state, all actions immediately return
to that state with a zero reward. Goal achievement can be modeled by having
a reward for entering such a stopping state.

We only consider stationary (page 266) models where the state transitions
and the rewards do not depend on the time.

A Markov decision process or an MDP consists of

• S, a set of states of the world.
• A, a set of actions.

400 9. Planning Under Uncertainty

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

Figure 9.12: Decision network representing a finite part of an MDP

• P : S× S×A→ [0, 1], which specifies the dynamics. This is written P(s′|s, a),
where

∀s ∈ S ∀a ∈ A ∑
s′∈S

P(s′|s, a) = 1.

In particular, P(s′|s, a) specifies the probability of transitioning to state s′

given that the agent is in state s and does action a.

• R : S× A× S → �, where R(s, a, s′) gives the expected immediate reward
from doing action a and transitioning to state s′ from state s.

Both the dynamics and the rewards can be stochastic; there can be some
randomness in the resulting state and reward, which is modeled by having a
distribution over the resulting state and by R giving the expected reward. The
outcomes are stochastic when they depend on random variables that are not
modeled in the MDP.

A finite part of a Markov decision process can be depicted using a decision
network as in Figure 9.12.

Example 9.25 A grid world is an idealization of a robot in an environment. At
each time, the robot is at some location and can move to neighboring locations,
collecting rewards and punishments. Suppose that the actions are stochastic, so
that there is a probability distribution over the resulting states given the action
and the state.

Figure 9.13 shows a 10 × 10 grid world, where the robot can choose one
of four actions: up, down, left, or right. If the agent carries out one of these
actions, it has a 0.7 chance of going one step in the desired direction and a
0.1 chance of going one step in any of the other three directions. If it bumps
into the outside wall (i.e., the square computed as above is outside the grid),
there is a penalty of 1 (i.e., a reward of −1) and the agent does not actually
move. There are four rewarding states (apart from the walls), one worth +10
(at position (9, 8); 9 across and 8 down), one worth +3 (at position (8, 3)), one

9.5. Decision Processes 401

+10-10

-5-1

-1

-1

-1

+3

Figure 9.13: The grid world of Example 9.25

worth −5 (at position (4, 5)), and one worth −10 (at position (4, 8)). In each of
these states, the agent gets the reward after it carries out an action in that state,
not when it enters the state. When the agent reaches the state (9, 8), no matter
what it does at the next step, it is flung, at random, to one of the four corners of
the grid world.

Note that, in this example, the reward is be a function of both the initial
state and the final state. The way to tell if the agent bumped into the wall is if
the agent did not actually move. Knowing just the initial state and the action,
or just the final state and the action, does not provide enough information to
infer the reward.

As with decision networks (page 387), the designer also has to consider
what information is available to the agent when it decides what to do. There
are two common variations:

• In a fully observable Markov decision process, the agent gets to observe
the current state when deciding what to do.

• A partially observable Markov decision process (POMDP) is a combination
of an MDP and a hidden Markov model (page 267). At each time point, the
agent gets to make some observations that depend on the state. The agent
only has access to the history of observations and previous actions when
making a decision. It cannot directly observe the current state.

To decide what to do, the agent compares different sequences of rewards.
The most common way to do this is to convert a sequence of rewards into
a number called the value or the cumulative reward. To do this, the agent

402 9. Planning Under Uncertainty

combines an immediate reward with other rewards in the future. Suppose the
agent receives the sequence of rewards:

r1, r2, r3, r4,

There are three common ways to combine rewards into a value V:

total reward: V = ∑∞
i=1 ri. In this case, the value is the sum of all of the rewards.

This works when you can guarantee that the sum is finite; but if the sum
is infinite, it does not give any opportunity to compare which sequence of
rewards is preferable. For example, a sequence of $1 rewards has the same
total as a sequence of $100 rewards (both are infinite). One case where the
reward is finite is when there is a stopping state (page 399); when the agent
always has a non-zero probability of entering a stopping state, the total re-
ward will be finite.

average reward: V = limn→∞(r1 + · · ·+ rn)/n. In this case, the agent’s value is
the average of its rewards, averaged over for each time period. As long as
the rewards are finite, this value will also be finite. However, whenever the
total reward is finite, the average reward is zero, and so the average reward
will fail to allow the agent to choose among different actions that each have
a zero average reward. Under this criterion, the only thing that matters is
where the agent ends up. Any finite sequence of bad actions does not affect
the limit. For example, receiving $1,000,000 followed by rewards of $1 has
the same average reward as receiving $0 followed by rewards of $1 (they
both have an average reward of $1).

discounted reward: V = r1 + γr2 + γ2r3 + · · ·+ γi−1ri + · · · , where γ, the dis-
count factor, is a number in the range 0 ≤ γ < 1. Under this criterion, future
rewards are worth less than the current reward. If γ was 1, this would be the
same as the total reward. When γ = 0, the agent ignores all future rewards.
Having 0 ≤ γ < 1 guarantees that, whenever the rewards are finite, the total
value will also be finite.

We can rewrite the discounted reward as

V =
∞

∑
i=1

γi−1ri

= r1 + γr2 + γ2r3 + · · ·+ γi−1ri + · · ·
= r1 + γ(r2 + γ(r3 + . . .)).

Suppose Vk is the reward accumulated from time k:

Vk = rk + γ(rk+1 + γ(rk+2 + . . .))
= rk + γVk+1.

To understand the properties of Vk, suppose S = 1 + γ + γ2 + γ3 + . . . , then
S = 1 + γS. Solving for S gives S = 1/(1− γ). Thus, under the discounted
reward, the value of all of the future is at most 1/(1− γ) times as much as
the maximum reward and at least 1/(1− γ) times as much as the minimum

9.5. Decision Processes 403

reward. Therefore, the eternity of time from now only has a finite value com-
pared with the immediate reward, unlike the average reward, in which the
immediate reward is dominated by the cumulative reward for the eternity
of time.

In economics, γ is related to the interest rate: getting $1 now is equivalent
to getting $(1 + i) in one year, where i is the interest rate. You could also see
the discount rate as the probability that the agent survives; γ can be seen as
the probability that the agent keeps going. The rest of this book considers a
discounted reward.

A stationary policy is a function π : S → A. That is, it assigns an action to
each state. Given a reward criterion, a policy has an expected value for every
state. Let Vπ(s) be the expected value of following π in state s. This specifies
how much value the agent expects to receive from following the policy in that
state. Policy π is an optimal policy if there is no policy π′ and no state s such
that Vπ′(s) > Vπ(s). That is, it is a policy that has a greater or equal expected
value at every state than any other policy.

For infinite horizon problems, a stationary MDP always has an optimal sta-
tionary policy. However, this is not true for finite-stage problems, where a non-
stationary policy might be better than all stationary policies. For example, if the
agent had to stop at time n, for the last decision in some state, the agent would
act to get the largest immediate reward without considering the future actions,
but for earlier decisions at the same state it may decide to get a lower reward
immediately to obtain a larger reward later.

9.5.1 Value of a Policy

The expected value of a policy π for the discounted reward, with discount γ,
is defined in terms of two interrelated functions, Vπ and Qπ.

Let Qπ(s, a), where s is a state and a is an action, be the expected value of
doing a in state s and then following policy π. Recall that Vπ(s), where s is a
state, is the expected value of following policy π in state s.

Qπ and Vπ can be defined recursively in terms of each other. If the agent
is in state s, performs action a, and arrives in state s′, it gets the immediate re-
ward of R(s, a, s′) plus the discounted future reward, γVπ(s′). When the agent
is planning it does not know the actual resulting state, so it uses the expected
value, averaged over the possible resulting states:

Qπ(s, a) = ∑
s′

P(s′|s, a)(R(s, a, s′) + γVπ(s′)). (9.2)

Vπ(s) is obtained by doing the action specified by π and then acting following
π:

Vπ(s) = Qπ(s, π(s)).

404 9. Planning Under Uncertainty

9.5.2 Value of an Optimal Policy

Let Q∗(s, a), where s is a state and a is an action, be the expected value of doing
a in state s and then following the optimal policy. Let V∗(s), where s is a state,
be the expected value of following an optimal policy from state s.

Q∗ can be defined analogously to Qπ:

Q∗(s, a) = ∑
s′

P(s′|s, a)(R(s, a, s′) + γV∗(s′)). (9.3)

V∗(s) is obtained by performing the action that gives the best value in each
state:

V∗(s) = max
a

Q∗(s, a).

An optimal policy π∗ is one of the policies that gives the best value for each
state:

π∗(s) = arg max
a

Q∗(s, a).

Note that arg maxa Q∗(s, a) is a function of state s, and its value is one of the a’s
that results in the maximum value of Q∗(s, a).

9.5.3 Value Iteration

Value iteration is a method of computing an optimal MDP policy and its value.
Value iteration starts at the “end” and then works backward, refining an

estimate of either Q∗ or V∗. There is really no end, so it uses an arbitrary end
point. Let Vk be the value function assuming there are k stages to go, and let
Qk be the Q-function assuming there are k stages to go. These can be defined
recursively. Value iteration starts with an arbitrary function V0 and uses the
following equations to get the functions for k + 1 stages to go from the functions
for k stages to go:

Qk+1(s, a) = ∑
s′

P(s′|s, a)(R(s, a, s′) + γVk(s′)) for k ≥ 0

Vk(s) = max
a

Qk(s, a) for k > 0.

It can either save the V[S] array or the Q[S, A] array. Saving the V array re-
sults in less storage, but it is more difficult to determine an optimal action, and
one more iteration is needed to determine which action results in the greatest
value.

Figure 9.14 shows the value iteration algorithm when the V array is stored.
This procedure converges no matter what is the initial value function V0. An
initial value function that approximates V∗ converges quicker than one that
does not. The basis for many abstraction techniques for MDPs is to use some
heuristic method to approximate V∗ and to use this as an initial seed for value
iteration.

9.5. Decision Processes 405

1: procedure Value Iteration(S, A, P, R, θ)
2: Inputs
3: S is the set of all states
4: A is the set of all actions
5: P is state transition function specifying P(s′|s, a)
6: R is a reward function R(s, a, s′)
7: θ a threshold, θ > 0
8: Output
9: π[S] approximately optimal policy

10: V[S] value function
11: Local
12: real array Vk[S] is a sequence of value functions
13: action array π[S]
14: assign V0[S] arbitrarily
15: k := 0
16: repeat
17: k := k + 1
18: for each state s do
19: Vk[s] = maxa ∑s′ P(s′|s, a)(R(s, a, s′) + γVk−1[s′])
20: until ∀s |Vk[s]−Vk−1[s]| < θ
21: for each state s do
22: π[s] = arg maxa ∑s′ P(s′|s, a)(R(s, a, s′) + γVk[s′])
23: return π, Vk

Figure 9.14: Value iteration for MDPs, storing V

Example 9.26 Consider the 9 squares around the +10 reward of Example 9.25
(page 400). The discount is γ = 0.9. Suppose the algorithm starts with V0[s] = 0
for all states s.

The values of V1, V2, and V3 (to one decimal point) for these nine cells is

0 0 −0.1
0 10 −0.1
0 0 −0.1

0 6.3 −0.1
6.3 9.8 6.2
0 6.3 −0.1

4.5 6.2 4.4
6.2 9.7 6.6
4.5 6.1 4.4

After the first step of value iteration, the nodes get their immediate expected
reward. The center node in this figure is the +10 reward state. The right nodes
have a value of −0.1, with the optimal actions being up, left, and down; each
of these has a 0.1 chance of crashing into the wall for a reward of −1.

The middle grid shows V2, the values after the second step of value iter-
ation. Consider the node that is immediately to the left of the +10 rewarding
state. Its optimal value is to go to the right; it has a 0.7 chance of getting a re-
ward of 10 in the following state, so that is worth 9 (10 times the discount of
0.9) to it now. The expected reward for the other possible resulting states is 0.
Thus, the value of this state is 0.7× 9 = 6.3.

406 9. Planning Under Uncertainty

Consider the node immediately to the right of the +10 rewarding state after
the second step of value iteration. The agent’s optimal action in this state is to
go left. The value of this state is

Prob Reward Future Value
0.7× (0 + 0.9× 10) Agent goes left

+ 0.1× (0 + 0.9×−0.1) Agent goes up
+ 0.1× (−1 + 0.9×−0.1) Agent goes right
+ 0.1× (0 + 0.9×−0.1) Agent goes down

which evaluates to 6.173.
Notice also how the +10 reward state now has a value less than 10. This is

because the agent gets flung to one of the corners and these corners look bad at
this stage.

After the next step of value iteration, shown on the right-hand side of the
figure, the effect of the +10 reward has progressed one more step. In particular,
the corners shown get values that indicate a reward in 3 steps.

An applet is available on the book web site showing the details of value
iteration for this example.

The value iteration algorithm of Figure 9.14 has an array for each stage, but
it really only must store the current and the previous arrays. It can update one
array based on values from the other.

A common refinement of this algorithm is asynchronous value iteration.
Rather than sweeping through the states to create a new value function, asyn-
chronous value iteration updates the states one at a time, in any order, and store
the values in a single array. Asynchronous value iteration can store either the
Q[s, a] array or the V[s] array. Figure 9.15 shows asynchronous value iteration
when the Q array is stored. It converges faster and uses less space than value
iteration and is the basis of some of the algorithms for reinforcement learning
(page 463). Termination can be difficult to determine if the agent must guar-
antee a particular error, unless it is careful about how the actions and states
are selected. Often, this procedure is run indefinitely and is always prepared to
give its best estimate of the optimal action in a state when asked.

Asynchronous value iteration could also be implemented by storing just
the V[s] array. In that case, the algorithm selects a state s and carries out the
update:

V[s] = max
a ∑

s′
P(s′|s, a)(R(s, a, s′) + γV[s′]).

Although this variant stores less information, it is more difficult to extract the
policy. It requires one extra backup to determine which action a results in the
maximum value. This can be done using

π[s] = arg max
a ∑

s′
P(s′|s, a)(R(s, a, s′) + γV[s′]).

9.5. Decision Processes 407

1: procedure Asynchronous Value Iteration(S, A, P, R)
2: Inputs
3: S is the set of all states
4: A is the set of all actions
5: P is state transition function specifying P(s′|s, a)
6: R is a reward function R(s, a, s′)
7: Output
8: π[s] approximately optimal policy
9: Q[S, A] value function

10: Local
11: real array Q[S, A]
12: action array π[S]
13: assign Q[S, A] arbitrarily
14: repeat
15: select a state s
16: select an action a
17: Q[s, a] = ∑s′ P(s′|s, a)(R(s, a, s′) + γ maxa′ Q[s′, a′])
18: until termination
19: for each state s do
20: π[s] = arg maxa Q[s, a]
21: return π, Q

Figure 9.15: Asynchronous value iteration for MDPs

Example 9.27 In Example 9.26 (page 405), the state one step up and one step
to the left of the +10 reward state only had its value updated after three value
iterations, in which each iteration involved a sweep through all of the states.

In asynchronous value iteration, the +10 reward state can be chosen first.
Then the node to its left can be chosen, and its value will be 0.7× 0.9× 10 = 6.3.
Then the node above that node could be chosen, and its value would be-
come 0.7 × 0.9 × 6.3 = 3.969. Note that it has a value that reflects that it is
close to a +10 reward after considering 3 states, not 300 states, as does value
iteration.

9.5.4 Policy Iteration

Policy iteration starts with a policy and iteratively improves it. It starts with
an arbitrary policy π0 (an approximation to the optimal policy works best) and
carries out the following steps starting from i = 0.

• Policy evaluation: determine Vπi(S). The definition of Vπ is a set of |S| linear
equations in |S| unknowns. The unknowns are the values of Vπi(S). There
is an equation for each state. These equations can be solved by a linear

408 9. Planning Under Uncertainty

1: procedure Policy Iteration(S, A, P, R)
2: Inputs
3: S is the set of all states
4: A is the set of all actions
5: P is state transition function specifying P(s′|s, a)
6: R is a reward function R(s, a, s′)
7: Output
8: optimal policy π
9: Local

10: action array π[S]
11: Boolean variable noChange
12: real array V[S]
13: set π arbitrarily
14: repeat
15: noChange← true
16: Solve V[s] = ∑s′∈S P(s′|s, π[s])(R(s, a, s′) + γV[s′])
17: for each s ∈ S do
18: Let QBest = V[s]
19: for each a ∈ A do
20: Let Qsa = ∑s′∈S P(s′|s, a)(R(s, a, s′) + γV[s′])
21: if Qsa > QBest then
22: π[s]← a
23: QBest← Qsa
24: noChange← false

25: until noChange
26: return π

Figure 9.16: Policy iteration for MDPs

equation solution method (such as Gaussian elimination) or they can be
solved iteratively.

• Policy improvement: choose πi+1(s) = arg maxa Qπi(s, a), where the Q-
value can be obtained from V using Equation (9.2) (page 403). To detect
when the algorithm has converged, it should only change the policy if the
new action for some state improves the expected value; that is, it should set
πi+1(s) to be πi(s) if πi(s) is one of the actions that maximizes Qπi(s, a).

• Stop if there is no change in the policy – that is, if πi+1 = πi – otherwise
increment i and repeat.

The algorithm is shown in Figure 9.16. Note that it only keeps the latest policy
and notices if it has changed. This algorithm always halts, usually in a small
number of iterations. Unfortunately, solving the set of linear equations is often
time consuming.

9.5. Decision Processes 409

A variant of policy iteration, called modified policy iteration, is obtained
by noticing that the agent is not required to evaluate the policy to improve it;
it can just carry out a number of backup steps [using Equation (9.2) (page 403)]
and then do an improvement.

The idea behind policy iteration is also useful for systems that are too big
to be represented directly as MDPs. Suppose a controller has some parameters
that can be varied. An estimate of the derivative of the cumulative discounted
reward of a parameter a in some context s, which corresponds to the derivative
of Q(a, s), can be used to improve the parameter. Such an iteratively improving
controller can get into a local maximum that is not a global maximum. Policy
iteration for MDPs does not result in non-optimal local maxima, because it is
possible to improve an action for a state without affecting other states, whereas
updating parameters can affect many states at once.

9.5.5 Dynamic Decision Networks

The MDP is a state-based representation. In this section, we consider a feature-
based extension of MDPs, which forms the basis for what is known as decision-
theoretic planning.

The representation of a dynamic decision network (DDN) can be seen in a
number of different ways:

• a factored representation of MDPs, where the states are described in terms
of features;

• an extension of decision networks to allow repeated structure for ongoing
actions and state changes;

• an extension of dynamic belief networks (page 272) to include actions and
rewards; and

• an extension of the feature-based representation of actions (page 353) to al-
low for uncertainty in the effect of actions.

A fully observable dynamic decision network consists of

• a set of state features, each with a domain;

• a set of possible actions forming a decision node A, with domain the set of
actions;

• a two-stage belief network with an action node A, nodes F0 and F1 for each
feature F (for the features at time 0 and time 1, respectively), and a condi-
tional probability P(F1|parents(F1)) such that the parents of F1 can include A
and features at times 0 and 1 as long as the resulting network is acyclic; and

• a reward function that can be a function of the action and any of the features
at times 0 or 1.

As in a dynamic belief network, the features at time 1 can be replicated for each
subsequent time.

410 9. Planning Under Uncertainty

RLoc
0

RHC
0

SWC
0

MW
0

RHM
0

A
0

RLoc
1

RHC
1

SWC
1

MW
1

RHM
1

State Action State

R0

Reward

Figure 9.17: Dynamic decision network showing the two-stage belief network and
the reward structure

Example 9.28 Consider representing a stochastic version of Example 8.1
(page 350) as a dynamic decision network. We use the same features as in that
example.

The parents of RLoc1 are Rloc0 and A. The parents of RHC1 are RHC0, A, and
RLoc0; whether the robot has coffee depends on whether it had coffee before,
what action it performed, and its location.

The parents of SWC1 include SWC0, RHC0, A, and RLoc0. You would not ex-
pect RHC1 and SWC1 to be independent because they both depend on whether
or not the coffee was successfully delivered. This could be modeled by hav-
ing one be a parent of the other. The two-stage belief network of how the
state variables at time 1 depends on the action and the other state variables
is shown in Figure 9.17. This figure also shows the reward as a function of
the action, whether Sam stopped wanting coffee, and whether there is mail
waiting.

An alternative way to model the dependence between RHC1 and SWC1 is
to introduce a new variable, CSD1, which represents whether coffee was suc-
cessfully delivered at time 1. This variable is a parent of both RHC1 and SWC1.
Whether Sam wants coffee is a function of whether Sam wanted coffee before
and whether coffee was successfully delivered. Whether the robot has coffee
depends on the action and the location, to model the robot picking up coffee.
Similarly, the dependence between MW1 and RHM1 can be modeled by intro-
ducing a variable MPU1, which represents whether the mail was successfully
picked up. The resulting DDN replicated to a horizon of 2, but omitting the
reward, is shown in Figure 9.18.

9.5. Decision Processes 411

RLoc
0

RHC
0

SWC
0

MW
0

RHM
0

A
0

RLoc
1

RHC
1

SWC
1

MW
1

RHM
1

A
1

RLoc
2

RHC
2

SWC
2

MW
2

RHM
2

CSD
1

MPU
1

CSD
2

MPU
2

State0 Action0 State1 Action1 State2

Figure 9.18: Dynamic decision network with intermediate variables for a horizon
of 2, omitting the reward nodes

As part of such a decision network, we should also model the information
available to the actions and the rewards. In a fully observable dynamic de-
cision network, the parents of the action are all the previous state variables.
Because this can be inferred, the arcs are typically not explicitly drawn. If
the reward comes only at the end, variable elimination for decision networks,
shown in Figure 9.11 (page 393), can be applied directly. Note that we do not
require the no-forgetting condition for this to work; the fully observable con-
dition suffices. If rewards are accrued at each time step, the algorithm must be
augmented to allow for the addition of rewards. See Exercise 9.12 (page 418).

9.5.6 Partially Observable Decision Processes

A partially observable Markov decision process (POMDP) is a combination
of an MDP (page 399) and a hidden Markov model (page 267). Instead of as-
suming that the state is observable, we assume that there are some partial
and/or noisy observations of the state that the agent gets to observe before
it has to act.

A POMDP consists of the following:

• S, a set of states of the world;
• A, a set of actions;
• O, a set of possible observations;
• P(S0), which gives the probability distribution of the starting state;
• P(S′|S, A), which specifies the dynamics – the probability of getting to state

S′ by doing action A from state S;
• R(S, A, S′), which gives the expected reward of starting in state S, doing ac-

tion A, and transitioning to state S′; and
• P(O|S), which gives the probability of observing O given the state is S.

412 9. Planning Under Uncertainty

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

O0 O1 O2

Figure 9.19: A POMDP as a dynamic decision network

A finite part of a POMDP can be depicted using the decision diagram as in
Figure 9.19.

There are three main ways to approach the problem of computing the opti-
mal policy for a POMDP:

• Solve the associated dynamic decision network using variable elimination
for decision networks [Figure 9.11 (page 393), extended to include dis-
counted rewards]. The policy created is a function of the history of the agent
(page 48). The problem with this approach is that the history is unbounded,
and the number of possible histories is exponential in the planning horizon.

• Make the policy a function of the belief state – a probability distribution over
the states. Maintaining the belief state is the problem of filtering (page 267).
The problem with this approach is that, with n states, the set of belief states is
an (n− 1)-dimensional real space. However, because the value of a sequence
of actions only depends on the states, the expected value is a linear function
of the values of the states. Because plans can be conditional on observations,
and we only consider optimal actions for any belief state, the optimal policy
for any finite look-ahead, is piecewise linear and convex.

• Search over the space of controllers for the best controller (page 48). Thus,
the agent searches over what to remember and what to do based on its belief
state and observations. Note that the first two proposals are instances of this
approach: the agent remembers all of its history or the agent has a belief state
that is a probability distribution over possible states. In general, the agent
may want to remember some parts of its history but have probabilities over
some other features. Because it is unconstrained over what to remember, the
search space is enormous.

9.6 Review

• Utility is a measure of preference that combines with probability.

• A decision network can represent a finite stage partially observable sequen-
tial decision problem in terms or features.

9.8. Exercises 413

• An MDP can represent an infinite stage or indefinite stage sequential deci-
sion problem in terms of states.

• A fully observable MDP can be solved with value iteration or policy itera-
tion.

• A dynamic decision network allows for the representation of an MDP in
terms of features.

9.7 References and Further Reading

Utility theory, as presented here, was invented by Neumann and Morgenstern
[1953] and was further developed by Savage [1972]. Keeney and Raiffa [1976]
discuss utility theory, concentrating on multiattribute (feature-based) utility
functions. For work on graphical models of utility, see Bacchus and Grove
[1995] and Boutilier, Brafman, Domshlak, Hoos, and Poole [2004]. For a recent
survey, see Walsh [2007].

Decision networks or influence diagrams were invented by Howard and
Matheson [1984]. A method using dynamic programming for solving influence
diagrams can be found in Shachter and Peot [1992]. The value of information
and control is discussed by Matheson [1990].

MDPs were invented by Bellman [1957] and are discussed by Puterman
[1994] and Bertsekas [1995]. See Boutilier, Dean, and Hanks [1999] for a review
of lifting MDPs to features known as decision-theoretic planning.

9.8 Exercises

Exercise 9.1 Students have to make decisions about how much to study for each
course. The aim of this question is to investigate how to use decision networks to
help them make such decisions.

Suppose students first have to decide how much to study for the midterm.
They can study a lot, study a little, or not study at all. Whether they pass the
midterm depends on how much they study and on the difficulty of the course.
As a first-order approximation, they pass if they study hard or if the course is easy
and they study a bit. After receiving their midterm grade, they have to decide how
much to study for the final exam. Again, the final exam result depends on how
much they study and on the difficulty of the course. Their final grade depends on
which exams they pass; generally they get an A if they pass both exams, a B if they
only pass the final, a C if they only pass the midterm, or an F if they fail both. Of
course, there is a great deal of noise in these general estimates.

Suppose that their final utility depends on their total effort and their final
grade. Suppose the total effort is obtained by adding the effort in studying for
the midterm and the final.

(a) Draw a decision network for a student decision based on the preceding story.
(b) What is the domain of each variable?
(c) Give appropriate conditional probability tables.

414 9. Planning Under Uncertainty

(d) What is the best outcome (give this a utility of 100) and what is the worst
outcome (give this a utility of 0)?

(e) Give an appropriate utility function for a student who just wants to pass (not
get an F). What is an optimal policy for this student?

(f) Give an appropriate utility function for a student who wants to do really
well. What is an optimal policy for this student?

Exercise 9.2 Consider the following decision network:

Cheat 1 Cheat 2

Trouble 1

Watched

Utility

Trouble 2

This diagram models a decision about whether to cheat at two different time in-
stances.

Suppose P(watched) = 0.4, P(trouble1|cheat1, watched) = 0.8, and Trouble1 is
true with probability 0 for the other cases. Suppose the conditional probability
P(Trouble2|Cheat2, Trouble1, Watched) is given by the following table:

Cheat2 Trouble1 Watched P(Trouble2 = t)
t t t 1.0
t t f 0.3
t f t 0.8
t f f 0.0
f t t 0.3
f t f 0.3
f f t 0.0
f f f 0.0

Suppose the utility is given by

Trouble2 Cheat2 Utility
t t 30
t f 0
f t 100
f f 70

(a) What is an optimal decision function for the variable Cheat2? Show what
factors are created. Please try to do it by hand, and then check it with the
AIspace.org applet.

(b) What is an optimal policy? What is the value of an optimal policy? Show the
tables created.

(c) What is an optimal policy if the probability of being watched goes up?

(d) What is an optimal policy when the rewards for cheating are reduced?

AIspace.org

9.8. Exercises 415

(e) What is an optimal policy when the instructor is less forgiving (or less for-
getful) of previous cheating?

Exercise 9.3 Suppose that, in a decision network, the decision variable Run has
parents Look and See. Suppose you are using VE to find an optimal policy and,
after eliminating all of the other variables, you are left with the factor

Look See Run Value
true true yes 23
true true no 8
true false yes 37
true false no 56
false true yes 28
false true no 12
false false yes 18
false false no 22

(a) What is the resulting factor after eliminating Run? [Hint: You do not sum out
Run because it is a decision variable.]

(b) What is the optimal decision function for Run?

Exercise 9.4 Suppose that, in a decision network, there were arcs from random
variables “contaminated specimen” and “positive test” to the decision variable
“discard sample.” Sally solved the decision network and discovered that there
was a unique optimal policy:

contaminated specimen positive test discard sample
true true yes
true false no
false true yes
false false no

What can you say about the value of information in this case?

Exercise 9.5 How sensitive are the answers from the decision network of Exam-
ple 9.13 (page 389) to the probabilities? Test the program with different conditional
probabilities and see what effect this has on the answers produced. Discuss the
sensitivity both to the optimal policy and to the expected value of the optimal
policy.

Exercise 9.6 In Example 9.13 (page 389), suppose that the fire sensor was noisy
in that it had a 20% false-positive rate,

P(see smoke|report∧ ¬smoke) = 0.2,

and a 15% false negative-rate:

P(see smoke|report∧ smoke) = 0.85.

Is it still worthwhile to check for smoke?

Exercise 9.7 Consider the belief network of Exercise 6.8 (page 278). When an
alarm is observed, a decision is made whether to shut down the reactor. Shutting
down the reactor has a cost cs associated with it (independent of whether the core

416 9. Planning Under Uncertainty

was overheating), whereas not shutting down an overheated core incurs a cost cm
that is much higher than cs.

(a) Draw the decision network to model this decision problem for the original
system (i.e., with only one sensor).

(b) Specify the tables for all new factors that must be defined (you should use
the parameters cs and cm where appropriate in the tables). Assume that the
utility is the negative of cost.

Exercise 9.8 Explain why we often use discounting of future rewards in MDPs.
How would an agent act differently if the discount factor was 0.6 as opposed to
0.9?

Exercise 9.9
Consider a game world:

The robot can be at one of the 25 locations on the grid. There can be a treasure
on one of the circles at the corners. When the robot reaches the corner where the
treasure is, it collects a reward of 10, and the treasure disappears. When there is no
treasure, at each time step, there is a probability P1 = 0.2 that a treasure appears,
and it appears with equal probability at each corner. The robot knows its position
and the location of the treasure.

There are monsters at the squares marked with an X. Each monster randomly
and independently, at each time step, checks if the robot is on its square. If the
robot is on the square when the monster checks, it has a reward of −10 (i.e., it
loses 10 points). At the center point, the monster checks at each time step with
probability p2 = 0.4; at the other 4 squares marked with an X, the monsters check
at each time step with probability p3 = 0.2.

Assume that the rewards are immediate upon entering a state: that is, if the
robot enters a state with a monster, it gets the (negative) reward on entering the
state, and if the robot enters the state with a treasure, it gets the reward upon
entering the state, even if the treasure arrives at the same time.

The robot has 8 actions corresponding to the 8 neighboring squares. The diago-
nal moves are noisy; there is a p4 = 0.6 probability of going in the direction chosen
and an equal chance of going to each of the four neighboring squares closest to
the desired direction. The vertical and horizontal moves are also noisy; there is a
p5 = 0.8 chance of going in the requested direction and an equal chance of going
to one of the adjacent diagonal squares. For example, the actions up-left and up
have the following result:

9.8. Exercises 417

0.6 0.1 0.1

0.1

0.1

0.1 0.8 0.1

Action=upAction=up-left

If the action would result in crashing into a wall, the robot has a reward of−2 (i.e.,
loses 2) and does not move.

There is a discount factor of p6 = 0.9.

(a) How many states are there? (Or how few states can you get away with?)
What do they represent?

(b) What is an optimal policy?

(c) Suppose the game designer wants to design different instances of the game
that have non-obvious optimal policies for a game player. Give three assign-
ments to the parameters p1 to p6 with different optimal policies. If there are
not that many different optimal policies, give as many as there are and ex-
plain why there are no more than that.

Exercise 9.10 Consider a 5 × 5 grid game similar to the game of the previous
question. The agent can be at one of the 25 locations, and there can be a treasure at
one of the corners or no treasure.

In this game the “up” action has dynamics given by the following diagram:

0.10.1 0.8

That is, the agent goes up with probability 0.8 and goes up-left with probability
0.1 and up-right with probability 0.1.

If there is no treasure, a treasure can appear with probability 0.2. When it ap-
pears, it appears randomly at one of the corners, and each corner has an equal
probability of treasure appearing. The treasure stays where it is until the agent
lands on the square where the treasure is. When this occurs the agent gets an im-
mediate reward of +10 and the treasure disappears in the next state transition. The
agent and the treasure move simultaneously so that if the agent arrives at a square
at the same time the treasure appears, it gets the reward.

Suppose we are doing asynchronous value iteration and have the value for
each state as in the following grid. The numbers in the square represent the value
of that state and empty squares have a value of zero. It is irrelevant to this question
how these values got there.

418 9. Planning Under Uncertainty

*

7

7

2

The left grid shows the values for the states where there is no treasure and the
right grid shows the values of the states when there is a treasure at the top-right
corner. There are also states for the treasures at the other three corners, but you
assume that the current values for these states are all zero.

Consider the next step of asynchronous value iteration. For state s13, which is
marked by ∗ in the figure, and the action a2, which is “up,” what value is assigned
to Q[s13, a2] on the next value iteration? You must show all work but do not have
to do any arithmetic (i.e., leave it as an expression). Explain each term in your
expression.

Exercise 9.11 In a decision network, suppose that there are multiple utility
nodes, where the values must be added. This lets us represent a generalized addi-
tive utility function. How can the VE for decision networks algorithm, shown in
Figure 9.11 (page 393), be altered to include such utilities?

Exercise 9.12 How can variable elimination for decision networks, shown in Fig-
ure 9.11 (page 393), be modified to include additive discounted rewards? That is,
there can be multiple utility (reward) nodes, having to be added and discounted.
Assume that the variables to be eliminated are eliminated from the latest time step
forward.

Exercise 9.13 This is a continuation of Exercise 6.8 (page 278).

(a) When an alarm is observed, a decision is made whether to shut down the
reactor. Shutting down the reactor has a cost cs associated with it (indepen-
dent of whether the core was overheating), whereas not shutting down an
overheated core incurs a cost cm, which is much higher than cs. Draw the de-
cision network modeling this decision problem for the original system (i.e.,
only one sensor). Specify any new tables that must be defined (you should
use the parameters cs and cm where appropriate in the tables). You can as-
sume that the utility is the negative of cost.

(b) For the decision network in the previous part, determine the expected utility
of shutting down the reactor versus not shutting it down when an alarm
goes off. For each variable eliminated, show which variable is eliminated,
how it is eliminated (through summing or maximization), which factors are
removed, what factor is created, and what variables this factor is over. You
are not required to give the tables.

9.8. Exercises 419

Exercise 9.14 One of the decisions we must make in real life is whether to accept
an invitation even though we are not sure we can or want to go to an event. The
following figure represents a decision network for such a problem:

Accept

Invitation
Decide
to go

Sick after
acceptance

go

good

excuse

Utility

Suppose that all of the decision and random variables are Boolean (i.e., have do-
main {true, false}). You can accept the invitation, but when the time comes, you
still must decide whether or not to go. You might get sick in between accepting
the invitation and having to decide to go. Even if you decide to go, if you haven’t
accepted the invitation you may not be able to go. If you get sick, you have a good
excuse not to go. Your utility depends on whether you accept, whether you have
a good excuse, and whether you actually go.

(a) Give a table representing a possible utility function. Assume the unique best
outcome is that you accept the invitation, you don’t have a good excuse, but
you do go. The unique worst outcome is that you accept the invitation, you
don’t have a good excuse, and you don’t go. Make your other utility values
reasonable.

(b) Suppose that that you get to observe whether you are sick before accepting
the invitation. Note that this is a different variable than if you are sick after
accepting the invitation. Add to the network so that this situation can be
modeled. You must not change the utility function, but the new observation
must have a positive value of information. The resulting network must be
one for which the decision network solving algorithm works.

(c) Suppose that, after you have decided whether to accept the original invita-
tion and before you decide to go, you can find out if you get a better invi-
tation (to an event that clashes with the original event, so you cannot go to
both). Suppose you would rather go to the better invitation than go to the
original event you were invited to. (The difficult decision is whether to ac-
cept the first invitation or wait until you get a better invitation, which you
may not get.) Unfortunately, having another invitation does not provide a
good excuse. On the network, add the node “better invitation” and all rele-
vant arcs to model this situation. [You do not have to include the node and
arcs from part (b).]

(d) If you have an arc between “better invitation” and “accept invitation” in part
(c), explain why (i.e., what must the world be like to make this arc appropri-
ate). If you did not have such an arc, which way could it go to still fit the

420 9. Planning Under Uncertainty

preceding story; explain what must happen in the world to make this arc
appropriate.

(e) If there was no arc between “better invitation” and “accept invitation”
(whether or not you drew such an arc), what must be true in the world to
make this lack of arc appropriate.

Exercise 9.15 Consider the following decision network:

A

B

C

D

V

(a) What are the initial factors. (You do not have to give the tables; just give
what variables they depend on.)

(b) Show what factors are created when optimizing the decision function and
computing the expected value, for one of the legal elimination orderings.
At each step explain which variable is being eliminated, whether it is be-
ing summed out or maximized, what factors are being combined, and what
factors are created (give the variables they depend on, not the tables).

(c) If the value of information of A at decision D is zero, what does an optimal
policy look like? (Please give the most specific statement you can make about
any optimal policy.)

Exercise 9.16 What is the main difference between asynchronous value iteration
and standard value iteration? Why does asynchronous value iteration often work
better than standard value iteration?

Exercise 9.17 Consider a grid world where the action “up” has the following
dynamics:

0.10.1 0.8

That is, it goes up with probability 0.8, up-left with probability 0.1, and up-right
with probability 0.1. Suppose we have the following states:

s12 s13 s14

s17 s18 s19

There is a reward of +10 upon entering state s14, and a reward of−5 upon entering
state s19. All other rewards are 0.

The discount is 0.9.

9.8. Exercises 421

Suppose we are doing asynchronous value iteration, storing Q[S, A], and we
have the following values for these states:

V(s12) = 5 V(s13) = 7 V(s14) = −3
V(s17) = 2 V(s18) = 4 V(s19) = −6

Suppose, in the next step of asynchronous value iteration, we select state s18
and action up. What is the resulting updated value for Q[s18, up]? Give the numer-
ical formula, but do not evaluate or simplify it.

Chapter 10

Multiagent Systems

Imagine a personal software agent engaging in electronic commerce on
your behalf. Say the task of this agent is to track goods available for sale
in various online venues over time, and to purchase some of them on your
behalf for an attractive price. In order to be successful, your agent will
need to embody your preferences for products, your budget, and in general
your knowledge about the environment in which it will operate. More-
over, the agent will need to embody your knowledge of other similar agents
with which it will interact (e.g., agents who might compete with it in an
auction, or agents representing store owners) – including their own pref-
erences and knowledge. A collection of such agents forms a multiagent
system.

– Yoav Shoham and Kevin Leyton-Brown [2008, page xvii]

What should an agent do when there are other agents, with their own values,
who are also reasoning about what to do? An intelligent agent should not ig-
nore other agents or treat them as noise in the environment. We consider the
problems of determining what an agent should do given a mechanism that
specifies how the world works, and of designing a mechanism that has useful
properties.

10.1 Multiagent Framework

In this chapter, we consider the case in which there are multiple agents, where

• the agents can act autonomously, each with its own information about the
world and the other agents.

423

424 10. Multiagent Systems

• the outcome depends on the actions of all of the agents. A mechanism spec-
ifies how the actions of the agents lead to outcomes.

• each agent can have its own utility that depends on the outcome.

Each agent decides what to do based on its own utilities, but it also has to
interact with other agents. An agent acts strategically when it decides what to
do based on its goals or utilities.

Sometimes we treat nature as an agent. Nature is defined as being a spe-
cial agent that does not have values and does not act strategically. It just acts,
perhaps stochastically. Nature may be seen as including of all of the agents
that are not acting strategically. In terms of the agent architecture shown in
Figure 1.3 (page 11), nature and the other agents form the environment for an
agent. A strategic agent cannot treat other strategic agents as part of nature
because it should reason about their utility and actions, and because the other
agents are perhaps available to cooperate and negotiate with.

There are two extremes in the study of multiagent systems:

• fully cooperative, where the agents share the same utility function, and
• fully competitive, when one agent can only win when another loses. These

are often called zero-sum games when the utility can be expressed in a form
such that the sum of the utilities for the agents is zero for every outcome.

Most interactions are between these two extremes, where the agents’ utilities
are synergistic in some aspects, competing in some, and other aspects are in-
dependent. For example, two commercial agents with stores next door to each
other may both share the goal of having the street area clean and inviting; they
may compete for customers, but may have no preferences about the details
of the other agent’s store. Sometimes their actions do not interfere with each
other, and sometimes they do. Often agents can be better off if they coordinate
their actions through cooperation and negotiation.

Multiagent interactions have mostly been studied using the terminology of
games following the seminal work of Neumann and Morgenstern [1953]. Many
issues of interaction between agents can be studied in terms of games. Even
quite small games can highlight deep issues. However, the study of games is
meant to be about general multiagent interactions, not just artificial games.

Multiagent systems are ubiquitous in artificial intelligence. From parlor
games such as checkers, chess, backgammon, and Go, to robot soccer, to in-
teractive computer games, to having agents that act in complex economic sys-
tems, games are integral to AI. Games were one of the first applications of AI.
One of the first reinforcement learning systems was for the game of checkers by
Samuel [1959], with the first operating checkers program dating back to 1952.
There was great fanfare when Deep Blue beat the world chess champion in
1997. Computers have also been successful at checkers and backgammon, but
less so in the game Go because of the size of the search space and the avail-
ability of good heuristics. Although large, these games are conceptually simple
because the agents can observe the state of the world (they are fully observ-
able). In most real-world interactions, the state of the world is not observable.

10.2. Representations of Games 425

There is now much interest in partially observable games like poker, where
the environment is predictable (even if stochastic), and robot soccer, where the
environment is not very predictable. But all of these games are much simpler
than the multiagent interactions people perform in their daily lives, let alone
the strategizing needed for bartering in marketplaces or on the Internet, where
the rules are less well defined and the utilities are much more multifaceted.

10.2 Representations of Games

To be able to reason about a multiagent interaction, we represent the options
available to the agents and the payoffs for their actions. There are many repre-
sentation schemes for games, and multiagent interactions in general, that have
been proposed in economics and AI. In AI, these representation schemes typi-
cally try to represent some aspect of games that can be exploited for computa-
tional gain.

We present three representations; two of these are classic representations
from economics. The first abstracts away all structure of the policies of the
agents. The second models the sequential structure of games and is the foun-
dation for much work on representing board games. The third representation
moves away from the state-based representation to allow the representation of
games in terms of features.

10.2.1 Normal Form of a Game

The most basic representation of games is the strategic form of a game or a
normal-form game. The strategic form of a game consists of

• a finite set I of agents, typically identified with the integers I = {1, . . . , n}.
• a set of actions A for each agent i ∈ I. An assignment of an action in Ai to

each agent i ∈ I is an action profile. We can view an action profile as a tuple
〈a1, . . . , an〉, which specifies that agent i carries out action ai.

• a utility function ui for each agent i ∈ I that, given an action profile, returns
the expected utility for agent i given the action profile.

The joint action of all the agents (an action profile) produces an outcome. Each
agent has a utility over each outcome. The utility for an agent is meant to en-
compass everything that the agent is interested in, including fairness and soci-
etal well-being. Thus, we assume that each agent is trying to maximize its own
utility, without reference to the utility of other agents.

Example 10.1 The game rock-paper-scissors is a common game played by
children, and there is even a world championship of rock-paper-scissors. Sup-
pose there are two agents (players), Alice and Bob. There are three actions for
each agent, so that

AAlice = ABob = {rock, paper, scissors}.

426 10. Multiagent Systems

Bob
rock paper scissors

rock 0, 0 −1, 1 1,−1
Alice paper 1,−1 0, 0 −1, 1

scissors −1, 1 1,−1 0,0

Figure 10.1: Strategic form for the rock-paper-scissors game

For each combination of an action for Alice and an action for Bob there is a util-
ity for Alice and a utility for Bob. This is often drawn in a table as in Figure 10.1.
This is called a payoff matrix. Alice chooses a row and Bob chooses a column,
simultaneously. This gives a pair of numbers: the first number is the payoff to
the row player (Alice) and the second gives the payoff to the column player
(Bob). Note that the utility for each of them depends on what both players do.
An example of an action profile is 〈scissorsAlice, rockBob〉, where Alice chooses
scissors and Bob chooses rock. In this action profile, Alice receives the utility of
−1 and Bob receives the utility of 1. This game is a zero-sum game because one
person wins only when the other loses.

This representation of a game may seem very restricted, because it only gives
a one-off payoff for each agent based on single actions, chosen simultaneously,
for each agent. However, the interpretation of an action in the definition is very
general.

Typically, an “action” is not just a simple choice, but a strategy: a specifi-
cation of what the agent will do under the various contingencies. The normal
form, essentially, is a specification of the utilities given the possible strategies
of the agents. This is why it is called the strategic form of a game.

In general, the “action” in the definition of a normal-form game can be a
controller (page 48) for the agent. Thus, each agent chooses a controller and
the utility gives the expected outcome of the controllers run for each agent in
an environment. Although the examples that follow are for simple actions, the
general case has an enormous number of possible actions (possible controllers)
for each agent.

10.2.2 Extensive Form of a Game

Whereas the normal form of a game represents controllers as single units, it if
often more natural to specify the unfolding of a game through time. The exten-
sive form of a game is an extension of a single-agent decision tree (page 382).
We first give a definition that assumes the game is fully observable (called per-
fect information in game theory).

A perfect information game in extensive form or a game tree is a finite tree
where the nodes are states and the arcs correspond to actions by the agents. In
particular:

10.2. Representations of Games 427

keep

Andy

Barb Barb Barb

share give

yes no yes no yes no

2,0 0,0 1,1 0,0 0,2 0,0

Figure 10.2: Extensive form of the sharing game

• Each internal node is labeled with an agent (or with nature). The agent is said
to control the node.

• Each arc out of a node labeled with agent i corresponds to an action for agent
i.

• Each internal node labeled with nature has a probability distribution over its
children.

• The leaves represent final outcomes and are labeled with a utility for each
agent.

The extensive form of a game specifies a particular unfolding of the game.
Each path to a leaf, called a run, specifies one particular way that the game
could proceed depending on the choices of the agents and nature.

A pure strategy for agent i is a function from nodes controlled by agent i
into actions. That is, a pure strategy selects a child for each node that agent i
controls. A strategy profile consists of a strategy for each agent.

Example 10.2 Consider a sharing game where there are two agents, Andy
and Barb, and there are two identical items to be divided between them. Andy
first selects how they will be divided: Andy keeps both items, they share and
each person gets one item, or he gives both items to Barb. Then Barb gets to
either reject the allocation and they both get nothing, or accept the allocation
and they both get the allocated amount.

The extensive form of the sharing game is shown in Figure 10.2. Andy has 3
strategies. Barb has 8 pure strategies; one for each combination of assignments
to the nodes she controls. As a result, there are 24 strategy profiles.

Given a strategy profile, each node has a utility for each agent. The utility
for an agent at a node is defined recursively from the bottom up:

• The utility for each agent at a leaf is given as part of the leaf.
• The utility for agent j of a node controlled by agent i is the utility for agent j

of the child node that is selected by agent i’s strategy.
• The utility for agent i for a node controlled by nature is the expected value of

the utility for agent i of the children. That is, ui(n) = ∑c P(c)ui(c), where the
sum is over the children c of node n, and P(c) is the probability that nature
will choose child c.

428 10. Multiagent Systems

r p s

rock

Alice

Bob Bob Bob

paper scissors

0,0 1,-1-1,1

r p s

1,-1 -1,10,0

r p s

-1,1 0,01,-1

Figure 10.3: Extensive form of the rock-paper-scissors game

Example 10.3 In the sharing game, suppose we have the following strategy
profile: Andy chooses keep and Barb chooses no, yes, yes for each of the nodes
she gets to choose for. Under this strategy profile, the utility for Andy at the
leftmost internal node is 0, the utility for Andy at the center internal node is 1,
and the utility for Andy at the rightmost internal node is 0. The utility for Andy
at the root is 0.

The preceding definition of the extensive form of a game assumes that the
agents can observe the state of the world (i.e., they know what node they are
at each step). This means that the state of the game must be fully observable.
In a partially observable game or an imperfect information game, the agents
do not necessarily know the state of the game. To model these games in an
extensive form, we introduce the notion of information sets. An information
set is a set of nodes, all controlled by the same agent and all with the same set of
available actions. The idea is that the agent cannot distinguish the elements of
the information set. The agent only knows the game state is at one of the nodes
of the information set, not which node. In a strategy, the agent chooses one
action for each information set; the same action is carried out at each node in
the information set. Thus, in the extensive form, a strategy specifies a function
from information sets to actions.

Example 10.4 Figure 10.3 gives the extensive form for the rock-paper-scissors
game of Example 10.1 (page 425). The elements of the information set are in
a rounded rectangle. Bob must choose the same action for each node in the
information set.

10.2.3 Multiagent Decision Networks

The extensive form of a game can be seen as a state-based representation of
a game. As we have seen before, it is often more concise to describe states
in terms of features. A multiagent decision network is a factored representa-
tion of a multiagent decision problem. It islike a decision network (page 387),

10.2. Representations of Games 429

Fire

Alarm1

Alarm2

Call1

Call2

Call

Works

Fire Dept

Comes

U1

U2

Figure 10.4: Multiagent decision network for the fire example

except that each decision node is labeled with an agent that gets to choose a
value for the node. There is a utility node for each agent specifying the utility
for that agent. The parents of a decision node specify the information that will
be available to the agent when it has to act.

Example 10.5 Figure 10.4 gives a multiagent decision network for a fire de-
partment example. In this scenario, there are two agents, Agent 1 and Agent
2. Each has its own noisy sensor of whether there is a fire. However, if they
both call, it is possible that their calls will interfere with each other and neither
call will work. Agent 1 gets to choose a value for decision variable Call1 and
can only observe the value for the variable Alarm1. Agent 2 gets to choose a
value for decision variable Call2 and can only observe the value for the vari-
able Alarm2. Whether the call works depends on the values of Call1 and Call2.
Whether the fire department comes depends on whether the call works. Agent
1’s utility depends on whether there was a fire, whether the fire department
comes, and whether they called – similarly for Agent 2.

A multiagent decision network can be converted into a normal-form game;
however, the number of strategies can be enormous. If a decision variable has
d states and n binary parents, there are 2n assignments of values to parents
and so d2n

strategies. That is just for a single decision node; more complicated
networks are even bigger when converted to normal form. Therefore, the al-
gorithms that we present that are exponential in the number of strategies are
impractical for anything but the smallest multiagent decision networks.

Other representations exploit other structures in multiagent settings. For
example, the utility of an agent may depend on the number of other agents
who do some action, but not on their identities. An agent’s utility may depend
on what a few other agents do, not directly on the actions of all other agents. An
agent’s utility may only depend on what the agents at neighboring locations
do, and not on the identity of these agents or on what other agents do.

430 10. Multiagent Systems

10.3 Computing Strategies with Perfect Information

The equivalent to full observability with multiple agents is called perfect in-
formation. In perfect information games, agents act sequentially and, when an
agent has to act, it gets to observe the state of the world before deciding what
to do. Each agent acts to maximize its own utility.

A perfect information game can be represented as an extensive form game
where the information sets all contain a single node. They can also be repre-
sented as a multiagent decision network where the decision nodes are totally
ordered and, for each decision node, the parents of that decision node include
the preceding decision node and all of their parents [i.e., they are no-forgetting
decision networks (page 388)].

Perfect information games are solvable in a manner similar to fully observ-
able single-agent systems. We can either do it backward using dynamic pro-
gramming or forward using search. The difference from the single-agent case
is that the multiagent algorithm maintains a utility for each agent and, for each
move, it selects an action that maximizes the utility of the agent making the
move. The dynamic programming variant, called backward induction, essen-
tially follows the definition of the utility of a node for each agent, but, at each
node, the agent who controls the node gets to choose the action that maximizes
its utility.

Example 10.6 Consider the sharing game of Figure 10.2 (page 427). For each
of the nodes labeled with Barb, she gets to choose the value that maximizes her
utility. Thus, she will choose “yes” for the right two nodes she controls, and
would choose either for the leftmost node she controls. Suppose she chooses
“no” for this node; then Andy gets to choose one of his actions: keep has utility
0 for him, share has utility 1, and give has utility 0, so he chooses to share.

In the case where two agents are competing so that a positive reward for
one is a negative reward for the other agent, we have a two-agent zero-sum
game. The value of such a game can be characterized by a single number that
one agent is trying to maximize and the other agent is trying to minimize. Hav-
ing a single value for a two-agent zero-sum game leads to a minimax strategy.
Each node is either a MAX node, if it is controlled by the agent trying to maxi-
mize, or is a MIN node if it is controlled by the agent trying to minimize.

Backward induction can be used to find the optimal minimax strategy.
From the bottom up, backward induction maximizes at MAX nodes and mini-
mizes at MIN nodes. However, backward induction requires a traversal of the
whole game tree. It is possible to prune part of the search tree by showing that
some part of the tree will never be part of an optimal play.

Example 10.7 Consider searching in the game tree of Figure 10.5. In this fig-
ure, the square MAX nodes are controlled by the maximizing agent, and the
round MIN nodes are controlled by the minimizing agent.

Suppose the values of the leaf nodes are given or can be computed given the
definition of the game. The numbers at the bottom show some of these values.

10.3. Computing Strategies with Perfect Information 431

h i j k l m n o

d e f g

b c

a

7 9 6 11 12 5 4

7

7

11

7

7

≤5 ≤4≤6

≤5

≤5

≥11

MAX

MIN

MIN

MAX

Figure 10.5: A zero-sum game tree showing which nodes can be pruned

The other values are irrelevant, as we show here. Suppose we are doing a left-
first depth-first traversal of this tree. The value of node h is 7, because it is the
minimum of 7 and 9. Just by considering the leftmost child of i with a value of
6, we know that the value of i is less than or equal to 6. Therefore, at node d,
the maximizing agent will go left. We do not have to evaluate the other child
of i. Similarly, the value of j is 11, so the value of e is at least 11, and so the
minimizing agent at node b will choose to go left.

The value of l is less than or equal to 5, and the value of m is less than or
equal to 4; thus, the value of f is less than or equal to 5, so the value of c will
be less than or equal to 5. So, at a, the maximizing agent will choose to go left.
Notice that this argument did not depend on the values of the unnumbered
leaves. Moreover, it did not depend on the size of the subtree that was not
explored.

The previous example analyzed what can be pruned. Minimax with alpha-
beta (α-β) pruning is a depth-first search algorithm that prunes by passing
pruning information down in terms of parameters α and β. In this depth-first
search, a node has a “current” value, which has been obtained from some of
its descendants. This current value can be updated as it gets more information
about the value of its other descendants.

The parameter α can be used to prune MIN nodes. Initially, it is the highest
current value for all MAX ancestors of the current node. Any MIN node whose
current value is less than or equal to its α value does not have to be explored
further. This cutoff was used to prune the other descendants of nodes l, m, and
c in the previous example.

The dual is the β parameter, which can be used to prune MAX nodes.
The minimax algorithm with α-β pruning is given in Figure 10.6 (on the

next page). It is called, initially, with

MinimaxAlphaBeta(R,−∞, ∞),

where R is the root node. Note that it uses α as the current value for the MAX
nodes and β as the current value for the MIN nodes.

432 10. Multiagent Systems

1: procedure MinimaxAlphaBeta(N, α, β)
2: Inputs
3: N a node in a game tree
4: α, β real numbers

5: Output
6: The value for node N
7: if N is a leaf node then
8: return value of N
9: else if N is a MAX node then

10: for each child C of N do
11: Set α← max(α, MinimaxAlphaBeta(C, α, β))
12: if α ≥ β then
13: return β

14: return α
15: else
16: for each child C of N do
17: Set β← min(β, MinimaxAlphaBeta(C, α, β))
18: if α ≥ β then
19: return α
20: return β

Figure 10.6: Minimax with α-β pruning

Example 10.8 Consider running MinimaxAlphaBeta on the tree of Figure 10.5.
We will show the recursive calls. Initially, it calls

MinimaxAlphaBeta(a,−∞, ∞),

which then calls, in turn,

MinimaxAlphaBeta(b,−∞, ∞)

MinimaxAlphaBeta(d,−∞, ∞)

MinimaxAlphaBeta(h,−∞, ∞).

This last call finds the minimum of both of its children and returns 7. Next the
procedure calls

MinimaxAlphaBeta(i, 7, ∞),

which then gets the value for the first of i’s children, which has value 6. Because
α ≥ β, it returns 6. The call to d then returns 7, and it calls

MinimaxAlphaBeta(e,−∞, 7).

10.4. Partially Observable Multiagent Reasoning 433

Node e’s first child returns 11 and, because α ≥ β, it returns 11. Then b returns
7, and the call to a calls

MinimaxAlphaBeta(c, 7, ∞),

which in turn calls

MinimaxAlphaBeta(f , 7, ∞),

which eventually returns 5, and so the call to c returns 5, and the whole proce-
dure returns 7.

By keeping track of the values, the maximizing agent knows to go left at a,
then the minimizing agent will go left at b, and so on.

The amount of pruning provided by this algorithm depends on the order-
ing of the children of each node. It works best if a highest-valued child of a
MAX node is selected first and if a lowest-valued child of a MIN node is re-
turned first. In implementations of real games, much of the effort is made to
try to ensure this outcome.

Most real games are too big to carry out minimax search, even with α-β
pruning. For these games, instead of only stopping at leaf nodes, it is possi-
ble to stop at any node. The value returned at the node where the algorithm
stops is an estimate of the value for this node. The function used to estimate
the value is an evaluation function. Much work goes into finding good eval-
uation functions. There is a trade-off between the amount of computation re-
quired to compute the evaluation function and the size of the search space
that can be explored in any given time. It is an empirical question as to the
best compromise between a complex evaluation function and a large search
space.

10.4 Partially Observable Multiagent Reasoning

Partial observability means that an agent does not know the state of the world
or that the agents act simultaneously.

Partial observability for the multiagent case is more complicated than the
fully observable multiagent case or the partially observable single-agent case.
The following simple examples show some important issues that arise even in
the case of two agents, each with a few choices.

Example 10.9 Consider the case of a penalty kick in soccer as depicted in
Figure 10.7. If the kicker kicks to his right and the goalkeeper jumps to his
right, the probability of a goal is 0.9, and similarly for the other combinations
of actions, as given in the figure.

What should the kicker do, given that he wants to maximize the probability
of a goal and that the goalkeeper wants to minimize the probability of a goal?
The kicker could think that it is better kicking to his right, because the pair of

434 10. Multiagent Systems

goalkeeper
left right

kicker left 0.6 0.2
right 0.3 0.9

Probability of a goal

Figure 10.7: Soccer penalty kick. The kicker can kick to his left or right. The
goalkeeper can jump to his left or right.

numbers for his right kick is higher than the pair for the left. The goalkeeper
could then think that if the kicker will kick right, then he should jump left.
However, if the kicker thinks that the goalkeeper will jump left, he should then
kick left. But then, the goalkeeper should jump right. Then the kicker should
kick right.

Each agents is potentially faced with an infinite regression of reasoning
about what the other agent will do. At each stage in their reasoning, the agents
reverse their decision. One could imagine cutting this off at some depth; how-
ever, the actions then are purely a function of the arbitrary depth. Even worse,
if the kicker knew the depth limit of reasoning for the goalkeeper, he could ex-
ploit this knowledge to determine what the kicker will do and choose his action
appropriately.

An alternative is for the agents to choose actions stochastically. You could
imagine that the kicker and the goalkeeper each secretly toss a coin to decide
what to do. You then should think about whether the coins should be biased.
Suppose that the kicker decides to kick to his right with probability pk and that
the goalkeeper decides to jump to his right with probability pj. The probability
of a goal is then

0.9pkpj + 0.3pk(1− pj) + 0.2(1− pk)pj + 0.6(1− pk)(1− pj).

Figure 10.8 shows the probability of a goal as a function of pk. The different
lines correspond to different values of pj.

There is something special about the value pk = 0.4. At this value, the prob-
ability of a goal is 0.48, independent of the value of pj. That is, no matter what
the goalkeeper does, the kicker expects to get a goal with probability 0.48. If
the kicker deviates from pk = 0.4, he could do better or he could do worse,
depending on what the goalkeeper does.

The plot for pj is similar, with all of the lines meeting at pj = 0.3. Again,
when pj = 0.3, the probability of a goal is 0.48.

The strategy with pk = 0.4 and pj = 0.3 is special in the sense that neither
agent can do better by unilaterally deviating from the strategy. However, this
does not mean that they cannot do better; if one of the agents deviates from this
equilibrium, the other agent can do better by deviating from the equilibrium.

10.4. Partially Observable Multiagent Reasoning 435

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
k

P(goal)

p
j
=1

p
j
= 0

Figure 10.8: Probability of a goal as a function of action probabilities

However, this equilibrium is safe for an agent in the sense that, even if the
other agent knew the agent’s strategy, the other agent cannot force a worse
outcome for the agent. Playing this strategy means that an agent does not have
to worry about double-guessing the other agent. He will get the best payoff he
can guarantee to obtain.

Let us now extend the definition of a strategy to include randomized strate-
gies.

Consider the normal form of a game where each agent gets to choose an
action simultaneously. Each agent chooses an action without knowing what
the other agents choose.

A strategy for an agent is a probability distribution over the actions for this
agent. If the agent is acting deterministically, one of the probabilities will be 1
and the rest will be 0; this is called a pure strategy. If the agent is not following
a pure strategy, none of the probabilities will be 1, and more than one action
will have a non-zero probability; this is called a stochastic strategy. The set of
actions with a non-zero probability in a strategy is called the support set of the
strategy.

A strategy profile is an assignment of a strategy to each agent. If σ is a
strategy profile, let σi be the strategy of agent i in σ, and let σ−i be the strategies
of the other agents. Then σ is σiσ−i. If the strategy profile is made up of pure
strategies, it is often called an action profile, because each agent is playing a
particular action.

A strategy profile σ has a utility for each agent. Let utility(σ, i) be the utility
of strategy profile σ for agent i. The utility of a stochastic strategy profile can

436 10. Multiagent Systems

be computed by computing the expected utility given the utilities of the basic
actions that make up the profile and the probabilities of the actions.

A best response for an agent i to the strategies σ−i of the other agents is a
strategy that has maximal utility for that agent. That is, σi is a best response to
σ−i if, for all other strategies σ′i for agent i,

utility(σiσ−i, i) ≥ utility(σ′i σ−i, i).

A strategy profile σ is a Nash equilibrium if, for each agent i, strategy σi is
a best response to σ−i. That is, a Nash equilibrium is a strategy profile such that
no agent can be better by unilaterally deviating from that profile.

One of the great results of game theory, proved by Nash [1950], is that every
finite game has at least one Nash equilibrium.

Example 10.10 In Example 10.9 (page 433), there is a unique Nash equilib-
rium where pk = 0.4 and pj = 0.3. This has the property that, if the kicker is
playing pk = 0.4, it does not matter what the goalkeeper does; the goalkeeper
will have the same payoff, and so pj = 0.3 is a best response (as is any other
strategy). Similarly, if the goalkeeper is playing pj = 0.3, it does not matter what
the kicker does; and so every strategy, including pk = 0.4, is a best response.
The only reason an agent would consider randomizing between two actions is
if the actions have the same expected utility. All probabilistic mixtures of the
two actions have the same utility. The reason to choose a particular value for
the probability of the mixture is to prevent the other agent from exploiting a
deviation.

There are examples with multiple Nash equilibria. Consider the following
two-agent, two-action game.

Example 10.11 Suppose there is a resource that two agents may want to fight
over. Each agent can choose to act as a hawk or as a dove. Suppose the resource
is worth R units, where R > 0. If both agents act as doves, they share the re-
source. If one agent acts as a hawk and the other as a dove, the hawk agent gets
the resource and the dove agent gets nothing. If they both act like hawks, there
is destruction of the resource and the reward to both is −D, where D > 0. This
can be depicted by the following payoff matrix:

Agent 2
dove hawk

Agent 1 dove R/2,R/2 0,R
hawk R,0 -D,-D

In this matrix, Agent 1 gets to choose the row, Agent 2 gets to choose the col-
umn, and the payoff in the cell is a pair consisting of the reward to Agent 1 and
the reward to Agent 2. Each agent is trying to maximize its own reward.

In this game there are three Nash equilibria:

• In one equilibrium, Agent 1 acts as a hawk and Agent 2 as a dove. Agent
1 does not want to deviate because then they have to share the resource.
Agent 2 does not want to deviate because then there is destruction.

10.4. Partially Observable Multiagent Reasoning 437

• In the second equilibrium, Agent 1 acts as a dove and Agent 2 as a hawk.

• In the third equilibrium, both agents act stochastically. In this equilibrium,
there is some chance of destruction. The probability of acting like a hawk
goes up with the value R of the resource and goes down as the value D of
destruction increases. See Exercise 1 (page 450).

In this example, you could imagine each agent doing some posturing to try to
indicate what it will do to try to force an equilibrium that is advantageous to it.

Having multiple Nash equilibria does not come from being adversaries, as
the following example shows.

Example 10.12 Suppose there are two people who want to be together. Agent
1 prefers they both go to the football game and Agent 2 prefers they both go
shopping. They both would be unhappy if they are not together. Suppose they
both have to choose simultaneously what activity to do. This can be depicted
by the following payoff matrix:

Agent 2
football shopping

Agent 1 football 2,1 0,0
shopping 0,0 1,2

In this matrix, Agent 1 chooses the row, and Agent 2 chooses the column.
In this game, there are three Nash equilibria. One equilibrium is where they

both go shopping, one is where they both go to the football game, and one is a
randomized strategy.

This is a coordination problem. Knowing the set of equilibria does not actu-
ally tell either agent what to do, because what an agent should do depends on
what the other agent will do. In this example, you could imagine conversations
to determine which equilibrium they would choose.

Even when there is a unique Nash equilibrium, that Nash equilibrium does
not guarantee the maximum payoff to each agent. The following example is a
variant of what is known as the prisoner’s dilemma.

Example 10.13 Imagine you are on a game show with a stranger that you will
never see again. You each have the choice of

• taking $100 for yourself or

• giving $1,000 to the other person.

This can be depicted as the following payoff matrix:

Player 2
take give

Player 1 take 100,100 1100,0
give 0,1100 1000,1000

438 10. Multiagent Systems

No matter what the other agent does, each agent is better off if it takes rather
than gives. However, both agents are better off if they both give rather than if
they both take.

Thus, there is a unique Nash equilibrium, where both agents take. This
strategy profile results in each player receiving $100. The strategy profile where
both players give results in each player receiving $1,000. However, in this strat-
egy profile, each agent is rewarded for deviating.

There is a large body of research on the prisoner’s dilemma, because it does
not seem to be so rational to be greedy, where each agent tries to do the best for
itself, resulting in everyone being worse off. One case where giving becomes
preferred is when the game is played a number of times. This is known as
the sequential prisoner’s dilemma. One strategy for the sequential prisoner’s
dilemma is tit-for-tat: each player gives initially, then does the other agent’s
previous action at each step. This strategy is a Nash equilibrium as long as there
is no last action that both players know about. [See Exercise 10.3 (page 450).]

Having multiple Nash equilibria not only arises from partial observability.
It is even possible to have multiple equilibria with a perfect information game,
and it is even possible to have infinitely many Nash equilibria, as the following
example shows.

Example 10.14 Consider the sharing game of Example 10.2 (page 427). In
this game there are infinitely many Nash equilibria. There is a set of equilibria
where Andy shares, and Barb says “yes” to sharing for the center choice and
can randomize between the other choices, as long as the probability of saying
“yes” in the left-hand choice is less than or equal to 0.5. In these Nash equilibria,
they both get 1. There is another set of Nash equilibria where Andy keeps, and
Barb randomizes among her choices so that the probability of saying yes in the
left branch is greater than or equal to 0.5. In these equilibria, Barb gets 0, and
Andy gets some value in range [1, 2] depending on Barb’s probability. There is
a third set of Nash equilibria where Barb has a 0.5 probability of selecting yes at
the leftmost node, selects yes at the center node, and Andy randomizes between
keep and share with any probability.

Suppose the sharing game were modified slightly so that Andy offered a
small bribe for Barb to say “yes.” This can be done by changing the 2, 0 payoff
to be 1.9, 0.1. Andy may think, “Given the choice between 0.1 and 0, Barb will
choose 0.1, so then I should keep.” But Barb could think, “I should say no to 0.1,
so that Andy shares and I get 1.” In this example (even ignoring the rightmost
branch), there are multiple pure Nash equilibria, one where Andy keeps, and
Barb says yes at the leftmost branch. In this equilibrium, Andy gets 1.9 and
Barb gets 0.1. There is another Nash equilibrium where Barb says no at the
leftmost choice node and yes at the center branch and Andy chooses share. In
this equilibrium, they both get 1. It would seem that this is the one preferred
by Barb. However, Andy could think that Barb is making an empty threat. If he
actually decided to keep, Barb, acting to maximize her utility, would not actually
say no.

10.4. Partially Observable Multiagent Reasoning 439

The backward induction algorithm only finds one of the equilibria in the mod-
ified sharing game. It computes a subgame-perfect equilibrium, where it is
assumed that the agents choose the action with greatest utility for them at ev-
ery node where they get to choose. It assumes that agents do not carry out
threats that it is not in their interest to carry out at the time. In the modified
sharing game of the previous example, it assumes that Barb will say “yes” to
the small bribe. However, when dealing with real opponents, we must be care-
ful of whether they will follow through with threats that we may not think
rational.

10.4.1 Computing Nash Equilibria

To compute a Nash equilibrium for a game in strategic form, there are three
steps:

1. Eliminate dominated strategies.

2. Determine which actions will have non-zero probabilities; this is called the
support set.

3. Determine the probability for the actions in the support set.

It turns out that the second of these is the most difficult.

Eliminating Dominated Strategies

A strategy s1 for a agent A dominates strategy s2 for A if, for every action of the
other agents, the utility of s1 for agent A is higher than the utility of s2 for agent
A. Any pure strategy dominated by another strategy can be eliminated from
consideration. The dominating strategy can be a randomized strategy. This can
be done repeatedly.

Example 10.15 Consider the following payoff matrix, where the first agent
chooses the row and the second agent chooses the column. In each cell is a
pair of payoffs: the payoff for Agent 1 and the payoff for Agent 2. Agent 1 has
actions {a1, b1, c1}. Agent 2 has possible actions {d2, e2, f2}.

Agent 2
d2 e2 f2

a1 3,5 5,1 1,2
Agent 1 b1 1,1 2,9 6,4

c1 2,6 4,7 0,8

(Before looking at the solution try to work out what each agent should do.)
Action c1 can be removed because it is dominated by action a1: Agent 1 will

never do c1 if action a1 is available to it. You can see that the payoff for Agent 1
is greater doing a1 than doing c1, no matter what the other agent does.

Once action c1 is eliminated, action f2 can be eliminated because it is domi-
nated by the randomized strategy 0.5× d2 + 0.5× e2.

440 10. Multiagent Systems

Once c1 and f2 have been eliminated, b1 is dominated by a1, and so Agent 1
will do action a1. Given that Agent 1 will do a1, Agent 2 will do d2. Thus, the
payoff in this game will be 3 for Agent 1 and 5 for Agent 2.

Strategy s1 strictly dominates strategy s2 for Agent i if, for all action profiles
σ−i of the other agents,

utility(s1σ−i, i) > utility(s2σ−i, i).

It is clear that, if s2 is a pure strategy that is strictly dominated by some strategy
s1, then s2 can never be in the support set of any Nash equilibrium. This holds
even if s1 is a stochastic strategy. Repeated elimination of strictly dominated
strategies gives the same result, irrespective of the order in which the strictly
dominated strategies are removed.

There are also weaker notions of domination, where the greater-than sym-
bol in the preceding formula is replaced by greater than or equal. If the weaker
notion of domination is used, there is always a Nash equilibrium with sup-
port of the non-dominated strategies. However, some Nash equilibria can be
lost. Moreover, which equilibria are lost can depend on the order in which the
dominated strategies are removed.

Computing Randomized Strategies

We can use the fact that an agent will only randomize between actions if the
actions all have the same utility to the agent (given the strategies of the other
agent). This forms a set of constraints that can be solved to give a Nash equilib-
rium. If these constraints can be solved with numbers in the range (0, 1), and
the mixed strategies computed for each agent are not dominated by another
strategy for the agent, then this strategy profile is a Nash equilibrium.

Recall that a support set (page 435) is a set of pure strategies that each have
non-zero probability in a Nash equilibrium.

Once dominated strategies have been eliminated, we can search over sup-
port sets to determine whether the support sets form a Nash equilibrium. Note
that, if there are n actions available to an agent, there are 2n− 1 non-empty sub-
sets, and we have to search over combinations of support sets for the various
agents. So this is not very feasible unless there are few non-dominated actions
or there are Nash equilibria with small support sets. To find simple (in terms of
the number of actions in the support set) equilibria, we can search from smaller
support sets to larger sets.

Suppose agent i is randomizing between actions a1
i , . . . , aki

i in a Nash equi-
librium. Let pj

i be the probability that agent i does action aj
i. Let σ−i(p−i) be the

strategies for the other agents as a function of their probabilities. The fact that
this is a Nash equilibrium gives the following constraints: pj

i > 0, ∑ki
j=1 pj

i = 1,
and, for all j, j′

utility(aj
iσ−i(p−i), i) = utility(aj′

i σ−i(p−i), i).

10.4. Partially Observable Multiagent Reasoning 441

We also require that the utility of doing aj
i is not less than the utility of doing an

action outside of the support set. Thus, for all a′ /∈ {a1
i , . . . , aki

i },

utility(aj
iσ−i(p−i), i) ≥ utility(a′σ−i(p−i), i).

Example 10.16 In Example 10.9 (page 433), suppose the goalkeeper jumps
right with probability pj and the kicker kicks right with probability pk.

If the goalkeeper jumps right, the probability of a goal is

0.9pk + 0.2(1− pk).

If the goalkeeper jumps left, the probability of a goal is

0.3pk + 0.6(1− pk).

The only time the goalkeeper would randomize is if these are equal; that is, if

0.9pk + 0.2(1− pk) = 0.3pk + 0.6(1− pk).

Solving for pk gives pk = 0.4.
Similarly, for the kicker to randomize, the probability of a goal must be the

same whether the kicker kicks left or right:

0.2pj + 0.6(1− pj) = 0.9pj + 0.3(1− pj).

Solving for pj gives pj = 0.3.
Thus, the only Nash equilibrium is where pk = 0.4 and pj = 0.3.

10.4.2 Learning to Coordinate

Due to the existence of multiple equilibria, in many cases it is not clear what an
agent should actually do, even if it knows all of the outcomes for the game and
the utilities of the agents. However, most real strategic encounters are much
more difficult, because the agents do not know the outcomes or the utilities of
the other agents.

An alternative to the deep strategic reasoning implied by computing the
Nash equilibria is to try to learn what actions to perform. This is quite different
from the standard setup for learning covered in Chapter 7, where an agent was
learning about some unknown but fixed concept; here, an agent is learning to
interact with other agents who are also learning.

This section presents a simple algorithm that can be used to iteratively im-
prove an agent’s policy. We assume that the agents are repeatedly playing the
same game and are learning what to do based on how well they do. We assume
that each agent is always playing a mixed strategy; the agent updates the prob-
abilities of the actions based on the payoffs received. For simplicity, we assume
a single state; the only thing that changes between times is the randomized
policies of the other agents.

442 10. Multiagent Systems

1: procedure PolicyImprovement(A, α, δ)
2: Inputs
3: A a set of actions
4: α step size for action estimate
5: δ step size for probability change

6: Local
7: n the number of elements of A
8: P[A] a probability distribution over A
9: Q[A] an estimate of the value of doing A

10: a best the current best action
11: n← |A|
12: P[A] assigned randomly such that P[a] > 0 and ∑a∈A P[a] = 1
13: Q[a]← 0 for each a ∈ A
14: repeat
15: select action a based on distribution P
16: do a
17: observe payoff
18: Q[a]← Q[a] + α(payoff −Q[a])
19: a best← arg max(Q)
20: P[a best]← P[a best] + n× δ
21: for each a′ ∈ A do
22: P[a′]← P[a′]− δ
23: if P[a′] < 0 then
24: P[a best]← P[a best] + P[a′]
25: P[a′]← 0
26: until termination

Figure 10.9: Learning to coordinate

The algorithm PolicyImprovement of Figure 10.9 gives a controller for a learn-
ing agent. It maintains its current stochastic policy in the P array and an esti-
mate of the payoff for each action in the Q array. The agent carries out an action
based on its current policy and observes the action’s payoff. It then updates its
estimate of the value of that action and modifies its current strategy by increas-
ing the probability of its best action.

In this algorithm, n is the number of actions (the number of elements of
A). First, it initializes P randomly so that it is a probability distribution; Q is
initialized arbitrarily to zero.

At each stage, the agent chooses an action a based on the current distribu-
tion P. It carries out the action a and observes the payoff it receives. It then
updates its estimate of the payoff from doing a. It is doing gradient descent
(page 149) with learning rate α to minimize the error in its estimate of the pay-
off of action a. If the payoff is more than its previous estimate, it increases its

10.4. Partially Observable Multiagent Reasoning 443

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability agent 2 chooses shopping

P
ro

b
a
b
ili

ty
 a

g
e
n
t
1
 c

h
o
o
s
e
s
 f
o
o
tb

a
ll

Figure 10.10: Learning for the football–shopping coordination example

estimate in proportion to the error. If the payoff is less than its estimate, it de-
creases its estimate.

It then computes a best, which is the current best action according to its
estimated Q-values. (Assume that, if there is more than one best action, one is
chosen at random to be a best.) It increases the probability of the best action by
(n− 1)δ and reduces the probability of the other actions by δ. The if condition
on line 23 is there to ensure that the probabilities are all non-negative and sum
to 1.

Even when P has some action with probability 0, it is useful to try that
action occasionally to update its current value. In the following examples, we
assume that the agent chooses a random action with probability 0.05 at each
step and otherwise chooses each action according to the probability of that
action in P.

An open-source Java applet that implements this learning controller is
available from the book’s web site.

Example 10.17 Figure 10.10 shows a plot of the learning algorithm for Ex-
ample 10.12 (page 437). This figure plots the relative probabilities for agent 1
choosing football and agent 2 choosing shopping for 7 runs of the learning al-
gorithm. Each line is one run. Each of the runs ends at the top-left corner or the
bottom-right corner. In these runs, the policies are initialized randomly, α = 0.1,
and δ = 0.01.

444 10. Multiagent Systems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Probability goalkeeper jumps right

P
ro

b
a
b
ili

ty
 k

ic
k
e
r

k
ic

k
s
 l
e
ft

1.0

1.0

Figure 10.11: Learning for the soccer penalty kick example

If the other agents are playing a fixed strategy (even if it is a stochastic
strategy), this algorithm converges to a best response to that strategy (as long
as α and δ are small enough, and as long as the agent randomly tries all of the
actions occasionally).

The following discussion assumes that all agents are using this learning
controller.

If there is a unique Nash equilibrium in pure strategies, and all of the agents
use this algorithm, they will converge to this equilibrium. Dominated strategies
will have their probability set to zero. In Example 10.15 (page 439), it will find
the Nash equilibrium. Similarly for the prisoner’s dilemma in Example 10.13
(page 437), it will converge to the unique equilibrium where both agents take.
Thus, this algorithm does not learn to cooperate, where cooperating agents will
both give in the prisoner’s dilemma to maximize their payoffs.

If there are multiple pure equilibria, this algorithm will converge to one of
them. The agents thus learn to coordinate. In the football–shopping game of
Example 10.12 (page 437), it will converge to one of the equilibria of both shop-
ping or both going to the football game. Which one it converges to depends on
the initial strategies.

If there is only a randomized equilibrium, as in the penalty kick game of
Example 10.9 (page 433), this algorithm tends to cycle around the equilibrium.

Example 10.18 Figure 10.11 shows a plot of two players using the learning al-
gorithm for Example 10.9 (page 433). This figure plots the relative probabilities
for the goalkeeper jumping right and the kicker kicking left for one run of the
learning algorithm. In this run, α = 0.1 and δ = 0.001. The learning algorithm
cycles around the equilibrium, never actually reaching the equilibrium.

10.5. Group Decision Making 445

Consider the two-agent competitive game where there is only a random-
ized Nash equilibrium. If an agent A is playing another agent, B, that is play-
ing a Nash equilibrium, it does not matter which action in its support set is
performed by agent A; they all have the same value to A. Thus, agent A will
tend to wander off the equilibrium. Note that, when A deviates from the equi-
librium strategy, the best response for agent B is to play deterministically. This
algorithm, when used by agent B eventually, notices that A has deviated from
the equilibrium and agent B changes its policy. Agent B will also deviate from
the equilibrium. Then agent A can try to exploit this deviation. When they are
both using this controller, each agents’s deviation can be exploited, and they
tend to cycle.

There is nothing in this algorithm to keep the agents on a randomized equi-
librium. One way to try to make agents not wander too far from an equilibrium
is to adopt a win or learn fast (WoLF) strategy: when the agent is winning it
takes small steps (δ is small), and when the agent is losing it takes larger steps
(δ is increased). While it is winning, it tends to stay with the same policy, and
while it is losing, it tries to move quickly to a better policy. To define winning, a
simple strategy is for an agent to see whether it is doing better than the average
payoff it has received so far.

Note that there is no perfect learning strategy. If an opposing agent knew
the exact strategy (whether learning or not) agent A was using, and could pre-
dict what agent A would do, it could exploit that knowledge.

10.5 Group Decision Making

Often groups of people have to make decisions about what the group will do.
Societies are the classic example, where voting is used to ascertain what the
group wants. It may seem that voting is a good way to determine what a group
wants, and when there is a clear most-preferred choice, it is. However, there
are major problems with voting when there is not a clear preferred choice, as
shown in the following example.

Example 10.19 Consider a purchasing agent that has to decide on a holiday
destination for a group of people, based on their preference. Suppose there are
three people, Alice, Bob and Cory, and three destinations, X, Y, and Z. Sup-
pose the agents have the following preferences, where �means strictly prefers
(page 373):

• Alice: X � Y � Z.
• Bob: Y � Z � X.
• Cory: Z � X � Y.

Given these preferences, in a pairwise vote, X � Y because two out of the three
prefer X to Y. Similarly, in the voting, Y � Z and Z � X. Thus, the preferences
obtained by voting are not transitive. This example is known as the Condorcet
paradox. Indeed, it is not clear what a group outcome should be in this case,
because it is symmetric between the outcomes.

446 10. Multiagent Systems

A social preference function gives a preference relation for a group. We
would like a social preference function to depend on the preferences of the
individuals in the group. It may seem that the Condorcet paradox is a problem
with pairwise voting; however, the following result shows that such paradoxes
occur with any social preference function.

Proposition 10.1. (Arrow’s impossibility theorem) If there are three or more out-
comes, the following properties cannot simultaneously hold for any social preference
function:

• The social preference function is complete and transitive (page 373).

• Every individual preference that is complete and transitive is allowed.

• If every individual prefers outcome o1 to o2, the group prefers o1 to o2.

• The group preference between outcomes o1 and o2 depends only on the individual
preferences on o1 and o2 and not on the individuals’ preferences on other outcomes.

• No individual gets to unilaterally decide the outcome (nondictatorship).

When building an agent that takes the individual preferences and gives a
social preference, we have to be aware that we cannot have all of these intuitive
and desirable properties. Rather than giving a group preference that has unde-
sirable properties, it may be better to point out to the individuals how their
preferences cannot be reconciled.

10.6 Mechanism Design

The earlier discussion on agents choosing their actions assumed that each agent
gets to play in a predefined game. The problem of mechanism design is to
design a game with desirable properties for various agents to play.

A mechanism specifies the actions available to each agent and the distri-
bution of outcomes of each action profile. We assume that agents have utilities
over outcomes.

There are two common properties that are desirable for a mechanism:

• A mechanism should be easy for agents to use. Given an agent’s utility, it
should be easy for the agent to determine what to do. A dominant strategy
is a strategy for an agent that is best for the agent, no matter what the other
agents do. If an agent has a dominant strategy, it can do its best action with-
out the complicated strategic reasoning described in the previous section. A
mechanism is dominant-strategy truthful if it has a dominant strategy for
each agent and, in the dominant strategy, an agent’s best strategy is to de-
clare its true preferences. In a mechanism that is dominant-strategy truthful,
an agent simply declares its true preferences; the agent cannot do better by
trying to manipulate the mechanism for its own gain.

• A mechanism should give the best outcome aggregated over all of the
agents. For example, a mechanism is economically efficient if the outcome
chosen is one that maximizes the sum of the utilities of the agents.

10.6. Mechanism Design 447

Example 10.20 Suppose you want to design a meeting scheduler, where users
input the times they are available and the scheduler chooses a time for the meet-
ing. One mechanism is for the users to specify when they are available or not,
and for the scheduler to select the time that has the most people available. A
second mechanism is for the users to specify their utility for the various times,
and the scheduler chooses the time that maximizes the sum of the utilities. Nei-
ther of these mechanisms is dominant-strategy truthful.

For the first mechanism, users may declare that they are unavailable at some
time to force a time they prefer. It is not clear that being available at a certain
time is well defined; at some stage, users must decide whether it is easier to
reschedule what they would have otherwise done at some particular time. Dif-
ferent people may have different thresholds as to what other activities can be
moved.

For the second mechanism, suppose there are three people, Alice, Bob,
and Cory, and they have to decide whether to meet on Monday, Tuesday, or
Wednesday. Suppose they have the following utilities for the meeting days:

Monday Tuesday Wednesday
Alice 0 8 10
Bob 3 4 0
Cory 11 7 6

The economically efficient outcome is to meet on Tuesday. However, if Alice
were to change her evaluation of Tuesday to be 2, the mechanism would choose
Wednesday. Thus, Alice has an incentive to misrepresent her values. It is not in
Alice’s interest to be honest.

Note that, if there is a mechanism that has dominant strategies, there is a
mechanism that is dominant-strategy truthful. This is known as the revelation
principle. To implement a dominant-strategy truthful mechanism, we can, in
principle, write a program that accepts from an agent its actual preferences
and provides to the original mechanism the optimal input for that agent. Es-
sentially, this program can optimally lie for the agent.

It turns out that it is essentially impossible to design a reasonable mech-
anism that is dominant-strategy truthful. As long as there are three or more
outcomes that are possible to be chosen, the only mechanisms with dominant
strategies have a dictator: there is one agent whose preferences determine the
outcome. This is the Gibbard–Satterthwaite theorem.

One way to obtain dominant-strategy truthful mechanisms is to introduce
money. Assume that money can be added to utility so that, for any two out-
comes o1 and o2, for each agent there is some (possibly negative) amount d
such that the agent is indifferent between the outcomes o1 and o2 + d. By allow-
ing an agent to be paid to accept an outcome they would not otherwise prefer,
or to pay for an outcome they want, we can ensure the agent does not gain by
lying.

In a VCG mechanism, or a Vickrey–Clarke–Groves mechanism, the agents
get to declare their values for each of the outcomes. The outcome that maxi-
mizes the sum of the declared values is chosen. Agents pay according to how

448 10. Multiagent Systems

much their participation affects the outcome. Agent i pays the sum of the value
for the other agents for the chosen outcome minus the sum of the values for
the other agents if i had not participated. The VCG mechanism is both eco-
nomically efficient and dominant-strategy truthful, assuming that agents only
care about their utility and not about other agents’ utilities or other agents’
payments.

Example 10.21 Consider the values of Example 10.20. Suppose the values
given can be interpreted as equivalent to dollars; for example, Alice is indif-
ferent between meeting on Monday or meeting on Tuesday and paying $8.00
(she is prepared to pay $7.99 to move the meeting from Monday to Tuesday,
but not $8.01). Given these declared values, Tuesday is chosen as the meeting
day. If Alice had not participated, Monday would have been chosen, and so
the other agents have a net loss of 3, so Alice has to pay $3.00. The net value
to her is then 5; the utility of 8 for the Tuesday minus the payment of 3. The
declarations, payments, and net values are given in the following table:

Monday Tuesday Wednesday Payment Net Value
Alice 0 8 10 3 5
Bob 3 4 0 1 3
Cory 11 7 6 0 7
Total 14 19 16

Consider what would happen if Alice had changed her evaluation of Tuesday
to 2. In this case, Wednesday would be the chosen day, but Alice would have
had to pay $8.00, with a new value of 2, and so would be worse off. Alice cannot
gain an advantage by lying to the mechanism.

One common mechanism for selling an item, or a set of items, is an auction.
A common auction type for selling a single item is an ascending auction, where
there is a current offering price for the item that increases by a predetermined
increment when the previous offering price has been met. Offering to buy the
item at the current price is called a bid. Only one person may put in a bid for
a particular price. The item goes to the person who put in the highest bid, and
the person pays the amount of that bid.

Consider a VCG mechanism for selling a single item. Suppose there are a
number of agents who each put in a bid for how much they value an item. The
outcome that maximizes the payoffs is to give the item to the person who had
the highest bid. If they had not participated, the item would have gone to the
second-highest bidder. Therefore, according to the VCG mechanism, the top
bidder should get the item and pay the value of the second-highest bid. This is
known as a second-price auction. The second price auction is equivalent (up
to bidding increments) to having an ascending auction, where people use a
proxy bid, and there is an agent to convert the proxy bid into real bids. Bidding
in a second-price auction is straightforward because the agents do not have to
do complex strategic reasoning. It is also easy to determine a winner and the
appropriate payment.

10.8. References and Further Reading 449

10.7 Review

This chapter has touched on some of the issues that arise with multiple agents.
The following are the main points to remember:

• A multiagent system consists of multiple agents who can act autonomously
and have their own utility over outcomes. The outcomes depend on the ac-
tions of all agents. Agents can compete, cooperate, coordinate, communicate,
and negotiate.

• The strategic form of a game specifies the expected outcome given con-
trollers for each agent.

• The extensive form of a game models agents’ actions and information
through time in terms of game trees.

• A multiagent decision network models probabilistic dependency and infor-
mation availability.

• Perfect information games can be solved by backing up values in game trees
or searching the game tree using minimax with α-β pruning.

• In partially observable domains, sometimes it is optimal to act stochastically.
• A Nash equilibrium is a strategy profile for each agent such that no agent

can increase its utility by unilaterally deviating from the strategy profile.
• Agents can learn to coordinate by playing the same game repeatedly, but it

is difficult to learn a randomized strategy.
• By introducing payments, it is possible to design a mechanism that is

dominant-strategy truthful and economically efficient.

10.8 References and Further Reading

For overviews of multiagent systems see Shoham and Leyton-Brown [2008],
Stone and Veloso [2000], Wooldridge [2002], and Weiss [1999]. Nisan, Rough-
garden, Tardos, and Vazirani [2007] overview current research frontiers in al-
gorithmic game theory.

Multiagent decision networks are based on the MAIDs of Koller and Milch
[2003].

Minimax with α-β pruning was first published by Hart and Edwards [1961].
Knuth and Moore [1975] and Pearl [1984] analyze α-β pruning and other meth-
ods for searching game trees. Ballard [1983] discusses how minimax can be
combined with chance nodes.

The Deep Blue chess computer is described by Campbell, Hoane Jr., and
Hse [2002].

The learning of games and the WoLF strategy is based on Bowling and
Veloso [2002].

Mechanism design is described by Shoham and Leyton-Brown [2008],
Nisan [2007] and in microeconomics textbooks such as Mas-Colell, Whinston,
and Green [1995]. Ordeshook [1986] has a good description of group decision
making and game theory.

450 10. Multiagent Systems

10.9 Exercises

Exercise 10.1 For the hawk–dove game of Example 10.11 (page 436), where
D > 0 and R > 0, each agent is trying to maximize its utility. Is there a Nash
equilibrium with a randomized strategy? What are the probabilities? What is the
expected payoff to each agent? (These should be expressed as functions of R and
D). Show your calculation.

Exercise 10.2 In Example 10.12 (page 437), what is the Nash equilibrium with
randomized strategies? What is the expected value for each agent in this equilib-
rium?

Exercise 10.3 In the sequential prisoner’s dilemma (page 438), suppose there is
a discount factor of γ, which means there is a probability γ of stopping at each
stage. Is tit-for-tat a Nash equilibrium for all values of γ? If so, prove it. If not, for
which values of γ is it a Nash equilibrium?

Chapter 11

Beyond Supervised Learning

Learning without thought is labor lost; thought without learning is per-
ilous.

Confucius (551 BC – 479 BC), The Confucian Analects

This chapter goes beyond the supervised learning of Chapter 7. It covers learn-
ing richer representation and learning what to do; this enables learning to be
combined with reasoning. First we consider unsupervised learning in which
the classifications are not given in the training set. This is a special case of
learning belief network, which is considered next. Finally, we consider rein-
forcement learning, in which an agent learns how to act while interacting with
an environment.

11.1 Clustering

Chapter 7 considered supervised learning, where the target features that must
be predicted from input features are observed in the training data. In cluster-
ing or unsupervised learning, the target features are not given in the training
examples. The aim is to construct a natural classification that can be used to
cluster the data.

The general idea behind clustering is to partition the examples into clusters
or classes. Each class predicts feature values for the examples in the class. Each
clustering has a prediction error on the predictions. The best clustering is the
one that minimizes the error.

Example 11.1 A diagnostic assistant may want to group the different treat-
ments into groups that predict the desirable and undesirable effects of the treat-
ment. The assistant may not want to give a patient a drug because similar drugs
may have had disastrous effects on similar patients.

451

452 11. Beyond Supervised Learning

An intelligent tutoring system may want to cluster students’ learning be-
havior so that strategies that work for one member of a class may work for
other members.

In hard clustering, each example is placed definitively in a class. The class
is then used to predict the feature values of the example. The alternative to
hard clustering is soft clustering, in which each example has a probability dis-
tribution over its class. The prediction of the values for the features of an ex-
ample is the weighted average of the predictions of the classes the example is
in, weighted by the probability of the example being in the class.

11.1.1 Expectation Maximization

The expectation maximization (EM) algorithms can be used for clustering.
Given the data, EM learns a theory that specifies how each example should
be classified and how to predict feature values for each class. The general idea
is to start with a random theory or randomly classified data and to repeat two
steps until they converge on a coherent theory:

E: Classify the data using the current theory.

M: Generate the best theory using the current classification of the data.

Step E generates the expected classification for each example. Step M generates
the most likely theory given the classified data. The M step is the problem of
supervised learning. As an iterative algorithm, it can get stuck in local optima;
different initializations can affect the theory found.

The next two sections consider two instances of the EM algorithm.

11.1.2 k-Means

The k-means algorithm is used for hard clustering. The training examples and
the number of classes, k, are given as input. The output is a set of k classes,
a prediction of a value for each feature for each class, and an assignment of
examples to classes.

The algorithm assumes that each feature is given on a numerical scale, and
it tries to find classes that minimize the sum-of-squares error when the pre-
dicted values for each example are derived from the class to which it belongs.

Suppose E is the set of all examples, and the input features are X1, . . . , Xn.
Let val(e, Xj) be the value of input feature Xj for example e. We assume that
these are observed. We will associate a class with each integer i ∈ {1, . . . , k}.

The k-means algorithm outputs

• a function class : E → {1, . . . , k}, which means that class(e) is the classifi-
cation of example e. If class(e) = i, we say that e is in class i.
• a pval function such that for each class i ∈ {1, . . . , k}, and for each feature

Xj, pval(i, Xj) is the prediction for each example in class i for feature Xj.

11.1. Clustering 453

Given a particular class function and pval function the sum-of-squares error
is

∑
e∈E

n

∑
j=1

(
pval(class(e), Xj)− val(e, Xj)

)2 .

The aim is to find a class function and a pval function that minimize the sum-
of-squares error.

As shown in Proposition 7.1 (page 294), to minimize the sum-of-squares er-
ror, the prediction of a class should be the mean of the prediction of the exam-
ples in the class. Unfortunately, there are too many partitions of the examples
into k classes to search through to find the optimal partitioning.

The k-means algorithm iteratively improves the sum-of-squares error. Ini-
tially, it randomly assigns the examples to the classes. Then it carries out the
following two steps:

M: For each class i and feature Xj, assign to pval(i, Xj) the mean value of
val(e, Xj) for each example e in class i:

pval(i, Xj)←
∑e:class(e)=i val(e, Xj)
|{e : class(e) = i}| ,

where the denominator is the number of examples in class i.

E: Reassign each example to a class: assign each e to the class i that minimizes

n

∑
j=1

(
pval(i, Xj)− val(e, Xj)

)2 .

These two steps are repeated until the second step does not change the assign-
ment of any example.

An assignment of examples to classes is stable if running both the M step
and the E step does not change the assignment. Note that any permutation of
the labels of a stable assignment is also a stable assignment.

This algorithm will eventually converge to a stable local minimum. This is
easy to see because the sum-of-squares error keeps reducing and there are only
a finite number of reassignments. This algorithm often converges in a few iter-
ations. It is not guaranteed to converge to a global minimum. To try to improve
the value, it can be run a number of times with different initial assignments.

Example 11.2 An agent has observed the following 〈X, Y〉 pairs:

(0.7, 5.1), (1.5, 6), (2.1, 4.5), (2.4, 5.5), (3, 4.4), (3.5, 5), (4.5, 1.5),
(5.2, 0.7), (5.3, 1.8), (6.2, 1.7), (6.7, 2.5), (8.5, 9.2), (9.1, 9.7), (9.5, 8.5).

These data points are plotted in part (a) of Figure 11.1 (on the next page). Sup-
pose the agent wants to cluster the data points into two classes.

454 11. Beyond Supervised Learning

Figure 11.1: A trace of the k-means algorithm for k = 2 for Example 11.2

In part (b), the points are randomly assigned into the classes; one class is
depicted as + and the other as ×. The mean of the points marked with + is
〈4.6, 3.65〉. The mean of the points marked with × is 〈5.2, 6.15〉.

In part (c), the points are reassigned according to the closer of the two
means. After this reassignment, the mean of the points marked with + is then
〈3.96, 3.27〉. The mean of the points marked with × is 〈7.15, 8.34〉.

In part (d), the points are reassigned to the closest mean. This assignment
is stable in that no further reassignment will change the assignment of the
examples.

A different initial assignment to the points can give different clustering.
One clustering that arises in this data set is for the lower points (those with a
Y-value less than 3) to be in one class, and for the other points to be in another
class.

Running the algorithm with three classes would separate the data into the
top-right cluster, the left-center cluster, and the lower cluster.

11.1. Clustering 455

Model Data ➪ Probabilities

C

X1 X2 X3 X4

X1 X2 X3 X4

t f t t
f t t f
f f t t

· · ·

P(C)
P(X1|C)
P(X2|C)
P(X3|C)
P(X4|C)

Figure 11.2: EM algorithm: Bayesian classifier with hidden class

One problem with the k-means algorithm is the relative scale of the dimen-
sions. For example, if one feature is height, another feature is age, and another
is a binary feature, you must scale the different domains so that they can be
compared. How they are scaled relative to each other affects the classifica-
tion.

To find an appropriate number of classes, an agent can search over the num-
ber of classes. Note that k + 1 classes can always result in a lower error than k
classes as long as more than k different values are involved. A natural number
of classes would be a value k when there is a large reduction in error going from
k− 1 classes to k classes, but in which there is only gradual reduction in error
for larger values. Note that the optimal division into three classes, for example,
may be quite different from the optimal division into two classes.

11.1.3 EM for Soft Clustering

The EM algorithm can be used for soft clustering. Intuitively, for clustering,
EM is like the k-means algorithm, but examples are probabilistically in classes,
and probabilities define the distance metric. We assume here that the features
are discrete.

As in the k-means algorithm, the training examples and the number of
classes, k, are given as input.

When clustering, the role of the categorization is to be able to predict
the values of the features. To use EM for soft clustering, we can use a naive
Bayesian classifier (page 310), where the input features probabilistically de-
pend on the class and are independent of each other given the class. The class
variable has k values, which can be just {1, . . . , k}.

Given the naive Bayesian model and the data, the EM algorithm produces
the probabilities needed for the classifier, as shown in Figure 11.2. The class
variable is C in this figure. The probability distribution of the class and the
probabilities of the features given the class are enough to classify any new
example.

To initialize the EM algorithm, augment the data with a class feature, C,
and a count column. Each original tuple gets mapped into k tuples, one for
each class. The counts for these tuples are assigned randomly so that they

456 11. Beyond Supervised Learning

X1 X2 X3 X4 C count
...

...
...

...
...

...
t f t t 1 0.4
t f t t 2 0.1
t f t t 3 0.5
...

...
...

...
...

...

P(C)
P(X1|C)
P(X2|C)
P(X3|C)
P(X4|C)

M-step

E-step

Figure 11.3: EM algorithm for unsupervised learning

sum to 1. For example, for four features and three classes, we could have the
following:

X1 X2 X3 X4
...

...
...

...
t f t t
...

...
...

...

−→

X1 X2 X3 X4 C Count
...

...
...

...
...

...
t f t t 1 0.4
t f t t 2 0.1
t f t t 3 0.5
...

...
...

...
...

...

If the set of training examples contains multiple tuples with the same values
on the input features, these can be grouped together in the augmented data. If
there are m tuples in the set of training examples with the same assignment of
values to the input features, the sum of the counts in the augmented data with
those feature values is equal to m.

The EM algorithm, illustrated in Figure 11.3, maintains both the probability
tables and the augmented data. In the E step, it updates the counts, and in the
M step it updates the probabilities.

The algorithm is presented in Figure 11.4. In this figure, A[X1, . . . , Xn, C]
contains the augmented data; Mi[Xi, C] is the marginal probability, P(Xi, C),
derived from A; and Pi[Xi, C] is the conditional probability P(Xi|C). It repeats
two steps:

• E step: Update the augmented data based on the probability distribution.
Suppose there are m copies of the tuple 〈X1 = v1, . . . , Xn = vn〉 in the origi-
nal data. In the augmented data, the count associated with class c, stored in
A[v1, . . . , vn, c], is updated to

m× P(C = c|X1 = v1, . . . , Xn = vn).

11.1. Clustering 457

1: procedure EM(X, D, k)
2: Inputs
3: X set of features X = {X1, . . . , Xn}
4: D data set on features {X1, . . . , Xn}
5: k number of classes
6: Output
7: P(C), P(Xi|C) for each i ∈ {1 : n}, where C = {1, . . . , k}.
8: Local
9: real array A[X1, . . . , Xn, C]

10: real array P[C]
11: real arrays Mi[Xi, C] for each i ∈ {1 : n}
12: real arrays Pi[Xi, C] for each i ∈ {1 : n}
13: s := number of tuples in D
14: Assign P[C], Pi[Xi, C] arbitrarily
15: repeat
16: � E Step
17: for each assignment 〈X1 = v1, . . . , Xn = vn〉 ∈ D do
18: let m← |〈X1 = v1, . . . , Xn = vn〉 ∈ D|
19: for each c ∈ {1 : k} do
20: A[v1, . . . , vn, c]← m× P(C = c|X1 = v1, . . . , Xn = vn)
21: � M Step
22: for each i ∈ {1 : n} do
23: Mi[Xi, C] = ∑X1,...,Xi−1,Xi+1,...,Xn

A[X1, . . . , Xn, C]

24: Pi[Xi, C] =
Mi[Xi, C]

∑C Mi[Xi, C]
25: P[C] = ∑X1,...,Xn

A[X1, . . . , Xn, C]/s
26: until termination

Figure 11.4: EM for unsupervised learning

Note that this step involves probabilistic inference, as shown below.

• M step: Infer the maximum-likelihood probabilities for the model from the
augmented data. This is the same problem as learning probabilities from
data (page 296).

The EM algorithm presented starts with made-up probabilities. It could
have started with made-up counts. EM will converge to a local maximum of
the likelihood of the data. The algorithm can terminate when the changes are
small enough.

This algorithm returns a probabilistic model, which can be used to classify
an existing or new example. The way to classify a new example, and the way

458 11. Beyond Supervised Learning

to evaluate line 20, is to use the following:

P(C = c|X1 = v1, . . . , Xn = vn)

=
P(C = c)×∏n

i=1 P(Xi = vi|C = c)
∑c′ P(C = c′)×∏n

i=1 P(Xi = vi|C = c′)
.

The probabilities in this equation are specified as part of the model learned.
Notice the similarity with the k-means algorithm. The E step (probabilisti-

cally) assigns examples to classes, and the M step determines what the classes
predict.

Example 11.3 Consider Figure 11.3 (page 456). Let E′ be the augmented ex-
amples (i.e., with C and the count columns). Suppose there are m examples.
Thus, at all times the sum of the counts in E′ is m.

In the M step, P(C = i) is set to the proportion of the counts with C = i,
which is

∑X1,...,Xn A[X1, . . . , Xn, C = i]
m

,

which can be computed with one pass through the data.
M1[X1, C], for example, becomes

∑
X2,X3,X4

A[X1, . . . , X4, C].

It is possible to update all of the Mi[Xi, C] arrays with one pass though the data.
See Exercise 11.3 (page 486). The conditional probabilities represented by the Pi
arrays can be computed from the Mi arrays by normalizing.

The E step updates the counts in the augmented data. It will replace the 0.4
in Figure 11.3 (page 456) with

P(C = 1|x1 ∧ ¬x2 ∧ x3 ∧ x4)

=
P(x1|C = 1)P(¬x2|C = 1)P(x3|C = 1)P(x4|C = 1)P(C = 1)

∑3
i=1 P(x1|C = i)P(¬x2|C = i)P(x3|C = i)P(x4|C = i)P(C = i)

.

Each of these probabilities is provided as part of the learned model.

Note that, as long as k > 1, EM virtually always has multiple local maxima.
In particular, any permutation of the class labels of a local maximum will also
be a local maximum.

11.2 Learning Belief Networks

A belief network (page 235) gives a probability distribution over a set of ran-
dom variables. We cannot always expect an expert to be able to provide an
accurate model; often we want to learn a network from data.

Learning a belief network from data can mean many different things de-
pending on how much prior information is known and how complete the data

11.2. Learning Belief Networks 459

Model Data ➪ Probabilities

A B

E

C D

A B C D E
t f t t f
f t t t t
t t f t f

· · ·

P(A)
P(B)
P(E|A, B)
P(C|E)
P(D|E)

Figure 11.5: From the model and the data, learning the probabilities

set is. In the simplest case, the structure is given, all of the variables are ob-
served in each example, and only the probabilities must be learned. At the
other extreme, you may not even know what variables should be hypothe-
sized to account for the data, and there may be missing data, which cannot be
assumed to be missing at random.

11.2.1 Learning the Probabilities

The simplest case is when we are given the structure of the model and all of
the variables have been observed. In this case, we must learn only the proba-
bilities. This is very similar to the case of learning probabilities in Section 7.3.3
(page 309).

Each conditional probability distribution can be learned separately using
the empirical data and pseudocounts (page 296) or in terms of the Dirichlet
distribution (page 337).

Example 11.4 Figure 11.5 shows a typical example. We are given the model
and the data, and we must infer the probabilities.

For example, one of the elements of P(E|AB) is

P(E = t|A = t∧ B = f)

=
(#examples: E = t∧A = t∧ B = f) + c1

(#examples: A = t∧ B = f) + c
,

where c1 is a pseudocount of the number of cases where E = t∧A = t∧ B = f ,
and c is a pseudocount of the number of cases where A = t ∧ B = f . Note that
c1 ≤ c.

If a variable has many parents, using the counts and pseudo counts can suf-
fer from overfitting (page 303). Overfitting is most severe when there are few
examples for some of the combinations of the parent variables. In that case, the
techniques of Chapter 7 can be used: for example, learning decision trees with
probabilities at the leaves, sigmoid linear functions, or neural networks. To use
supervised learning methods for learning conditional probabilities of a vari-
able X given its parents, the parents become the input nodes and X becomes the

460 11. Beyond Supervised Learning

Model Data ➪ Probabilities

A B

E

C D

A B C D
t f t t
f t t t
t t f t

· · ·

P(A)
P(B)
P(E|A, B)
P(C|E)
P(D|E)

Figure 11.6: Deriving probabilities with missing data

target feature. Decision trees can be used for arbitrary discrete variables. Sig-
moid linear functions and neural networks can represent a conditional proba-
bility of a binary variable given its parents. For non-binary variables, indicator
variables (page 290) can be used.

11.2.2 Unobserved Variables

The next simplest case is one in which the model is given, but not all variables
are observed. A hidden variable or a latent variable is a variable in the belief
network models whose value is not observed. That is, there is no column in the
data corresponding to that variable.

Example 11.5 Figure 11.6 shows a typical case. Assume that all of the vari-
ables are binary. The model contains a variable E that is not in the database.
The data set does not contain the variable E, but the model does. We want to
learn the parameters of the model that includes the hidden variable E. There are
10 parameters to learn.

Note that, if E were missing from the model, the algorithm would have to
learn P(A), P(B), P(C|AB), P(D|ABC), which has 14 parameters. The reason to
introduce hidden variables is to make the model simpler and, therefore, less
prone to overfitting.

The EM algorithm for learning belief networks with hidden variables is es-
sentially the same as the EM algorithm for clustering (page 455). The E step
can involve more complex probabilistic inference as, for each example, it infers
the probability of the hidden variable(s) given the observed variables for that
example. The M step of inferring the probabilities of the model from the aug-
mented data is the same as the fully observable case discussed in the previous
section, but, in the augmented data, the counts are not necessarily integers.

11.2.3 Missing Data

Data can be incomplete in ways other than having an unobserved variable. A
data set can simply be missing the values of some variables for some of the
tuples. When some of the values of the variables are missing, one must be very

11.2. Learning Belief Networks 461

M-step

E-step

A B C D E count
t f t t t 0.71
t f t t f 0.29
f f t t f 4.2

...
...

...
...

...
...

f t t t f 2.3

P(A)

P(B)

P(E | A, B)

P(C | E)

P(D| E)

Figure 11.7: EM algorithm for belief networks with hidden variables

careful in using the data set because the missing data may be correlated with
the phenomenon of interest.

Example 11.6 Suppose you have a (claimed) treatment for a disease that does
not actually affect the disease or its symptoms. All it does is make sick people
sicker. If you were to randomly assign patients to the treatment, the sickest
people would drop out of the study, because they become too sick to partici-
pate. The sick people who took the treatment would drop out at a faster rate
than the sick people who did not take the treatment. Thus, if the patients for
whom the data is missing are ignored, it looks like the treatment works; there
are fewer sick people in the set of those who took the treatment and remained
in the study!

If the data is missing at random, the missing data can be ignored. How-
ever, “missing at random” is a strong assumption. In general, an agent should
construct a model of why the data is missing or, preferably, it should go out
into the world and find out why the data is missing.

11.2.4 Structure Learning

Suppose we have complete data and no hidden variables, but we do not know
the structure of the belief network. This is the setting for structure learning of
belief networks.

There are two main approaches to structure learning:

• The first is to use the definition of a belief network in terms of conditional
independence (page 235). Given a total ordering of variables, make the par-
ents of a variable X be a subset of the variables that are predecessors of X
in the total ordering that render the other variables independent of X. This

462 11. Beyond Supervised Learning

approach has two main challenges: the first is to determine the best total or-
dering; the second is to find a way to measure independence. It is difficult
to determine conditional independence when there is limited data.

• The second method is to have a score for networks, for example, using the
MAP model (page 321), which takes into account fit to the data and model
complexity. Given such a measure, you can search for the structure that min-
imizes this error.

In this section we concentrate on the second method, often called a search and
score method.

Assume that the data is a set E of examples, where each example has a value
for each variable.

The aim of the search and score method is to choose a model that maximizes

P(model|data) ∝ P(data|model)P(model).

The likelihood, P(data|model), is the product of the probability of each exam-
ple. Using the product decomposition, the product of each example given the
model is the product of the probability of each variable given its parents in the
model. Thus,

P(data|model)P(model)
= (∏

e∈E
P(e|model))P(model)

= (∏
e∈E

∏
Xi

Pe
model(Xi|par(Xi, model)))P(model),

where par(Xi, model) denotes the parents of Xi in the model, and Pe
model(·) de-

notes the probability of example e as specified in the model.
This is maximized when its logarithm is maximized. When taking loga-

rithms, products become sums:

log P(data|model) + log P(model)
= ∑

e∈E
∑
Xi

log Pe
model(Xi|par(Xi, model))) + log P(model).

To make this approach feasible, assume that the prior probability of the model
decomposes into components for each variable. That is, we assume probability
of the model decomposes into a product of probabilities of local models for
each variable. Let model(Xi) be the local model for variable Xi.

Thus, we want to maximize the following:

∑
e∈E

∑
Xi

log Pe
model(Xi|par(Xi, model))) + ∑

Xi

log P(model(Xi))

= ∑
Xi

(∑
e∈E

log Pe
model(Xi|par(Xi, model))) + ∑

Xi

log P(model(Xi))

= ∑
Xi

(∑
e∈E

log Pe
model(Xi|par(Xi, model)) + log P(model(Xi)).

11.3. Reinforcement Learning 463

We could optimize this by optimizing each variable separately, except for
the fact that the parent relation is constrained by the acyclic condition of the be-
lief network. However, given a total ordering of the variables, we have a clas-
sification problem in which we want to predict the probability of each variable
given the predecessors in the total ordering. To represent P(Xi|par(Xi, model))
we could use, for example, a decision tree with probabilities of the leaves [as
described in Section 7.5.1 (page 321)] or learn a squashed linear function. Given
the preceding score, we can search over total orderings of the variables to max-
imize this score.

11.2.5 General Case of Belief Network Learning

The general case is with unknown structure, hidden variables, and missing
data; we do not even know what variables exist. Two main problems exist. The
first is the problem of missing data discussed earlier. The second problem is
computational; although there is a well-defined search space, it is prohibitively
large to try all combinations of variable ordering and hidden variables. If one
only considers hidden variables that simplify the model (as seems reasonable),
the search space is finite, but enormous.

One can either select the best model (e.g, the model with the highest a pos-
teriori probability) or average over all models. Averaging over all models gives
better predictions, but it is difficult to explain to a person who may have to un-
derstand or justify the model.

The problem with combining this approach with missing data seems to be
much more difficult and requires more knowledge of the domain.

11.3 Reinforcement Learning

Imagine a robot that can act in a world, receiving rewards and punishments
and determining from these what it should do. This is the problem of rein-
forcement learning. This chapter only considers fully observable, single-agent
reinforcement learning [although Section 10.4.2 (page 441) considered a simple
form of multiagent reinforcement learning].

We can formalize reinforcement learning in terms of Markov decision pro-
cesses (page 399), but in which the agent, initially, only knows the set of possi-
ble states and the set of possible actions. Thus, the dynamics, P(s′|a, s), and the
reward function, R(s, a, s′), are initially unknown. An agent can act in a world
and, after each step, it can observe the state of the world and observe what
reward it obtained. Assume the agent acts to achieve the optimal discounted
reward (page 402) with a discount factor γ.

Example 11.7 Consider the tiny reinforcement learning problem shown in
Figure 11.8 (on the next page). There are six states the agent could be in, labeled
as s0, . . . , s5. The agent has four actions: UpC, Up, Left, Right. That is all the agent

464 11. Beyond Supervised Learning

-100

s4 s5

s2 s3

s0 s1

+10

Figure 11.8: The environment of a tiny reinforcement learning problem

knows before it starts. It does not know how the states are configured, what the
actions do, or how rewards are earned.

Figure 11.8 shows the configuration of the six states. Suppose the actions
work as follows:

upC (for “up carefully”) The agent goes up, except in states s4 and s5, where
the agent stays still, and has a reward of −1.

right The agent moves to the right in states s0, s2, s4 with a reward of 0 and
stays still in the other states, with a reward of −1.

left The agent moves one state to the left in states s1, s3, s5. In state s0, it stays
in state s0 and has a reward of −1. In state s2, it has a reward of −100 and
stays in state s2. In state s4, it gets a reward of 10 and moves to state s0.

up With a probability of 0.8 it acts like upC, except the reward is 0. With prob-
ability 0.1 it acts as a left, and with probability 0.1 it acts as right.

Suppose there is a discounted reward (page 402) with a discount of 0.9. This can
be translated as having a 0.1 chance of the agent leaving the game at any step,
or as a way to encode that the agent prefers immediate rewards over future
rewards.

Example 11.8 Figure 11.9 shows the domain of a more complex game. There
are 25 grid locations the agent could be in. A prize could be on one of the cor-
ners, or there could be no prize. When the agent lands on a prize, it receives

P0

M

P2

R

M

M

M

P1

M

P3

Figure 11.9: The environment of a grid game

11.3. Reinforcement Learning 465

a reward of 10 and the prize disappears. When there is no prize, for each time
step there is a probability that a prize appears on one of the corners. Monsters
can appear at any time on one of the locations marked M. The agent gets dam-
aged if a monster appears on the square the agent is on. If the agent is already
damaged, it receives a reward of −10. The agent can get repaired (i.e., so it is
no longer damaged) by visiting the repair station marked R.

In this example, the state consists of four components: 〈X, Y, P, D〉, where
X is the X-coordinate of the agent, Y is the Y-coordinate of the agent, P is the
position of the prize (P = 0 if there is a prize on P0, P = 1 if there is a prize on
P1, similarly for 2 and 3, and P = 4 if there is no prize), and D is Boolean and
is true when the agent is damaged. Because the monsters are transient, it is not
necessary to include them as part of the state. There are thus 5× 5× 5× 2 = 250
states. The environment is fully observable, so the agent knows what state it is
in. But the agent does not know the meaning of the states; it has no idea initially
about being damaged or what a prize is.

The agent has four actions: up, down, left, and right. These move the agent
one step – usually one step in the direction indicated by the name, but some-
times in one of the other directions. If the agent crashes into an outside wall or
one of the interior walls (the thick lines near the location R), it remains where
is was and receives a reward of −1.

The agent does not know any of the story given here. It just knows there are
250 states and 4 actions, which state it is in at every time, and what reward was
received each time.

This game is simple, but it is surprisingly difficult to write a good controller
for it. There is a Java applet available on the book web site that you can play
with and modify. Try to write a controller by hand for it; it is possible to write
a controller that averages about 500 rewards for each 1,000 steps. This game is
also difficult to learn, because visiting R is seemingly innocuous until the agent
has determined that being damaged is bad, and that visiting R makes it not
damaged. It must stumble on this while trying to collect the prizes. The states
where there is no prize available do not last very long. Moreover, it has to learn
this without being given the concept of damaged; all it knows, initially, is that
there are 250 states and 4 actions.

Reinforcement learning is difficult for a number of reasons:

• The blame attribution problem is the problem of determining which action
was responsible for a reward or punishment. The responsible action may
have occurred a long time before the reward was received. Moreover, not a
single action but rather a combination of actions carried out in the appro-
priate circumstances may be responsible for the reward. For example, you
could teach an agent to play a game by rewarding it when it wins or loses; it
must determine the brilliant moves that were needed to win. You may try to
train a dog by saying “bad dog” when you come home and find a mess. The
dog has to determine, out of all of the actions it did, which of them were the
actions that were responsible for the reprimand.

• Even if the dynamics of the world does not change, the effect of an action of
the agent depends on what the agent will do in the future. What may initially

466 11. Beyond Supervised Learning

seem like a bad thing for the agent to do may end up being an optimal action
because of what the agent does in the future. This is common among plan-
ning problems, but it is complicated in the reinforcement learning context
because the agent does not know, a priori, the effects of its actions.

• The explore–exploit dilemma: if the agent has worked out a good course
of actions, should it continue to follow these actions (exploiting what it has
determined) or should it explore to find better actions? An agent that never
explores may act forever in a way that could have been much better if it had
explored earlier. An agent that always explores will never use what it has
learned. This dilemma is discussed further in Section 11.3.4 (page 472).

11.3.1 Evolutionary Algorithms

One way to solve reinforcement algorithms is to treat this as an optimization
problem (page 144), with the aim of selecting a policy that maximizes the ex-
pected reward collected. One way to do this via policy search. The aim is to
search through the space of all policies to find the best policy. A policy is a con-
troller (page 48) that can be evaluated by running it in the agent acting in the
environment.

Policy search is often solved as a stochastic local search algorithm
(page 134) by searching in the space of policies. A policy can be evaluated by
running it in the environment a number of times.

One of the difficulties is in choosing a representation of the policy. Starting
from an initial policy, the policy can be repeatedly evaluated in the environ-
ment and iteratively improved. This process is called an evolutionary algo-
rithm because the agent, as a whole, is evaluated on how well it survives. This
is often combined with genetic algorithms (page 142), which take us one step
closer to the biological analogy of competing agents mutating genes. The idea
is that crossover provides a way to combine the best features of policies.

Evolutionary algorithms have a number of issues. The first is the size of
the state space. If there are n states and m actions, there are mn policies. For
example, for the game described in Example 11.7 (page 463), there are 46 =
4, 096 different policies. For the game of Example 11.8 (page 464), there are 250
states, and so 4250 ≈ 10150 policies. This is a very small game, but it has more
policies than there are particles in the universe.

Second, evolutionary algorithms use experiences very wastefully. If an
agent was in state s2 of Example 11.7 (page 463) and it moved left, you would
like it to learn that it is bad to go left from state s2. But evolutionary algorithms
wait until the agent has finished and judge the policy as a whole. Stochastic
local search will randomly try doing something else in state s2 and so may
eventually determine that that action was not good, but it is very indirect. Ge-
netic algorithms are slightly better in that the policies that have the agent going
left in state s2 will die off, but again this is very indirect.

Third, the performance of evolutionary algorithms can be very sensitive
to the representation of the policy. The representation for a genetic algorithm

11.3. Reinforcement Learning 467

should be such that crossover preserves the good parts of the policy. The rep-
resentations are often tuned for the particular domain.

An alternative pursued in the rest of this chapter is to learn after every
action. The components of the policy are learned, rather than the policy as a
whole. By learning what do in each state, we can make the problem linear in
the number of states rather than exponential in the number of states.

11.3.2 Temporal Differences

To understand how reinforcement learning works, first consider how to aver-
age experiences that arrive to an agent sequentially.

Suppose there is a sequence of numerical values, v1, v2, v3, . . . , and the goal
is to predict the next value, given all of the previous values. One way to do
this is to have a running approximation of the expected value of the v’s. For
example, given a sequence of students’ grades and the aim of predicting the
next grade, a reasonable prediction is to predict the average grade.

Let Ak be an estimate of the expected value based on the first k data points
v1, . . . , vk. A reasonable estimate is the sample average:

Ak =
v1 + · · ·+ vk

k
.

Thus,

kAk = v1 + · · ·+ vk−1 + vk

= (k− 1)Ak−1 + vk.

Dividing by k gives

Ak =
(

1− 1
k

)
Ak−1 +

vk

k
.

Let αk = 1
k ; then

Ak = (1− αk)Ak−1 + αkvk

= Ak−1 + αk(vk −Ak−1). (11.1)

The difference, vk−Ak−1, is called the temporal difference error or TD error; it
specifies how different the new value, vk, is from the old prediction, Ak−1. The
old estimate, Ak−1, is updated by αk times the TD error to get the new estimate,
Ak. The qualitative interpretation of the temporal difference formula is that if
the new value is higher than the old prediction, increase the predicted value;
if the new value is less than the old prediction, decrease the predicted value.
The change is proportional to the difference between the new value and the old
prediction. Note that this equation is still valid for the first value, k = 1.

This analysis assumes that all of the values have an equal weight. How-
ever, suppose you are keeping an estimate of the expected value of students’
grades. If schools start giving higher grades, the newer values are more useful

468 11. Beyond Supervised Learning

for the estimate of the current situation than older grades, and so they should
be weighted more in predicting new grades.

In reinforcement learning, the latter values of vi (i.e., the more recent values)
are more accurate than the earlier values and should be weighted more. One
way to weight later examples more is to use Equation (11.1), but with α as
a constant (0 < α ≤ 1) that does not depend on k. Unfortunately, this does
not converge to the average value when variability exists in the values in the
sequence, but it can track changes when the underlying process generating the
values changes.

You could reduce α more slowly and potentially have the benefits of both
approaches: weighting recent observations more and still converging to the
average. You can guarantee convergence if

∞

∑
k=1

αk = ∞ and
∞

∑
k=1

α2
k < ∞.

The first condition is to ensure that random fluctuations and initial conditions
get averaged out, and the second condition guarantees convergence.

Note that guaranteeing convergence to the average is not compatible with
being able to adapt to make better predictions when the underlying process
generating the values keeps changing.

For the rest of this chapter, α without a subscript is assumed to be a con-
stant. With a subscript it is a function of the number of cases that have been
combined for the particular estimate.

11.3.3 Q-learning

In Q-learning and related algorithms, an agent tries to learn the optimal policy
from its history of interaction with the environment. A history of an agent is a
sequence of state-action-rewards:

〈s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, r4, s4 . . . 〉 ,

which means that the agent was in state s0 and did action a0, which resulted
in it receiving reward r1 and being in state s1; then it did action a1, received
reward r2, and ended up in state s2; then it did action a2, received reward r3,
and ended up in state s3; and so on.

We treat this history of interaction as a sequence of experiences, where an
experience is a tuple〈

s, a, r, s′
〉

,

which means that the agent was in state s, it did action a, it received reward
r, and it went into state s′. These experiences will be the data from which the
agent can learn what to do. As in decision-theoretic planning, the aim is for the
agent to maximize its value, which is usually the discounted reward (page 402).

11.3. Reinforcement Learning 469

1: controller Q-learning(S, A, γ, α)
2: Inputs
3: S is a set of states
4: A is a set of actions
5: γ the discount
6: α is the step size

7: Local
8: real array Q[S, A]
9: previous state s

10: previous action a

11: initialize Q[S, A] arbitrarily
12: observe current state s
13: repeat
14: select and carry out an action a
15: observe reward r and state s′

16: Q[s, a]← Q[s, a] + α (r + γ maxa′ Q[s′, a′]−Q[s, a])
17: s← s′

18: until termination

Figure 11.10: Q-learning controller

Recall (page 404) that Q∗(s, a), where a is an action and s is a state, is the
expected value (cumulative discounted reward) of doing a in state s and then
following the optimal policy.

Q-learning uses temporal differences to estimate the value of Q∗(s, a). In
Q-learning, the agent maintains a table of Q[S, A], where S is the set of states
and A is the set of actions. Q[s, a] represents its current estimate of Q∗(s, a).

An experience 〈s, a, r, s′〉 provides one data point for the value of Q(s, a).
The data point is that the agent received the future value of r + γV(s′), where
V(s′) = maxa′ Q(s′, a′); this is the actual current reward plus the discounted
estimated future value. This new data point is called a return. The agent can
use the temporal difference equation (11.1) to update its estimate for Q(s, a):

Q[s, a]← Q[s, a] + α

(
r + γ max

a′
Q[s′, a′]−Q[s, a]

)

or, equivalently,

Q[s, a]← (1− α)Q[s, a] + α

(
r + γ max

a′
Q[s′, a′]

)
.

Figure 11.10 shows the Q-learning controller. This assumes that α is fixed;
if α is varying, there will be a different count for each state–action pair and the
algorithm would also have to keep track of this count.

470 11. Beyond Supervised Learning

Q-learning learns an optimal policy no matter which policy the agent is ac-
tually following (i.e., which action a it selects for any state s) as long as there
is no bound on the number of times it tries an action in any state (i.e., it does
not always do the same subset of actions in a state). Because it learns an opti-
mal policy no matter which policy it is carrying out, it is called an off-policy
method.

Example 11.9 Consider the domain Example 11.7 (page 463), shown in Figure
11.8 (page 464). Here is a sequence of 〈s, a, r, s′〉 experiences, and the update,
where γ = 0.9 and α = 0.2, and all of the Q-values are initialized to 0 (to two
decimal points):

s a r s′ Update
s0 upC −1 s2 Q[s0, upC] = −0.2
s2 up 0 s4 Q[s2, up] = 0
s4 left 10 s0 Q[s4, left] = 2.0
s0 upC −1 s2 Q[s0, upC] = −0.36
s2 up 0 s4 Q[s2, up] = 0.36
s4 left 10 s0 Q[s4, left] = 3.6
s0 up 0 s2 Q[s0, upC] = 0.06
s2 up −100 s2 Q[s2, up] = −19.65
s2 up 0 s4 Q[s2, up] = −15.07
s4 left 10 s0 Q[s4, left] = 4.89

Notice how the reward of−100 is averaged in with the other rewards. After the
experience of receiving the −100 reward, Q[s2, up] gets the value

0.8× 0.36 + 0.2× (−100 + 0.9× 0.36) = −19.65

At the next step, the same action is carried out with a different outcome, and
Q[s2, up] gets the value

0.8×−19.65 + 0.2× (0 + 0.9× 3.6) = −15.07

After more experiences going up from s2 and not receiving the reward of −100,
the large negative reward will eventually be averaged in with the positive re-
wards and eventually have less influence on the value of Q[s2, up], until going
up in state s2 once again receives a reward of −100.

It is instructive to consider how using αk to average the rewards works
when the earlier estimates are much worse than more recent estimates. The
following example shows the effect of a sequence of deterministic actions. Note
that when an action is deterministic we can use α = 1.

Example 11.10 Consider the domain Example 11.7 (page 463), shown in Fig-
ure 11.8 (page 464). Suppose that the agent has the experience

〈s0, right, 0, s1, upC,−1, s3, upC,−1, s5, left, 0, s4, left, 10, s0〉

and repeats this sequence of actions a number of times. (Note that a real Q-
learning agent would not keep repeating the same actions, particularly when

11.3. Reinforcement Learning 471

This is a trace of Q-learning described in Example 11.10.
(a) Q-learning for a deterministic sequence of actions with a separate αk-value
for each state–action pair, αk = 1/k.

Iteration Q[s0, right] Q[s1, upC] Q[s3, upC] Q[s5, left] Q[s4, left]
1 0 −1 −1 0 10
2 0 −1 −1 4.5 10
3 0 −1 0.35 6.0 10
4 0 −0.92 1.36 6.75 10
10 0.03 0.51 4 8.1 10
100 2.54 4.12 6.82 9.5 11.34
1000 4.63 5.93 8.46 11.3 13.4
10,000 6.08 7.39 9.97 12.83 14.9
100,000 7.27 8.58 11.16 14.02 16.08
1,000,000 8.21 9.52 12.1 14.96 17.02
10,000,000 8.96 10.27 12.85 15.71 17.77
∞ 11.85 13.16 15.74 18.6 20.66

(b) Q-learning for a deterministic sequence of actions with α = 1:

Iteration Q[s0, right] Q[s1, upC] Q[s3, upC] Q[s5, left] Q[s4, left]
1 0 −1 −1 0 10
2 0 −1 −1 9 10
3 0 −1 7.1 9 10
4 0 5.39 7.1 9 10
5 4.85 5.39 7.1 9 14.37
6 4.85 5.39 7.1 12.93 14.37
10 7.72 8.57 10.64 15.25 16.94
20 10.41 12.22 14.69 17.43 19.37
30 11.55 12.83 15.37 18.35 20.39
40 11.74 13.09 15.66 18.51 20.57
∞ 11.85 13.16 15.74 18.6 20.66

(c) Q-values after full exploration and convergence:

Iteration Q[s0, right] Q[s1, upC] Q[s3, upC] Q[s5, left] Q[s4, left]
∞ 19.5 21.14 24.08 27.87 30.97

Figure 11.11: Updates for a particular run of Q-learning

some of them look bad, but we will assume this to let us understand how Q-
learning works.)

Figure 11.11 shows how the Q-values are updated though a repeated execu-
tion of this action sequence. In both of these tables, the Q-values are initialized
to 0.

(a) In the top run there is a separate αk-value for each state–action pair. Notice
how, in iteration 1, only the immediate rewards are updated. In iteration

472 11. Beyond Supervised Learning

2, there is a one-step backup from the positive rewards. Note that the −1
is not backed up because another action is available that has a Q-value of
0. In the third iteration, there is a two-step backup. Q[s3, upC] is updated
because of the reward of 10, two steps ahead; its value is the average of its
experiences: (−1 +−1 + (−1 + 0.9× 6))/3.

(b) The second run is where α = 1; thus, it only takes into account the current
estimate. Again, the reward is backed up one step in each iteration. In the
third iteration, Q[s3, upC] is updated because of the reward of 10 two steps
ahead, but with α = 1, the algorithm ignores its previous estimates and
uses its new experience, −1 + 0.9× 0.9. Having α = 1 converges much
faster than when αk = 1/k, but α = 1 only converges when the actions are
deterministic because α = 1 implicitly assumes that the last reward and
resulting state are representative of future ones.

(c) If the algorithm is run allowing the agent to explore, as is normal, some of
the Q-values after convergence are shown in part (c). Note that, because
there are stochastic actions, α cannot be 1 for the algorithm to converge.
Note that the Q-values are larger than for the deterministic sequence of
actions because these actions do not form an optimal policy.

The final policy after convergence is to do up in state s0, upC in state s2, up
in states s1 and s3, and left in states s4 and s5.

You can run the applet for this example that is available on the book web
site. Try different initializations, and try varying α.

11.3.4 Exploration and Exploitation

The Q-learning algorithm does not specify what the agent should actually do.
The agent learns a Q-function that can be used to determine an optimal action.
There are two things that are useful for the agent to do:

• exploit the knowledge that it has found for the current state s by doing one
of the actions a that maximizes Q[s, a].

• explore in order to build a better estimate of the optimal Q-function. That is,
it should select a different action from the one that it currently thinks is best.

There have been a number of suggested ways to trade off exploration and
exploitation:

• The ε-greedy strategy is to select the greedy action (one that maximizes
Q[s, a]) all but ε of the time and to select a random action ε of the time, where
0 ≤ ε ≤ 1. It is possible to change ε through time. Intuitively, early in the
life of the agent it should select a more random strategy to encourage initial
exploration and, as time progresses, it should act more greedily.

• One problem with an ε-greedy strategy is that it treats all of the actions,
apart from the best action, equivalently. If there are two seemingly good ac-
tions and more actions that look less promising, it may be more sensible
to select among the good actions: putting more effort toward determining
which of these promising actions is best, rather than putting in effort to ex-
plore the actions that look bad. One way to do that is to select action a with

11.3. Reinforcement Learning 473

a probability depending on the value of Q[s, a]. This is known as a soft-max
action selection. A common method is to use a Gibbs or Boltzmann distri-
bution, where the probability of selecting action a in state s is proportional
to eQ[s,a]/τ . That is, in state s, the agent selects action a with probability

eQ[s,a]/τ

∑a eQ[s,a]/τ

where τ > 0 is the temperature specifying how randomly values should be
chosen. When τ is high, the actions are chosen in almost equal amounts. As
the temperature is reduced, the highest-valued actions are more likely to be
chosen and, in the limit as τ → 0, the best action is always chosen.

• An alternative is “optimism in the face of uncertainty”: initialize the Q-
function to values that encourage exploration. If the Q-values are initialized
to high values, the unexplored areas will look good, so that a greedy search
will tend to explore. This does encourage exploration; however, the agent
can hallucinate that some state–action pairs are good for a long time, even
though there is no real evidence for it. A state only gets to look bad when
all its actions look bad; but when all of these actions lead to states that look
good, it takes a long time to get a realistic view of the actual values. This is
a case where old estimates of the Q-values can be quite bad estimates of the
actual Q-value, and these can remain bad estimates for a long time. To get
fast convergence, the initial values should be as close as possible to the final
values; trying to make them an overestimate will make convergence slower.
Relying only on optimism in the face if uncertainty is not useful if the dy-
namics can change, because it is treating the initial time period as the time
to explore and, after this initial exploration, there is no more exploration.

It is interesting to compare the interaction of the exploration strategies with
different choices for how α is updated. See Exercise 11.8 (page 487).

11.3.5 Evaluating Reinforcement Learning Algorithms

We can judge a reinforcement learning algorithm by how good a policy it finds
and how much reward it receives while acting in the world. Which is more
important depends on how the agent will be deployed. If there is sufficient
time for the agent to learn safely before it is deployed, the final policy may
be the most important. If the agent has to learn while being deployed, it may
never get to the stage where it has learned the optimal policy, and the reward
it receives while learning may be what the agent wants to maximize.

One way to show the performance of a reinforcement learning algorithm
is to plot the cumulative reward (the sum of all rewards received so far) as a
function of the number of steps. One algorithm dominates another if its plot is
consistently above the other.

Example 11.11 Figure 11.12 (on the next page) compares four runs of Q-
learning on the game of Example 11.8 (page 464). These plots were generated

474 11. Beyond Supervised Learning

0 50 100 150 200

Number of steps (thousands)

-10000

0

10000

20000

30000

40000

50000

A
c
c
u
m

u
la

te
d
 r

e
w

a
rd

Figure 11.12: Cumulative reward as a function of the number of steps

using the “trace on console” of the applet available on the course web site and
then plotting the resulting data.

The plots are for different runs that varied according to whether α was fixed,
according to the initial values of the Q-function, and according to the random-
ness in the action selection. They all used greedy exploit of 80% (i.e., ε = 0.2)
for the first 100,000 steps, and 100% (i.e., ε = 0.0) for the next 100,000 steps. The
top plot dominated the others.

There is a great deal variability of each algorithm on different runs, so to
actually compare these algorithms one must run the same algorithm multiple
times. For this domain, the cumulative rewards depend on whether the agent
learns to visit the repair station, which it does not always learn. The cumula-
tive reward therefore tends to be bimodal for this example. See Exercise 11.8
(page 487).

There are three statistics of this plot that are important:

• The asymptotic slope shows how good the policy is after the algorithm has
stabilized.

• The minimum of the curve shows how much reward must be sacrificed be-
fore it starts to improve.

• The zero crossing shows how long it takes until the algorithm has recouped
its cost of learning.

The last two statistics are applicable when both positive and negative rewards
are available and having these balanced is reasonable behavior. For other cases,

11.3. Reinforcement Learning 475

the cumulative reward should be compared with reasonable behavior that is
appropriate for the domain; see Exercise 11.7 (page 487).

One thing that should be noted about the cumulative reward plot is that it
measures total reward, yet the algorithms optimize discounted reward at each
step. In general, you should optimize for, and evaluate your algorithm using,
the optimality criterion that is most appropriate for the domain.

11.3.6 On-Policy Learning

Q-learning learns an optimal policy no matter what the agent does, as long as
it explores enough. There may be cases where ignoring what the agent actually
does is dangerous (there will be large negative rewards). An alternative is to
learn the value of the policy the agent is actually carrying out so that it can
be iteratively improved. As a result, the learner can take into account the costs
associated with exploration.

An off-policy learner learns the value of the optimal policy independently
of the agent’s actions. Q-learning is an off-policy learner. An on-policy learner
learns the value of the policy being carried out by the agent, including the
exploration steps.

SARSA (so called because it uses state-action-reward-state-action experi-
ences to update the Q-values) is an on-policy reinforcement learning algorithm
that estimates the value of the policy being followed. An experience in SARSA
is of the form 〈s, a, r, s′, a′〉, which means that the agent was in state s, did ac-
tion a, received reward r, and ended up in state s′, from which it decided to do
action a′. This provides a new experience to update Q(s, a). The new value that
this experience provides is r + γQ(s′, a′).

Figure 11.13 gives the SARSA algorithm.
SARSA takes into account the current exploration policy which, for exam-

ple, may be greedy with random steps. It can find a different policy than Q-
learning in situations when exploring may incur large penalties. For example,
when a robot goes near the top of stairs, even if this is an optimal policy, it
may be dangerous for exploration steps. SARSA will discover this and adopt
a policy that keeps the robot away from the stairs. It will find a policy that is
optimal, taking into account the exploration inherent in the policy.

Example 11.12 In Example 11.10 (page 470), the optimal policy is to go up
from state s0 in Figure 11.8 (page 464). However, if the agent is exploring, this
may not be a good thing to do because exploring from state s2 is very danger-
ous.

If the agent is carrying out the policy that includes exploration, “when in
state s, 80% of the time select the action a that maximizes Q[s, a], and 20% of the
time select an action at random,” going up from s0 is not optimal. An on-policy
learner will try to optimize the policy the agent is following, not the optimal
policy that does not include exploration.

If you were to repeat the experiment of Figure 11.11 (page 471), SARSA
would back up the−1 values, whereas Q-learning did not because actions with

476 11. Beyond Supervised Learning

an estimated value of 0 were available. The Q-values in parts (a) and (b) of that
figure would converge to the same values, because they both converge to the
value of that policy.

The Q-values of the optimal policy are less in SARSA than in Q-learning.
The values for SARSA corresponding to part (c) of Figure 11.11 (page 471), are
as follows:

Iteration Q[s0, right] Q[s1, upC] Q[s3, upC] Q[s5, left] Q[s4, left]
∞ 9.2 10.1 12.7 15.7 18.0

The optimal policy using SARSA is to go right at state s0. This is the optimal
policy for an agent that does 20% exploration, because exploration is danger-
ous. If the rate of exploration were reduced, the optimal policy found would
change. However, with less exploration, it would take longer to find an opti-
mal policy.

SARSA is useful when you want to optimize the value of an agent that is
exploring. If you want to do offline learning, and then use that policy in an
agent that does not explore, Q-learning may be more appropriate.

controller SARSA(S, A, γ, α)
inputs:

S is a set of states
A is a set of actions
γ the discount
α is the step size

internal state:
real array Q[S, A]
previous state s
previous action a

begin
initialize Q[S, A] arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:

carry out an action a
observe reward r and state s′

select action a′ using a policy based on Q
Q[s, a]← Q[s, a] + α (r + γQ[s′, a′]−Q[s, a])
s← s′

a← a′

end-repeat
end

Figure 11.13: SARSA: on-policy reinforcement learning

11.3. Reinforcement Learning 477

11.3.7 Assigning Credit and Blame to Paths

In Q-learning and SARSA, only the previous state–action pair has its value
revised when a reward is received. Intuitively, when an agent takes a number
of steps that lead to a reward, all of the steps along the way could be held
responsible and so receive some of the credit or the blame for a reward. This
section gives an algorithm that assigns the credit and blame for all of the steps
that lead to a reward.

Example 11.13 Suppose there is an action right that visits the states s1, s2, s3,
and s4 in this order and a reward is only given when the agent enters s4 from
s3, and any action from s4 returns to state s1. There is also an action left that
moves to the left except in state s4. In Q-learning and SARSA, after traversing
right through the states s1, s2, s3, and s4 and receiving the reward, only the
value of Q[s3, right] is updated. If the same sequence of states is visited again,
the value of Q[s2, right] will be updated when it transitions into s3. The value
of Q[s1, right] is only updated after the next transition from state s1 to s2. In this
sense, we say that Q-learning does a one-step backup.

Consider updating the value of Q[s3, right] based on the reward for enter-
ing state s4. From the perspective of state s4, the algorithm is doing a one-step
backup. From the perspective of state s3, it is doing a one-step look-ahead. To
make the algorithm allow the blame to be associated with more than the pre-
vious step, the reward from entering step s4 could do a two-step backup to
update s2 or, equivalently, a two-step look-ahead from s2 and update s2’s value
when the reward from entering s4 is received. We will describe the algorithm
in terms of a look-ahead but implement it using a backup.

With a two-step look-ahead, suppose the agent is in state st, does action at,
ends up in state st+1, and receives reward rt+1, then does action at+1, resulting
in state st+2 and receiving reward rt+2. A two-step look-ahead at time t gives
the return R(2)

t = rt+1 + γrt+2 + γ2V(st+2), thus giving the TD error

δt = rt+1 + γrt+2 + γ2V(st+2)−Q[st, at],

where V(st+2) is an estimate of the value of st+2. The two-step update is

Q[st, at]← Q[st, at] + αδt.

Unfortunately, this is not a good estimate of the optimal Q-value, Q∗, be-
cause action at+1 may not be an optimal action. For example, if action at+1
was the action that takes the agent into a position with a reward of −10, and
better actions were available, the agent should not update Q[s0, a0]. However,
this multiple-step backup provides an improved estimate of the policy that the
agent is actually following. If the agent is following policy π, this backup gives
an improved estimate of Qπ. Thus multiple-step backup can be used in an on-
policy method such as SARSA.

Suppose the agent is in state st, and it performs action at resulting in reward
rt+1 and state st+1. It then does action at+1, resulting in reward rt+2 and state

478 11. Beyond Supervised Learning

st+2, and so forth. An n-step return at time t, where n ≥ 1, written R(n)
r , is a data

point for the estimated future value of the action at time t, given by looking n
steps ahead, is

R(n)
t = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n + γnV(st+n).

This could be used to update Q[st, at] using the TD error R(n)
t −Q[st, at]. How-

ever, it is difficult to know which n to use. Instead of selecting one particular
n and looking forward n steps, it is possible to have an average of a num-
ber of n-step returns. One way to do this is to have a weighted average of all
n-step returns, in which the returns in the future are exponentially decayed,
with a decay of λ. This is the intuition behind the method called SARSA(λ);
when a reward is received, the values of all of the visited states are updated.
Those states farther in the past receive less of the credit or blame for the
reward.

Let

Rλ
t = (1− λ)

∞

∑
n=1

λn−1R(n)
t ,

where (1− λ) is a normalizing constant to ensure we are getting an average.
The following table gives the details of the sum:

look-ahead Weight Return
1 step 1− λ rt+1 + γV(st+1)
2 step (1− λ)λ rt+1 + γrt+2 + γ2V(st+2)
3 step (1− λ)λ2 rt+1 + γrt+2 + γ2rt+3 + γ3V(st+3)
4 step (1− λ)λ3 rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + γ4V(st+3)
· · · · · · · · ·
n step (1− λ)λn−1 rt+1 + γrt+2 + γ2rt+3 + · · ·+ γnV(st+n)
· · · · · · · · ·
total 1

Collecting together the common rt+i terms gives

Rλ
t = rt+1 + γV(st+1)− λγV(st+1)

+ λγrt+2 + λγ2V(st+2)− λ2γ2V(st+2)
+ λ2γ2rt+3 + λ2γ3V(st+3)− λ3γ3V(st+3)
+ λ3γ3rt+4 + λ3γ4V(st+4)− λ4γ4V(st+4)
+

This will be used in a version of SARSA in which the future estimate of V(st+i)
is the value of Q[st+i, at+i]. The TD error – the return minus the state estimate –

11.3. Reinforcement Learning 479

is

Rλ
t −Q[st, at] = rt+1 + γQ[st+1, at+1]−Q[st, at]

+λγ(rt+2 + γQ[st+2, at+2]−Q[st+1, at+1])
+λ2γ2(rt+3 + γQ[st+3, at+3]−Q[st+2, at+2])
+λ3γ3(rt+4 + γQ[st+4, at+4]−Q[st+3, at+3])
+

Instead of waiting until the end, which may never occur, SARSA(λ) updates
the value of Q[st, at] at every time in the future. When the agent receives re-
ward rt+i, it can use the appropriate sum in the preceding equation to update
Q[st, at]. The preceding description refers to all times; therefore, the update
rt+3 + γQ[st+3, at+3] − Q[st+2, at+2] can be used to update all previous states.
An agent can do this by keeping an eligibility trace that specifies how much a
state–action pair should be updated at each time step. When a state–action pair
is first visited, its eligibility is set to 1. At each subsequent time step its eligi-
bility is reduced by a factor of λγ. When the state–action pair is subsequently
visited, 1 is added to its eligibility.

The eligibility trace is implemented by an array e[S, A], where S is the set
of all states and A is the set of all actions. After every action is carried out, the
Q-value for every state–action pair is updated.

The algorithm, known as SARSA(λ), is given in Figure 11.14 (on the next
page).

Although this algorithm specifies that Q[s, a] is updated for every state s
and action a whenever a new reward is received, it may be much more efficient
and only slightly less accurate to only update those values with an eligibility
over some threshold.

11.3.8 Model-Based Methods

In many applications of reinforcement learning, plenty of time is available for
computation between each action. For example, a physical robot may have
many seconds between each action. Q-learning, which only does one backup
per action, will not make full use of the available computation time.

An alternative to just learning the Q-values is to use the data to learn the
model. That is, an agent uses its experience to explicitly learn P(s′|s, a) and
R(s, a, s′). For each action that the agent carries out in the environment, the
agent can then do a number of steps of asynchronous value iteration (page 406)
to give a better estimate of the Q-function.

Figure 11.15 (page 481) shows a generic model-based reinforcement learner.
As with other reinforcement learning programs, it keeps track of Q[S, A], but it
also maintains a model of the dynamics, represented here as T, where T[s, a, s′]
is the count of the number of times that the agent has done a in state s and
ended up in state s′. The counts are added to prior counts, as in a Dirich-
let distribution (page 337), to compute probabilities. The algorithm assumes

480 11. Beyond Supervised Learning

controller SARSA(λ, S, A, γ, α)
inputs:

S is a set of states
A is a set of actions
γ the discount
α is the step size
λ is the decay rate

internal state:
real array Q[S, A]
real array e[S, A]
previous state s
previous action a

begin
initialize Q[S, A] arbitrarily
initialize e[s, a] = 0 for all s, a
observe current state s
select action a using a policy based on Q
repeat forever:

carry out an action a
observe reward r and state s′

select action a′ using a policy based on Q
δ← r + γQ[s′, a′]−Q[s, a]
e[s, a]← e[s, a] + 1
for all s′′, a′′ :

Q[s′′, a′′]← Q[s′′, a′′] + αδe[s′′, a′′]
e[s′′, a′′]← γλe[s′′, a′′]

s← s′

a← a′

end-repeat
end

Figure 11.14: SARSA(λ)

a common prior count. The R[s, a, s′] array maintains the average reward for
transitioning from state s, doing action a, and ending up in state s′.

After each action, the agent observes the reward r and the resulting state s′.
It then updates the transition-count matrix T and the average reward R. It then
does a number of steps of asynchronous value iteration, using the updated
probability model derived from T and the updated reward model. There are
three main undefined parts to this algorithm:

• Which Q-values should be updated? It seems reasonable that the al-
gorithm should at least update Q[s, a], because more data have been
received on the transition probability and reward. From there it can

11.3. Reinforcement Learning 481

controller ModelBasedReinforementLearner(S, A, γ, c)
inputs:

S is a set of states
A is a set of actions
γ the discount
c is prior count

internal state:
real array Q[S, A]
real array R[S, A, S]
integer array T[S, A, S]
state s, s′

action a
initialize Q[S, A] arbitrarily
initialize R[S, A, S] arbitrarily
initialize T[S, A, S] to zero
observe current state s
select and carry out action a
repeat forever:

observe reward r and state s′

select and carry out action a
T[s, a, s′]← T[s, a, s′] + 1

R[s, a, s′]← R[s, a, s′] +
r− R[s, a, s′]

T[s, a, s′]
s← s′

repeat
select state s1, action a1
let P = ∑

s2

(T[s1, a1, s2] + c)

Q[s1, a1]←∑
s2

T[s1, a1, s2] + c
P

(
R[s1, a1, s2] + γ max

a2
Q[s2, a2]

)
until an observation arrives

Figure 11.15: Model-based reinforcement learner

either do random updates or determine which Q-values would change
the most. The elements that potentially have their values changed the
most are the Q[s1, a1] with the highest probability of ending up at a Q-
value that has changed the most (i.e., where Q[s1, a2] has changed the
most). This can be implemented by keeping a priority queue of Q-values
to consider.

• How many steps of asynchronous value iteration should be done be-
tween actions? An agent should continue doing steps of value iteration
until it has to act or until it gets new information. Figure 11.15 assumes

482 11. Beyond Supervised Learning

that the agent acts and then waits for an observation to arrive. When an
observation arrives, the agent acts as soon as possible. There are may
variants, including a more relaxed agent that runs the repeat loop in par-
allel with observing and acting. Such an agent acts when it must, and it
updates the transition and reward model when it observes.
• What should be the initial values for R[S, A, S] and Q[S, A]? Once the

agent has observed a reward for a particular 〈s, a, s′〉 transition, it will
use the average of all of the rewards received for that transition. How-
ever, it requires some value for the transitions it has never experienced
when updating Q. If it is using the exploration strategy of optimism in
the face of uncertainty, it can use Rmax, the maximum reward possible,
as the initial value for R, to encourage exploration. As in value iteration
(page 404), it is best to initialize Q to be as close as possible to the final
Q-value.

The algorithm in Figure 11.15 assumes that the prior count is the same for
all 〈s, a, s′〉 transitions. If some prior knowledge exists that some transitions are
impossible or some are more likely, the prior count should not be uniform.

This algorithm assumes that the rewards depend on the initial state, the ac-
tion, and the final state. Moreover, it assumes that the reward for a 〈s, a, s′〉 tran-
sition is unknown until that exact transition has been observed. If the reward
only depends on the initial state and the action, it is more efficient to have an
R[S, A]. If there are separate action costs and rewards for entering a state, and
the agent can separately observe the costs and rewards, the reward function
can be decomposed into C[A] and R[S], leading to more efficient learning.

It is difficult to directly compare the model-based and model-free rein-
forcement learners. Typically, model-based learners are much more efficient
in terms of experience; many fewer experiences are needed to learn well. How-
ever, the model-free methods often use less computation time. If experience
was cheap, a different comparison would be needed than if experience was
expensive.

11.3.9 Reinforcement Learning with Features

Usually, there are too many states to reason about explicitly. The alternative to
reasoning explicitly in terms of states is to reason in terms of features. In this
section, we consider reinforcement learning that uses an approximation of the
Q-function using a linear combination of features of the state and the action.
This is the simplest case and often works well. However, this approach requires
careful selection of features; the designer should find features adequate to rep-
resent the Q-function. This is often a difficult engineering problem.

SARSA with Linear Function Approximation

You can use a linear function of features to approximate the Q-function in
SARSA. This algorithm uses the on-policy method SARSA, because the agent’s

11.3. Reinforcement Learning 483

experiences sample the reward from the policy the agent is actually following,
rather than sampling an optimum policy.

A number of ways are available to get a feature-based representation of the
Q-function. In this section, we use features of both the state and the action to
provide features for the linear function.

Suppose F1, . . . , Fn are numerical features of the state and the action. Thus,
Fi(s, a) provides the value for the ith feature for state s and action a. These
features are typically binary, with domain {0, 1}, but they can also be other
numerical features. These features will be used to represent the Q-function.

Qw(s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

for some tuple of weights, w = 〈w0, w1, . . . , wn〉. Assume that there is an extra
feature F0 whose value is always 1, so that w0 does not have to be a special case.

Example 11.14 In the grid game of Example 11.8 (page 464), some possible
features are the following:

• F1(s, a) has value 1 if action a would most likely take the agent from state
s into a location where a monster could appear and has value 0 otherwise.

• F2(s, a) has value 1 if action a would most likely take the agent into a wall
and has value 0 otherwise.

• F3(s, a) has value 1 if step a would most likely take the agent toward a
prize.

• F4(s, a) has value 1 if the agent is damaged in state s and action a takes it
toward the repair station.

• F5(s, a) has value 1 if the agent is damaged and action a would most likely
take the agent into a location where a monster could appear and has value
0 otherwise. That is, it is the same as F1(s, a) but is only applicable when
the agent is damaged.

• F6(s, a) has value 1 if the agent is damaged in state s and has value 0 oth-
erwise.

• F7(s, a) has value 1 if the agent is not damaged in state s and has value 0
otherwise.

• F8(s, a) has value 1 if the agent is damaged and there is a prize ahead in
direction a.

• F9(s, a) has value 1 if the agent is not damaged and there is a prize ahead
in direction a.

• F10(s, a) has the value of the x-value in state s if there is a prize at location
P0 in state s. That is, it is the distance from the left wall if there is a prize
at location P0.

• F11(s, a) has the value 4− x, where x is the horizontal position in state s if
there is a prize at location P0 in state s. That is, it is the distance from the
right wall if there is a prize at location P0.

484 11. Beyond Supervised Learning

• F12(s, a) to F29(s, a) are like F10 and F11 for different combinations of the
prize location and the distance from each of the four walls. For the case
where the prize is at location P0, the y-distance could take into account the
wall.

An example linear function is

Q(s, a)
= 2.0− 1.0 ∗ F1(s, a)− 0.4 ∗ F2(s, a)− 1.3 ∗ F3(s, a)
− 0.5 ∗ F4(s, a)− 1.2 ∗ F5(s, a)− 1.6 ∗ F6(s, a) + 3.5 ∗ F7(s, a)
+ 0.6 ∗ F8(s, a) + 0.6 ∗ F9(s, a)− 0.0 ∗ F10(s, a) + 1.0 ∗ F11(s, a) +

These are the learned values (to one decimal place) for one run of the algorithm
that follows.

An experience in SARSA of the form 〈s, a, r, s′, a′〉 (the agent was in state s,
did action a, and received reward r and ended up in state s′, in which it decided
to do action a′) provides the new estimate of r + γQ(s′, a′) to update Q(s, a).
This experience can be used as a data point for linear regression (page 304).
Let δ = r + γQ(s′, a′) − Q(s, a). Using Equation (7.2) (page 305), weight wi is
updated by

wi ← wi + ηδFi(s, a).

This update can then be incorporated into SARSA, giving the algorithm shown
in Figure 11.16.

Selecting an action a could be done using an ε-greedy function: with proba-
bility ε, an agent selects a random action and otherwise it selects an action that
maximizes Qw(s, a).

Although this program is simple to implement, feature engineering –
choosing what features to include – is non-trivial. The linear function must not
only convey the best action to carry out, it must also convey the information
about what future states are useful.

Many variations of this algorithm exist. Different function approximations,
such as a neural network or a decision tree with a linear function at the leaves,
could be used. A common variant is to have a separate function for each action.
This is equivalent to having the Q-function approximated by a decision tree
that splits on actions and then has a linear function. It is also possible to split
on other features.

A linear function approximation can also be combined with other methods
such as SARSA(λ), Q-learning, or model-based methods. Note that some of
these methods have different convergence guarantees and different levels of
performance.

Example 11.15 On the AIspace web site, there is an open-source implementa-
tion of this algorithm for the game of Example 11.8 (page 464) with the features
of Example 11.14. Try stepping through the algorithm for individual steps, try-
ing to understand how each step updates each parameter. Now run it for a

11.4. Review 485

number of steps. Consider the performance using the evaluation measures of
Section 11.3.5 (page 473). Try to make sense of the values of the parameters
learned.

11.4 Review

The following are the main points you should have learned from this chapter:

• EM is an iterative method to learn the parameters of models with hidden
variables (including the case in which the classification is hidden).

• The probabilities and the structure of belief networks can be learned from
complete data. The probabilities can be derived from counts. The structure
can be learned by searching for the best model given the data.

• Missing values in examples are often not missing at random. Why they are
missing is often important to determine.

• A Markov decision process is an appropriate formalism for reinforcement
learning. A common method is to learn an estimate of the value of doing
each action in a state, as represented by the Q(S, A) function.

• In reinforcement learning, an agent should trade off exploiting its knowl-
edge and exploring to improve its knowledge.

1: controller SARSA-FA(F, γ, η)
2: Inputs
3: F = 〈F1, . . . , Fn〉: a set of features
4: γ ∈ [0, 1]: discount factor
5: η > 0: step size for gradient descent

6: Local
7: weights w = 〈w0, . . . , wn〉, initialized arbitrarily

8: observe current state s
9: select action a

10: repeat
11: carry out action a
12: observe reward r and state s′

13: select action a′ (using a policy based on Qw)
14: let δ = r + γQw(s′, a′)−Qw(s, a)
15: for i = 0 to n do
16: wi ← wi + ηδFi(s, a)
17: s← s′

18: a← a′

19: until termination

Figure 11.16: SARSA with linear function approximation

486 11. Beyond Supervised Learning

• Off-policy learning, such as Q-learning, learns the value of the optimal pol-
icy. On-policy learning, such as SARSA, learns the value of the policy the
agent is actually carrying out (which includes the exploration).

• Model-based reinforcement learning separates learning the dynamics and
reward models from the decision-theoretic planning of what to do given the
models.

11.5 References and Further Reading

Unsupervised learning is discussed by Fischer [1987] and Cheeseman, Kelly,
Self, Stutz, Taylor, and Freeman [1988]. Bayesian classifiers are discussed by
Duda et al. [2001] and Langley, Iba, and Thompson [1992]. Friedman and Gold-
szmidt [1996a] discuss how the naive Bayesian classifier can be generalized to
allow for more appropriate independence assumptions.

For an overview of learning belief networks, see Heckerman [1999], Dar-
wiche [2009], and [Koller and Friedman, 2009]. Structure learning using deci-
sion trees is based on Friedman and Goldszmidt [1996b].

For an introduction to reinforcement learning, see Sutton and Barto [1998]
or Kaelbling, Littman, and Moore [1996]. Bertsekas and Tsitsiklis [1996] inves-
tigate function approximation and its interaction with reinforcement learning.

11.6 Exercises

Exercise 11.1 Consider the unsupervised data of Figure 11.1 (page 454).

(a) How many different stable assignments of examples to classes does the k-
means algorithm find when k = 2? [Hint: Try running the algorithm on the
data with a number of different starting points, but also think about what
assignments of examples to classes are stable.] Do not count permutations
of the labels as different assignments.

(b) How many different stable assignments are there when k = 3?
(c) How many different stable assignments are there when k = 4?
(d) Why might someone suggest that three is the natural number of classes in

this example? Give a definition for “natural” number of classes, and use this
data to justify the definition.

Exercise 11.2 Suppose the k-means algorithm is run for an increasing sequence
of values for k, and that it is run for a number of times for each k to find the as-
signment with a global minimum error. Is it possible that a number of values of
k exist for which the error plateaus and then has a large improvement (e.g., when
the error for k = 3, k = 4, and k = 5 are about the same, but the error for k = 6 is
much lower)? If so, give an example. If not, explain why.

Exercise 11.3 Give an algorithm for EM for unsupervised learning [Figure 11.4
(page 457)] that does not store an A array, but rather recomputes the appropriate
value for the M step. Each iteration should only involve one sweep through the
data set. [Hint: For each tuple in the data set, update all of the relevant Mi-values.]

11.6. Exercises 487

Exercise 11.4 Suppose a Q-learning agent, with fixed α and discount γ, was in
state 34, did action 7, received reward 3, and ended up in state 65. What value(s)
get updated? Give an expression for the new value. (Be as specific as possible.)

Exercise 11.5 Explain what happens in reinforcement learning if the agent al-
ways chooses the action that maximizes the Q-value. Suggest two ways to force
the agent to explore.

Exercise 11.6 Explain how Q-learning fits in with the agent architecture of Sec-
tion 2.2.1 (page 46). Suppose that the Q-learning agent has discount factor γ, a step
size of α, and is carrying out an ε-greedy exploration strategy.

(a) What are the components of the belief state of the Q-learning agent?

(b) What are the percepts?

(c) What is the command function of the Q-learning agent?

(d) What is the belief-state transition function of the Q-learning agent?

Exercise 11.7 For the plot of the total reward as a function of time as in Fig-
ure 11.12 (page 474), the minimum and zero crossing are only meaningful statis-
tics when balancing positive and negative rewards is reasonable behavior. Suggest
what should replace these statistics when zero is not an appropriate definition of
reasonable behavior. [Hint: Think about the cases that have only positive reward
or only negative reward.]

Exercise 11.8 Compare the different parameter settings for the game of Example
11.8 (page 464). In particular compare the following situations:

(a) α varies, and the Q-values are initialized to 0.0.

(b) α varies, and the Q-values are initialized to 5.0.

(c) α is fixed to 0.1, and the Q-values are initialized to 0.0.

(d) α is fixed to 0.1, and the Q-values are initialized to 5.0.

(e) Some other parameter settings.

For each of these, carry out multiple runs and compare the distributions of mini-
mum values, zero crossing, the asymptotic slope for the policy that includes explo-
ration, and the asymptotic slope for the policy that does not include exploration.
To do the last task, after the algorithm has converged, set the exploitation param-
eter to 100% and run a large number of additional steps.

Exercise 11.9 Consider four different ways to derive the value of αk from k in Q-
learning (note that for Q-learning with varying αk, there must be a different count
k for each state–action pair).

i) Let αk = 1/k.

ii) Let αk = 10/(9 + k).

iii) Let αk = 0.1.

iv) Let αk = 0.1 for the first 10,000 steps, αk = 0.01 for the next 10,000 steps,
αk = 0.001 for the next 10,000 steps, αk = 0.0001 for the next 10,000 steps,
and so on.

488 11. Beyond Supervised Learning

(a) Which of these will converge to the true Q-value in theory?
(b) Which converges to the true Q-value in practice (i.e., in a reasonable number

of steps)? Try it for more than one domain.
(c) Which can adapt when the environment adapts slowly?

Exercise 11.10 Suppose your friend presented you with the following example
where SARSA(λ) seems to give unintuitive results. There are two states, A and
B. There is a reward of 10 coming into state A and no other rewards or penalties.
There are two actions: left and right. These actions only make a difference in state B.
Going left in state B goes directly to state A, but going right has a low probability
of going into state A. In particular:

• P(A|B, left) = 1; reward is 10.

• P(A|B, right) = 0.01; reward is 10. P(B|B, right) = 0.99; reward is 0.

• P(A|A, left) = P(A|A, right) = 0.999 and P(B|A, left) = P(B|A, right) = 0.001.
This is small enough that the eligibility traces will be close enough to zero
when state B is entered.

• γ and λ are 0.9 and α is 0.4.

Suppose that your friend claimed that that Q(λ) does not work in this example,
because the eligibility trace for the action right in state B ends up being bigger
than the eligibility trace for action left in state B and the rewards and all of the
parameters are the same. In particular, the eligibility trace for action right will be
about 5 when it ends up entering state A, but it be 1 for action left. Therefore, the
best action will be to go right in state B, which is not correct.

What is wrong with your friend’s argument? What does this example show?

Exercise 11.11 In SARSA with linear function approximators, if you use linear
regression to minimize r + γQw(s′, a′) − Qw(s, a), you get a different result than
we have here. Explain what you get and why what is described in the text may be
preferable (or not).

Exercise 11.12 In Example 11.14 (page 483), some of the features are perfectly
correlated (e.g., F6 and F7). Does having such correlated features affect what func-
tions can be represented? Does it help or hurt the speed at which learning occurs?

Part IV

Reasoning About Individuals
and Relations

489

Chapter 12

Individuals and Relations

There is a real world with real structure. The program of mind has been
trained on vast interaction with this world and so contains code that re-
flects the structure of the world and knows how to exploit it. This code
contains representations of real objects in the world and represents the
interactions of real objects. The code is mostly modular. . . , with modules
for dealing with different kinds of objects and modules generalizing across
many kinds of objects. . . . The modules interact in ways that mirror the
real world and make accurate predictions of how the world evolves. . . .

You exploit the structure of the world to make decisions and take ac-
tions. Where you draw the line on categories, what constitutes a single
object or a single class of objects for you, is determined by the program
of your mind, which does the classification. This classification is not ran-
dom but reflects a compact description of the world, and in particular a
description useful for exploiting the structure of the world.

– Eric B. Baum [2004, pages 169–170]

This chapter is about how to represent individuals (things, objects) and rela-
tionships among them. As Baum suggests in the quote above, the real world
contains objects and we want compact representations of those objects. Such
representations can be much more compact than representations in terms of
features alone. This chapter considers logical representations and gives a de-
tailed example of how such representations can be used for natural language
interfaces to databases, without uncertainty. Later chapters address ontologies
and the meaning of symbols, relational learning, and probabilistic relational
models.

491

492 12. Individuals and Relations

12.1 Exploiting Structure Beyond Features

One of the main lessons of AI is that successful agents exploit the structure
of the world. The previous chapters considered states represented in terms of
features. Using features is much more compact than representing the states ex-
plicitly, and algorithms can exploit this compactness. There is, however, usu-
ally much more structure in features that can be exploited for representation
and inference. In particular, this chapter considers reasoning in terms of

• individuals – things in the domain, whether they are concrete individuals
such as people and buildings, imaginary individuals such as unicorns and
fairies, or abstract concepts such as courses and times.

• relations – what is true about these individuals. This is meant to be as gen-
eral as possible and includes unary relations that are true or false of single
individuals, in addition to relationships among multiple individuals.

Example 12.1 In Example 5.5 (page 164), the propositions up s2, up s3, and
ok s2 have no internal structure. There is no notion that the proposition up s2
and up s3 are about the same relation, but with different individuals, or that
up s2 and ok s2 are about the same switch. There is no notion of individuals
and relations.

An alternative is to explicitly represent the individual switches s1, s2, s3,
and the properties or relations, up and ok. Using this representation, “switch s2
is up” is represented as up(s2). By knowing what up and s1 represent, we do
not require a separate definition of up(s1). A binary relation, like connected to,
can be used to relate two individuals, such as connected to(w1, s1).

A number of reasons exist for using individuals and relations instead of just
features:

• It is often the natural representation. Often features are properties of indi-
viduals, and this internal structure is lost in converting to features.

• An agent may have to model a domain without knowing what the individ-
uals are, or how many there will be, and, thus, without knowing what the
features are. At run time, the agent can construct the features when it finds
out which individuals are in the particular environment.

• An agent can do some reasoning without caring about the particular indi-
viduals. For example, it may be able to derive that something holds for all
individuals without knowing what the individuals are. Or, an agent may be
able to derive that some individual exists that has some properties, with-
out caring about other individuals. There may be some queries an agent can
answer for which it does not have to distinguish the individuals.

• The existence of individuals could depend on actions or could be uncer-
tain. For example, in planning in a manufacturing context, whether there is
a working component may depend on many other subcomponents working
and being put together correctly; some of these may depend on the agent’s
actions, and some may not be under the agent’s control. Thus, an agent may
have to act without knowing what features there are or what features there
will be.

12.2. Symbols and Semantics 493

in(kim, cs_building)

in(kim, r123).

part of (r123, cs building).

in(X, Y) ←
part of (Z, Y) ∧
in(X, Z).

kim

r123

r023

cs building

in(,)

part of (,)

person()

Figure 12.1: The role of semantics. The meaning of the symbols are in the user’s
head. The computer takes in symbols and outputs symbols. The output can be
interpreted by the user according to the meaning the user places on the symbols.

• Often there are infinitely many individuals an agent is reasoning about, and
so infinitely many features. For example, if the individuals are sentences,
the agent may only have to reason about a very limited set of sentences
(e.g., those that could be meant by a person speaking, or those that may
be sensible to generate), even though there may be infinitely many possible
sentences, and so infinitely many features.

12.2 Symbols and Semantics

Chapter 5 was about reasoning with symbols that represent propositions. In
this section, we expand the semantics to reason about individuals and rela-
tions. A symbol will denote an individual or a relation. We still have propo-
sitions; atomic propositions now have internal structure in terms of relations
and individuals.

Figure 12.1 illustrates the general idea of semantics with individuals and
relations. The person who is designing the knowledge base has a meaning for
the symbols. The person knows what the symbols kim, r123, and in refer to in
the domain and supplies a knowledge base of sentences in the representation
language to the computer. These sentences have meaning to that person. She
can ask questions using these symbols and with the particular meaning she has
for them. The computer takes these sentences and questions, and it computes
answers. The computer does not know what the symbols mean. However, the
person who supplied the information can use the meaning associated with the
symbols to interpret the answer with respect to the world.

494 12. Individuals and Relations

The mapping between the symbols in the mind and the individuals and re-
lations denoted by these symbols is called a conceptualization. In this chapter,
we assume that the conceptualization is in the user’s head, or written infor-
mally, in comments. Making conceptualizations explicit is the role of a formal
ontology (page 563).

Under this view, what is the correct answer is defined independently of
how it is computed. The correctness of a knowledge base is defined by the
semantics, not by a particular algorithm for proving queries. As long as the
inference is faithful to the semantics, the proof procedure can be optimized for
efficiency. This separation of meaning from computation lets an agent optimize
performance while maintaining correctness.

12.3 Datalog: A Relational Rule Language

This section expands the syntax for the propositional definite clause language
(page 163). The syntax is based on normal mathematical notation for predicate
symbols but follows Prolog’s convention for variables.

The syntax of Datalog is given by the following, where a word is a sequence
of letters, digits, or an underscore (“ ”):

• A logical variable is a word starting with an upper-case letter or the under-
score.

For example X, Room, B4, Raths, and The big guy are all variables.
Logical variables are not the same as algebraic variables (page 113) or

random variables (page 221).

• A constant is a word that starts with a lower-case letter, or is a number con-
stant or a string.

• A predicate symbol is a word that starts with a lower-case letter. Constants
and predicate symbols are distinguishable by their context in a knowledge
base.

For example, kim, r123, f , grandfather, and borogroves can be constants or
predicate symbols, depending on the context; 725 is a constant.

• A term is either a variable or a constant.
For example X, kim, cs422, mome, or Raths can be terms.

• We expand the definition of atomic symbol, or simply an atom, to be of the
form p or p(t1, . . . , tn), where p is a predicate symbol and each ti is a term.
Each ti is called an argument to the predicate.

For example, teaches(sue, cs422), in(kim, r123), sunny, father(bill, Y),
happy(C), and outgrabe(mome, Raths) can all be atoms. From context in the
atom outgrabe(mome, Raths), we know that outgrabe is a predicate symbol and
mome is a constant.

The notions of definite clause, rule, query, and knowledge base are the same
as for propositional definite clauses (page 163) but with the expanded defini-
tion of atom. The definitions are repeated here.

12.3. Datalog: A Relational Rule Language 495

Relationships to Traditional Programming Languages

The notion of logical semantics presented in this chapter should be con-
trasted with the procedural semantics of traditional programming languages
like Fortran, C++, Lisp, or Java. The semantics for these languages specify
the meaning of the language constructs in terms of what the computer will
compute based on the program. This corresponds more closely to the proof
theory presented here. Logical semantics gives a way to specify the relation-
ships of the symbols to the world, and a way to specify the result of a program
independently of how it is computed.

The definitions of semantics and reasoning theory correspond to the no-
tions of a Tarskian semantics and proof in mathematical logic. Logic allows
us to define knowledge independently of how it is used. Knowledge base
designers or users can verify the correctness of knowledge if they know its
meaning. People can debate the truth of sentences in the language and ob-
serve the world to verify the statements. The same semantics can be used to
establish the correctness of an implementation.

The notion of an individual is similar to the definition of an object in
object-oriented languages such as Smalltalk, C++, or Java. The main differ-
ence is that the objects in object-oriented languages are computational objects
rather than real physical objects. In an object-oriented language, a “person”
object is a representation of a person; it is not the actual person. However,
in the representation and reasoning systems considered in AI, an individual
“person” can denote the actual person. In object-oriented languages, objects
send each other messages. In the logical view, not only do we want to interact
with objects, but we also want to reason about them. We may want to be able
to predict what an object will do without getting the object to do it. We may
want to predict the internal state from the observed behavior, for example,
in a diagnostic task. We even want to reason about, and predict the behav-
ior of, individuals who may be deliberately concealing information and may
not want us to know what they are doing. For example, consider a “person”
object: although there can be some interaction with the person, there is often
much information that we do not know. Because we cannot keep asking them
for the information (which they may not know or may not want to tell us), we
require some external representation of the information about that individual.
It is even harder to interact with a chair or a disease, but we still may want to
reason about them.

Many programming languages have facilities for dealing with designed
objects, perhaps even with a single purpose in mind. For example, in Java,
objects have to fit into a single class hierarchy, whereas real-world individuals
may have many roles and be in many classes; it is the complex interaction of
these classes that specifies the behavior. A knowledge base designer may not
know, a priori, how these classes will interact.

496 12. Individuals and Relations

• A body is an atom or a conjunction of atoms.

• A definite clause is either an atom, called a atomic clause, or of the form
a ← b, called a rule, where a, the head, is an atom and b is a body. We will
end clauses with a period.

• A knowledge base is a set of definite clauses.

• A query is of the form ask b, where b is a body.

• An expression is either a term, an atom, a definite clause, or a query.

In our examples, we will follow the Prolog convention that comments,
which are ignored by the system, extend from a “%” to the end of the line.

Example 12.2 The following is a knowledge base:

in(kim, R)← teaches(kim, cs422) ∧ in(cs422, R).
grandfather(sam, X)← father(sam, Y) ∧ parent(Y, X).
slithy(toves)← mimsy∧ borogroves ∧ outgrabe(mome, Raths).

From context, kim, cs422, sam, toves, and mome are constants; in, teaches, grand-
father, father, parent, slithy, mimsy, borogroves, and outgrabe are predicate symbols;
and X, Y, and Raths are variables.

The first two clauses about Kim and Sam may make some intuitive sense,
even though we have not explicitly provided any formal specification for the
meaning of sentences of the definite clause language. However, regardless of
the mnemonic names’ suggestiveness, as far as the computer is concerned, the
first two clauses have no more meaning than the third. Meaning is provided
only by virtue of a semantics.

An expression is ground if it does not contain any variables. For example,
teaches(fred, cs322) is ground, but teaches(Prof , Course) is not ground.

The next section defines the semantics. We first consider ground expres-
sions and then extend the semantics to include variables.

12.3.1 Semantics of Ground Datalog

The first step in giving the semantics of Datalog is to give the semantics for the
ground (variable-free) case.

An interpretation is a triple I = 〈D, φ, π〉, where

• D is a non-empty set called the domain. Elements of D are individuals.

• φ is a mapping that assigns to each constant an element of D.

• π is a mapping that assigns to each n-ary predicate symbol a function from
Dn into {true, false}.

φ is a function from names into individuals in the world. The constant c is
said to denote the individual φ(c). Here c is a symbol but φ(c) can be anything:
a real physical object such as a person or a virus, an abstract concept such as a
course, love, or the number 2, or even a symbol.

12.3. Datalog: A Relational Rule Language 497

π(p) specifies whether the relation denoted by the n-ary predicate symbol
p is true or false for each n-tuple of individuals. If predicate symbol p has no
arguments, then π(p) is either true or false. Thus, for predicate symbols with
no arguments, this semantics reduces to the semantics of propositional definite
clauses (page 159).

Example 12.3 Consider the world consisting of three objects on a table:

✂ ☎ ✎

These are drawn in this way because they are things in the world, not symbols.
✂ is a pair of scissors, ☎ is a telephone, and ✎ is a pencil.

Suppose the constants in our language are phone, pencil, and telephone. We
have the predicate symbols noisy and left of . Assume noisy is a unary predicate
(it takes a single argument) and that left of is a binary predicate (it takes two
arguments).

An example interpretation that represents the objects on the table is

• D = {✂, ☎, ✎}.
• φ(phone) = ☎, φ(pencil) = ✎, φ(telephone) = ☎.
• π(noisy): 〈✂〉 false 〈☎〉 true 〈✎〉 false

π(left of):
〈✂, ✂〉 false 〈✂, ☎〉 true 〈✂, ✎〉 true
〈☎, ✂〉 false 〈☎, ☎〉 false 〈☎, ✎〉 true
〈✎, ✂〉 false 〈✎, ☎〉 false 〈✎, ✎〉 false

Because noisy is unary, it takes a singleton individual and has a truth
value for each individual.

Because left of is a binary predicate, it takes a pair of individuals and is
true when the first element of the pair is left of the second element. Thus,
for example, π(left of)(〈✂, ☎〉) = true, because the scissors are to the left
of the telephone; π(left of)(〈✎, ✎〉) = false, because the pencil is not to
the left of itself.

Note how the D is a set of things in the world. The relations are among the ob-
jects in the world, not among the names. As φ specifies that phone and telephone
refer to the same object, exactly the same statements are true about them in this
interpretation.

Example 12.4 Consider the interpretation of Figure 12.1 (page 493).
D is the set with four elements: the person Kim, room 123, room 023, and

the CS building. This is not a set of four symbols, but it is the set containing
the actual person, the actual rooms, and the actual building. It is difficult to
write down this set and, fortunately, you never really have to. To remember
the meaning and to convey the meaning to another person, knowledge base
designers typically describe D, φ, and π by pointing to the physical individuals
or a depiction of them (as is done in Figure 12.1) and describe the meaning in
natural language.

The constants are kim, r123, r023, and cs building. The mapping φ is de-
fined by the gray arcs from each of these constants to an object in the world in
Figure 12.1.

498 12. Individuals and Relations

The predicate symbols are person, in, and part of . The meaning of these
are meant to be conveyed in the figure by the arcs from the predicate
symbols.

Thus, the person called Kim is in the room r123 and is also in the CS build-
ing, and these are the only instances of the in relation that are true. Similarly,
room r123 and room r023 are part of the CS building, and there are no other
part of relationships that are true in this interpretation.

It is important to emphasize that the elements of D are the real physical
individuals, and not their names. The name kim is not in the name r123 but,
rather, the person denoted by kim is in the room denoted by r123.

Each ground term denotes an individual in an interpretation. A constant c
denotes in I the individual φ(c).

A ground atom is either true or false in an interpretation. Atom p(t1, . . . , tn)
is true in I if π(p)(〈t′1, . . . , t′n〉) = true, where t′i is the individual denoted by
term ti, and is false in I otherwise.

Example 12.5 The atom in(kim, r123) is true in the interpretation of Exam-
ple 12.4, because the person denoted by kim is indeed in the room denoted
by r123. Similarly, person(kim) is true, as is part of (r123, cs building). The atoms
in(cs building, r123) and person(r123) are false in this interpretation.

12.3.2 Interpreting Variables

When a variable appears in a clause, the clause is true in an interpretation only
if the clause is true for all possible values of that variable. The variable is said to
be universally quantified within the scope of the clause. If a variable X appears
in a clause C, then claiming that C is true in an interpretation means that C is
true no matter which individual from the domain is denoted by X.

To formally define semantics of variables, a variable assignment, ρ, is a
function from the set of variables into the domain D. Thus, a variable assign-
ment assigns an element of the domain to each variable. Given φ and a variable
assignment ρ, each term denotes an individual in the domain. If the term is a
constant, the individual denoted is given by φ. If the term is a variable, the
individual denoted is given by ρ. Given an interpretation and a variable as-
signment, each atom is either true or false, using the same definition as earlier.
Similarly, given an interpretation and a variable assignment, each clause is ei-
ther true or false.

A clause is true in an interpretation if it is true for all variable assignments.
This is called a universal quantification. The variables are said to be univer-
sally quantified in the scope of the clause. Thus, a clause is false in an interpre-
tation means there is a variable assignment under which the clause is false. The
scope of the variable is the whole clause, which means that the same variable
assignment is used for all instances of a variable in a clause.

12.3. Datalog: A Relational Rule Language 499

Example 12.6 The clause

part of (X, Y)← in(X, Y).

is false in the interpretation of Example 12.4 (page 497), because under the vari-
able assignment with X denoting Kim and Y denoting Room 123, the clause’s
body is true and the clause’s head is false.

The clause

in(X, Y)← part of (Z, Y) ∧ in(X, Z).

is true, because in all variable assignments where the body is true, the head is
also true.

Logical consequence is defined as in Section 5.1.2 (page 160): ground body
g is a logical consequence of KB, written KB |= g, if g is true in every model of
KB.

Example 12.7 Suppose the knowledge base KB is

in(kim, r123).
part of (r123, cs building).
in(X, Y)←

part of (Z, Y) ∧
in(X, Z).

The interpretation defined in Example 12.4 (page 497) is a model of KB, because
each clause is true in that interpretation.

KB |= in(kim, r123), because this is stated explicitly in the knowledge base.
If every clause of KB is true in an interpretation, then in(kim, r123) must be true
in that interpretation.

KB �|= in(kim, r023). The interpretation defined in Example 12.4 is a model
of KB, in which in(kim, r023) is false.

KB �|= part of (r023, cs building). Although part of (r023, cs building) is true in
the interpretation of Example 12.4 (page 497), there is another model of KB in
which part of (r023, cs building) is false. In particular, the interpretation which
is like the interpretation of Example 12.4 (page 497), but where
π(part of)(〈φ(r023), φ(cs building)〉) = false,
is a model of KB in which part of (r023, cs building) is false.

KB |= in(kim, cs building). If the clauses in KB are true in interpretation I,
it must be the case that in(kim, cs building) is true in I, otherwise there is an
instance of the third clause of KB that is false in I – a contradiction to I being a
model of KB.

Notice how the semantics treats variables appearing in a clause’s body but
not in its head [see Example 12.8 (on the next page)].

500 12. Individuals and Relations

Example 12.8 In Example 12.7, the variable Y in the clause defining in is uni-
versally quantified at the level of the clause; thus, the clause is true for all vari-
able assignments. Consider particular values c1 for X and c2 for Y. The clause

in(c1, c2)←
part of (Z, c2) ∧
in(c1, Z).

is true for all variable assignments to Z. If there exists a variable assignment
c3 for Z such that part of (Z, c2) ∧ in(c1, Z) is true in an interpretation, then
in(c1, c2) must be true in that interpretation. Therefore, you can read the last
clause of Example 12.7 as “for all X and for all Y, in(X, Y) is true if there exists
a Z such that part of (Z, Y) ∧ in(X, Z) is true.”

When we want to make the quantification explicit, we write ∀X p(X), which
reads, “for all X, p(X),” to mean p(X) is true for every variable assignment
for X. We write ∃X p(X) and read “there exists X such that p(X)” to mean
p(X) is true for some variable assignment for X. X is said to be an existentially
quantified variable.

The rule P(X)← Q(X, Y) means

∀X ∀Y (P(X)← Q(X, Y)),

which is equivalent to

∀X (P(X)← ∃Y Q(X, Y)).

Thus, free variables that only appear in the body are existentially quantified in
the scope of the body.

It may seem as though there is something peculiar about talking about the
clause being true for cases where it does not make sense.

Example 12.9 Consider the clause

in(cs422, love)←
part of (cs422, sky) ∧
in(sky, love).

where cs422 denotes a course, love denotes an abstract concept, and sky denotes
the sky. Here, the clause is vacuously true in the intended interpretation ac-
cording to the truth table for←, because the clause’s right-hand side is false in
the intended interpretation.

As long as whenever the head is non-sensical, the body is also, the rule can
never be used to prove anything non-sensical. When checking for the truth of
a clause, you must only be concerned with those cases in which the clause’s
body is true. Using the convention that a clause is true whenever the body is
false, even if it does not make sense, makes the semantics simpler and does not
cause any problems.

12.3. Datalog: A Relational Rule Language 501

Humans’ View of Semantics

The formal description of semantics does not tell us why semantics is inter-
esting or how it can be used as a basis to build intelligent systems. The ba-
sic idea behind the use of logic is that, when knowledge base designers have
a particular world they want to characterize, they can select that world as an
intended interpretation, select denotations for the symbols with respect to that
interpretation, and write, as clauses, what is true in that world. When the sys-
tem computes a logical consequence of a knowledge base, the knowledge base
designer or a user can interpret this answer with respect to the intended inter-
pretation. Because the intended interpretation is a model, and a logical conse-
quence is true in all models, a logical consequence must be true in the intended
interpretation.

Informally, the methodology for designing a representation of the world
and how it fits in with the formal semantics is as follows:

Step 1 Select the task domain or world to represent. This could be some aspect
of the real world (for example, the structure of courses and students at a
university, or a laboratory environment at a particular point in time), some
imaginary world (for example, the world of Alice in Wonderland, or the state
of the electrical environment if a switch breaks), or an abstract world (for
example, the world of numbers and sets). Within this world, let the domain
D be the set of all individuals or things that you want to be able to refer to
and reason about. Also, select which relations to represent.

Step 2 Associate constants in the language with individuals in the world that you
want to name. For each element of D you want to refer to by name, assign
a constant in the language. For example, you may select the name “kim” to
denote a particular professor, the name “cs322” for a particular introductory
AI course, the name “two” for the number that is the successor of the number
one, and the name “red” for the color of stoplights. Each of these names
denotes the corresponding individual in the world.

Step 3 For each relation that you may want to represent, associate a predicate
symbol in the language. Each n-ary predicate symbol denotes a function
from Dn into {true, false}, which specifies the subset of Dn for which the rela-
tion is true. For example, the predicate symbol “teaches” of two arguments (a
teacher and a course) may correspond to the binary relation that is true when
the individual denoted by the first argument teaches the course denoted by
the second argument. These relations need not be binary. They could have
any number of (zero or more) arguments. For example, “is red” may be a
predicate that has one argument.

These associations of symbols with their meanings forms an intended
interpretation.

Step 4 You now write clauses that are true in the intended interpretation. This
is often called axiomatizing the domain, where the given clauses are the
axioms of the domain. If the person who is denoted by the symbol kim ac-
tually teaches the course denoted by the symbol cs502, you can assert the
clause teaches(kim, cs502) as being true in the intended interpretation.

502 12. Individuals and Relations

Step 5 Now you are able to ask questions about the intended interpretation and
to interpret the answers using the meaning assigned to the symbols.

Following this methodology, the knowledge base designer does not actually
tell the computer anything until step 4. The first three steps are carried out
in the head of the designer. Of course, the designer should document the de-
notations to make their knowledge bases understandable to other people, so
that they remember each symbol’s denotation, and so that they can check the
truth of the clauses. This is not necessarily something to which the computer
has access.

The world, itself, does not prescribe what the individuals are.

Example 12.10 In one conceptualization of a domain, pink may be a predi-
cate symbol of one argument that is true when the individual denoted by that
argument is pink. In another conceptualization, pink may be an individual that
is the color pink, and it may be used as the second argument to a binary pred-
icate color, which says that the individual denoted by the first argument has
the color denoted by the second argument. Alternatively, someone may want
to describe the world at a level of detail where various shades of red are not
distinguished, and so the color pink would not be included. Someone else may
describe the world in more detail, in which pink is too general a term, for ex-
ample by using the terms coral and salmon.

It is important to realize that the denotations are in the head of the knowl-
edge base designer. The denotations are sometimes not even written down and
are often written in natural language to convey the meaning to other people.
When the individuals in the domain are real physical objects, it is usually diffi-
cult to give the denotation without physically pointing at the individual. When
the individual is an abstract individual – for example, a university course or
the concept of love – it is virtually impossible to write the denotation. How-
ever, this does not prevent the system from representing and reasoning about
such concepts.

Example 12.11 Example 5.5 (page 164) represented the electrical environ-
ment of Figure 1.8 (page 34) using just propositions. Using individuals and re-
lations can make the representation more intuitive, because the general knowl-
edge about how switches work can be clearly separated from the knowledge
about a specific house.

To represent this domain, we first decide what the individuals are in the do-
main. In what follows, we assume that each switch, each light, and each power
outlet is an individual. We also represent each wire between two switches and
between a switch and a light as an individual. Someone may claim that, in fact,
there are pairs of wires joined by connectors and that the electricity flow must
obey Kirchhoff’s laws. Someone else may decide that even that level of abstrac-
tion is inappropriate because we should model the flow of electrons. However,
an appropriate level of abstraction is one that is appropriate for the task at hand.
A resident of the house may not know the whereabouts of the connections be-
tween the individual strands of wire or even the voltage. Therefore, we assume

12.3. Datalog: A Relational Rule Language 503

a flow model of electricity, where power flows from the outside of the house
through wires to lights. This model is appropriate for the task of determining
whether a light should be lit or not, but it may not be appropriate for all tasks.

Next, give names to each individual to which we want to refer. This is done
in Figure 1.8 (page 34). For example, the individual w0 is the wire between light
l1 and switch s2.

Next, choose which relationships to represent. Assume the following pred-
icates with their associated intended interpretations:

• light(L) is true if the individual denoted by L is a light.

• lit(L) is true if the light L is lit and emitting light.

• live(W) is true if there is power coming into W; that is, W is live.

• up(S) is true if switch S is up.

• down(S) is true if switch S is down.

• ok(E) is true if E is not faulty; E can be either a circuit breaker or a light.

• connected to(X, Y) is true if component X is connected to Y such that cur-
rent would flow from Y to X.

At this stage, the computer has not been told anything. It does not know what
the predicates are, let alone what they mean. It does not know what individuals
exist or their names.

Before anything about the particular house is known, the system can be told
general rules such as

lit(L)← light(L) ∧ live(L) ∧ ok(L).

Recursive rules let you state what is live from what is connected to what:

live(X)← connected to(X, Y) ∧ live(Y).
live(outside).

For the particular house, given a particular configuration of components and
their connections, the following facts about the world can be told to the com-
puter:

light(l1).
light(l2).
down(s1).
up(s2).
connected to(w0, w1)← up(s2).
connected to(w0, w2)← down(s2).
connected to(w1, w3)← up(s1).

These rules and atomic clauses are all that the computer is told. It does not
know the meaning of these symbols. However, it can now answer questions
about this particular house.

504 12. Individuals and Relations

12.3.3 Queries with Variables

Queries are used to ask whether something is a logical consequence of a knowl-
edge base. With propositional queries (page 166), a user can ask yes-or-no ques-
tions. Queries with variables allow the system to return the values of the vari-
ables that make the query a logical consequence of the knowledge base.

An instance of a query is obtained by substituting terms for the variables
in the query. Different occurrences of a variable must be replaced by the same
term. Given a query with free variables, an answer is either an instance of the
query that is a logical consequence of the knowledge base, or “no”, meaning
that no instances of the query logically follow from the knowledge base. In-
stances of the query are specified by providing values for the variables in the
query. Determining which instances of a query follow from a knowledge base
is known as answer extraction.

Example 12.12 Consider the clauses of Figure 12.2. The person who wrote
these clauses presumably has some meaning associated with the symbols, and
has written the clauses because they are true in some, perhaps imaginary,
world. The computer knows nothing about rooms or directions. All it knows
are the clauses it is given; and it can compute their logical consequences.

The user can ask the following query:

ask imm west(r105, r107).

and the answer is yes. The user can ask the query

ask imm east(r107, r105).

and the answer is, again, yes. The user can ask the query

ask imm west(r205, r207).

and the answer is no. This means it is not a logical consequence, not that it is
false. There is not enough information in the database to determine whether or
not r205 is immediately west of r207.

The query

ask next door(R, r105).

has two answers. One answer, with R = r107, means next door(r107, r105) is a
logical consequence of the clauses. The other answer is for R = r103. The query

ask west(R, r105).

has two answers: one for R = r103 and one for R = r101. The query

ask west(r105, R).

has three answers: one for R = r107, one for R = r109, and one for R = r111.
The query

ask next door(X, Y).

12.3. Datalog: A Relational Rule Language 505

imm west(W, E) is true if room W is immediately west of room E.%%%%%%%%%%%

imm west(r101, r103).

imm west(r103, r105).

imm west(r105, r107).

imm west(r107, r109).

imm west(r109, r111).

imm west(r131, r129).

imm west(r129, r127).

imm west(r127, r125).

imm east(E, W) is true if room E is immediately east of room W.%%%%%%%%%%%

imm east(E, W)←
imm west(W, E).

next door(R1, R2) is true if room R1 is next door to room R2.%%%%%%%%%%%

next door(E, W)←
imm east(E, W).

next door(W, E)←
imm west(W, E).

two doors east(E, W) is true if room E is two doors east of room W.%%%%%%%%%%%%

two doors east(E, W)←
imm east(E, M) ∧
imm east(M, W).

west(W, E) is true if room W is west of room E.%%%%%%%%%%

west(W, E)←
imm west(W, E).

west(W, E)←
imm west(W, M) ∧
west(M, E).

Figure 12.2: A knowledge base about rooms

has 16 answers, including

X = r103, Y = r101
X = r105, Y = r103
X = r101, Y = r103
· · · .

506 12. Individuals and Relations

12.4 Proofs and Substitutions

Both the bottom-up and top-down propositional proof procedures of Section
5.2.2 (page 167) can be extended to Datalog.

An instance of a clause is obtained by uniformly substituting terms for vari-
ables in the clause. All occurrences of a particular variable are replaced by the
same term. The proof procedure extended for variables must account for the
fact that a free variable in a clause means that any instance of the clause is
true. A proof may have to use different instances of the same clause in a single
proof. The specification of what value is assigned to each variable is called a
substitution.

A substitution is a finite set of the form {V1/t1, . . . , Vn/tn}, where each Vi
is a distinct variable and each ti is a term. The element Vi/ti is a binding for
variable Vi. A substitution is in normal form if no Vi appears in any tj.

Example 12.13 For example, {X/Y, Z/a} is a substitution in normal form
that binds X to Y and binds Z to a. The substitution{X/Y, Z/X} is not in nor-
mal form, because the variable X occurs both on the left and on the right of a
binding.

The application of a substitution σ = {V1/t1, . . . , Vn/tn} to expression e,
written eσ, is an expression that is like the original expression e but with every
occurrence of Vi in e replaced by the corresponding ti. The expression eσ is
called an instance of e. If eσ does not contain any variables, it is called a ground
instance of e.

Example 12.14 Some applications of substitutions are

p(a, X){X/c} = p(a, c).
p(Y, c){Y/a} = p(a, c).
p(a, X){Y/a, Z/X} = p(a, X).
p(X, X, Y, Y, Z)){X/Z, Y/t} = p(Z, Z, t, t, Z).

Substitutions can apply to clauses, atoms, and terms. For example, the result of
applying the substitution {X/Y, Z/a} to the clause

p(X, Y)← q(a, Z, X, Y, Z)

is the clause

p(Y, Y)← q(a, a, Y, Y, a).

12.4. Proofs and Substitutions 507

A substitution σ is a unifier of expressions e1 and e2 if e1σ is identical to e2σ.
That is, a unifier of two expressions is a substitution that when applied to each
expression results in the same expression.

Example 12.15 {X/a, Y/b} is a unifier of t(a, Y, c) and t(X, b, c) as

t(a, Y, c){X/a, Y/b} = t(X, b, c){X/a, Y/b} = t(a, b, c).

Expressions can have many unifiers.

Example 12.16 Atoms p(X, Y) and p(Z, Z) have many unifiers, including
{X/b, Y/b, Z/b}, {X/c, Y/c, Y/c}, and {X/Z, Y/Z}. The third unifier is more
general than the first two, because the first two both have X the same as Z and
Y the same as Z but make more commitments in what these values are.

Substitution σ is a most general unifier (MGU) of expressions e1 and e2 if

• σ is a unifier of the two expressions, and

• if another substitution σ′ exists that is also a unifier of e1 and e2, then eσ′

must be an instance of eσ for all expressions e.

Expression e1 is a renaming of e2 if they differ only in the names of vari-
ables. In this case, they are both instances of each other.

If two expressions have a unifier, they have at least one MGU. The expres-
sions resulting from applying the MGUs to the expressions are all renamings
of each other. That is, if σ and σ′ are both MGUs of expressions e1 and e2, then
e1σ is a renaming of e1σ′.

Example 12.17 {X/Z, Y/Z} and {Z/X, Y/X} are both MGUs of p(X, Y) and
p(Z, Z). The resulting applications

p(X, Y){X/Z, Y/Z} = p(Z, Z)
p(X, Y){Z/X, Y/X} = p(X, X)

are renamings of each other.

12.4.1 Bottom-up Procedure with Variables

The propositional bottom-up proof procedure (page 167) can be extended to
Datalog by using ground instances of the clauses. A ground instance of a
clause is obtained by uniformly substituting constants for the variables in the
clause. The constants required are those appearing in the knowledge base or
in the query. If there are no constants in the knowledge base or the query, one
must be invented.

508 12. Individuals and Relations

Example 12.18 Suppose the knowledge base is

q(a).
q(b).
r(a).
s(W)← r(W).
p(X, Y)← q(X) ∧ s(Y).

The set of all ground instances is

q(a).
q(b).
r(a).
s(a)← r(a).
s(b)← r(b).
p(a, a)← q(a) ∧ s(a).
p(a, b)← q(a) ∧ s(b).
p(b, a)← q(b) ∧ s(a).
p(b, b)← q(b) ∧ s(b).

The propositional bottom-up proof procedure of Section 5.2.2 (page 167) can be
applied to the grounding to derive q(a), q(b), r(a), s(a), p(a, a), and p(b, a) as the
ground instances that are logical consequences.

Example 12.19 Suppose the knowledge base is

p(X, Y).
g← p(W, W).

The bottom-up proof procedure must invent a new constant symbol, say c. The
set of all ground instances is then

p(c, c).
g← p(c, c).

The propositional bottom-up proof procedure will derive p(c, c) and g.
If the query was ask p(a, d), the set of ground instances would change to

reflect these constants.

The bottom-up proof procedure applied to the grounding of the knowledge
base is sound, because each instance of each rule is true in every model. This
procedure is essentially the same as the variable-free case, but it uses the set of
ground instances of the clauses, all of which are true by definition.

This procedure is also complete for ground atoms. That is, if a ground atom
is a consequence of the knowledge base, it will eventually be derived. To prove
this, as in the propositional case (page 169), we construct a particular generic
model. A model must specify what the constants denote. A Herbrand inter-
pretation is an interpretation where the the domain is symbolic and consists

12.4. Proofs and Substitutions 509

of all constants of the language. An individual is invented if there are no con-
stants. In a Herbrand interpretation, each constant denotes itself.

Consider the Herbrand interpretation where the ground instances of the
relations that are eventually derived by the bottom-up procedure with a fair
selection rule are true. It is easy to see that this Herbrand interpretation is a
model of the rules given. As in the variable-free case (page 167), it is a minimal
model in that it has the fewest true atoms of any model. If KB |= g for ground
atom g, then g is true in the minimal model and, thus, is eventually derived.

Example 12.20 Consider the clauses of Figure 12.2 (page 505). The bottom-
up proof procedure can immediately derive each instance of imm west given as
a fact. Then you can add the imm east clauses:

imm east(r103, r101)
imm east(r105, r103)
imm east(r107, r105)
imm east(r109, r107)
imm east(r111, r109)
imm east(r129, r131)
imm east(r127, r129)
imm east(r125, r127)

Next, the next door relations that follow can be added to the set of consequences,
including

next door(r101, r103)
next door(r103, r101)

The two door east relations can be added to the set of consequences, including

two door east(r105, r101)
two door east(r107, r103)

Finally, the west relations that follow can be added to the set of consequences.

12.4.2 Definite Resolution with Variables

The propositional top-down proof procedure (page 169) can be extended to the
case with variables by allowing instances of rules to be used in the derivation.

A generalized answer clause is of the form

yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am,

where t1, . . . , tk are terms and a1, . . . , am are atoms. The use of yes enables
answer extraction: determining which instances of the query variables are a
logical consequence of the knowledge base.

Initially, the generalized answer clause for query q is

yes(V1, . . . , Vk)← q,

510 12. Individuals and Relations

where V1, . . . , Vk are the variables that appear in q. Intuitively this means that
an instance of yes(V1, . . . , Vk) is true if the corresponding instance of the query
is true.

The proof procedure maintains a current generalized answer clause.
At each stage, the algorithm selects an atom ai in the body of the gener-

alized answer clause. It then chooses a clause in the knowledge base whose
head unifies with ai. The SLD resolution of the generalized answer clause
yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am on ai with the chosen clause

a← b1 ∧ . . . ∧ bp,

where ai and a have most general unifier σ, is the answer clause

(yes(t1, . . . , tk)← a1 ∧ . . . ∧ ai−1 ∧ b1 ∧ . . . ∧ bp ∧ ai+1 ∧ . . . ∧ am)σ,

where the body of the chosen clause has replaced ai in the answer clause, and
the MGU is applied to the whole answer clause.

An SLD derivation is a sequence of generalized answer clauses γ0, γ1, . . . ,
γn such that

• γ0 is the answer clause corresponding to the original query. If the query is q,
with free variables V1, . . . , Vk, the initial generalized answer clause γ0 is

yes(V1, . . . , Vk)← q.

• γi is obtained by selecting an atom ai in the body of γi−1; choosing a copy of
a clause a← b1 ∧ . . . ∧ bp in the knowledge base whose head, a, unifies with
ai; replacing ai with the body, b1 ∧ . . . ∧ bp; and applying the unifier to the
whole resulting answer clause.

The main difference between this and the propositional top-down proof
procedure (page 169) is that, for clauses with variables, the proof procedure
must take copies of clauses from the knowledge base. The copying renames
the variables in the clause with new names. This is both to remove name
clashes between variables and because a single proof may use different in-
stances of a clause.

• γn is an answer. That is, it is of the form

yes(t1, . . . , tk)← .

When this occurs, the algorithm returns the answer

V1 = t1, . . . , Vk = tk.

Notice how the answer is extracted; the arguments to yes keep track of the
instances of the variables in the initial query that lead to a successful proof.

A non-deterministic procedure that answers queries by finding SLD deriva-
tions is given in Figure 12.3. This is non-deterministic (page 170) in the sense
that all derivations can be found by making appropriate choices that do not fail.
If all choices fail, the algorithm fails, and there are no derivations. The choose
is implemented using search. This algorithm assumes that unify(ai, a) returns
an MGU of ai and a, if there is one, and ⊥ if they do not unify. Unification is
defined in the next section.

12.4. Proofs and Substitutions 511

1: non-deterministic procedure FODCDeductionTD(KB,q)
2: Inputs
3: KB: a set definite clauses
4: Query q: a set of atoms to prove, with variables V1, . . . , Vk

5: Output
6: substitution θ if KB |= qθ and fail otherwise
7: Local
8: G is a generalized answer clause

9: Set G to generalized answer clause yes(V1, . . . , Vk)← q
10: while G is not an answer do
11: Suppose G is yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am

12: select atom ai in the body of G
13: choose clause a← b1 ∧ . . . ∧ bp in KB
14: Rename all variables in a← b1 ∧ . . . ∧ bp to have new names
15: Let σ be unify(ai, a). Fail if unify returns ⊥.
16: assign G the answer clause: (yes(t1, . . . , tk) ← a1 ∧ . . . ∧ ai−1 ∧ b1 ∧

. . . ∧ bp ∧ ai+1 ∧ . . . ∧ am)σ

17: return V1 = t1, . . . , Vk = tk where G is yes(t1, . . . , tk)←

Figure 12.3: Top-down definite clause proof procedure

Example 12.21 Consider the database of Figure 12.2 (page 505) and the query

ask two doors east(R, r107).

Figure 12.4 (on the next page) shows a successful derivation with answer
R = r111.

Note that this derivation used two instances of the rule

imm east(E, W)← imm west(W, E).

One instance eventually substituted r111 for E, and one instance substituted
r109 for E.

Some choices of which clauses to resolve against may have resulted in a
partial derivation that could not be completed.

Unification

The preceding algorithms assumed that we could find the most general unifier
of two atoms. The problem of unification is the following: given two atoms,
determine if they unify, and, if they do, return an MGU of them.

The unification algorithm is given in Figure 12.5 (page 513). E is a set of
equality statements implying the unification, and S is a set of equalities of the
correct form of a substitution. In this algorithm, if x/y is in the substitution S,

512 12. Individuals and Relations

yes(R)← two doors east(R, r107)
resolve with two doors east(E1, W1)←

imm east(E1, M1) ∧ imm east(M1, W1).

substitution: {E1/R, W1/r107}
yes(R)← imm east(R, M1) ∧ imm east(M1, r107)

select leftmost conjunct

resolve with imm east(E2, W2)← imm west(W2, E2)
substitution: {E2/R, W2/M1}

yes(R)← imm west(M1, R) ∧ imm east(M1, r107)
select leftmost conjunct

resolve with imm west(r109, r111)
substitution: {M1/r109, R/r111}

yes(r111)← imm east(r109, r107)
resolve with imm east(E3, W3)← imm west(W3, E3)
substitution: {E3/r109, W3/r107}

yes(r111)← imm west(r107, r109)
resolve with imm west(r107, r109)
substitution: {}

yes(r111)←

Figure 12.4: A derivation for query ask two doors east(R, r107).

then, by construction, x is a variable that does not appear elsewhere in S or in
E. In line 20, x and y must have the same predicate and the same number of
arguments; otherwise the unification fails.

Example 12.22 Suppose we want to unify p(X, Y, Y) with p(a, Z, b). Initially
E is {p(X, Y, Y) = p(a, Z, b)}. The first time through the while loop, E becomes
{X = a, Y = Z, Y = b}. Suppose X = a is selected next. Then S becomes {X/a}
and E becomes {Y = Z, Y = b}. Suppose Y = Z is selected. Then Y is replaced
by Z in S and E. S becomes {X/a, Y/Z} and E becomes {Z = b}. Finally Z = b is
selected, Z is replaced by b, S becomes {X/a, Y/b, Z/b}, and E becomes empty.
The substitution {X/a, Y/b, Z/b} is returned as an MGU.

12.5 Function Symbols

Datalog requires a name, using a constant, for every individual about which
the system reasons. Often it is simpler to identify an individual in terms of its
components, rather than requiring a separate constant for each individual.

12.5. Function Symbols 513

1: procedure Unify(t1, t2)
2: Inputs
3: t1, t2: atoms
4: Output
5: most general unifier of t1 and t2 if it exists or ⊥ otherwise
6: Local
7: E: a set of equality statements
8: S: substitution
9: E← {t1 = t2}

10: S = {}
11: while E �= {} do
12: select and remove x = y from E
13: if y is not identical to x then
14: if x is a variable then
15: replace x with y everywhere in E and S
16: S← {x/y} ∪ S
17: else if y is a variable then
18: replace y with x everywhere in E and S
19: S← {y/x} ∪ S
20: else if x is f (x1, . . . , xn) and y is f (y1, . . . , yn) then
21: E← E∪ {x1 = y1, . . . , xn = yn}
22: else
23: return ⊥
24: return S

Figure 12.5: Unification algorithm for Datalog

Example 12.23 In many domains, you want to be able to refer to a time as an
individual. You may want to say that some course is held at 11:30 a.m. You do
not want a separate constant for each possible time. It is better to define times
in terms of, say, the number of hours past midnight and the number of min-
utes past the hour. Similarly, you may want to reason with facts that mention
particular dates. You do not want to give a constant for each date. It is easier to
define a date in terms of the year, the month, and the day.

Using a constant to name each individual means that the knowledge base can
only represent a finite number of individuals, and the number of individuals
is fixed when the knowledge base is designed. However, many cases exist in
which you want to reason about a potentially infinite set of individuals.

Example 12.24 Suppose you want to build a system that takes questions in
English and that answers them by consulting an online database. In this case,
each sentence is considered an individual. You do not want to have to give each
sentence its own name, because there are too many English sentences to name

514 12. Individuals and Relations

them all. It may be better to name the words and then to specify a sentence in
terms of the sequence of words in the sentence. This approach may be more
practical because there are far fewer words to name than sentences, and each
word has it own natural name. You may also want to specify the words in terms
of the letters in the word or in terms of their constituent parts.

Example 12.25 You may want to reason about lists of students. For example,
you may be required to derive the average mark of a class of students. A class
list of students is an individual that has properties, such as its length and its
seventh element. Although it may be possible to name each list, it is very in-
convenient to do so. It is much better to have a way to describe lists in terms of
their elements.

Function symbols allow you to describe individuals indirectly. Rather than
using a constant to describe an individual, an individual is described in terms
of other individuals.

Syntactically a function symbol is a word starting with a lower-case letter.
We extend the definition of a term (page 494) so that a term is either a variable,
a constant, or of the form f (t1, . . . , tn), where f is a function symbol and each ti
is a term. Apart from extending the definition of terms, the language stays the
same.

Terms only appear within predicate symbols. You do not write clauses that
imply terms. You may, however, write clauses that include atoms that use func-
tion symbols as ways to describe individuals.

The semantics must be changed to reflect the new syntax. The only thing
we change is the definition of φ (page 496). We extend φ so that φ is a mapping
that assigns to each constant an element of D and to each n-ary function symbol
a function from Dn into D. Thus, φ specifies the mapping denoted by each
function symbol. In particular, φ specifies which individual is denoted by each
ground term.

A knowledge base consisting of clauses with function symbols can com-
pute any computable function. Thus, a knowledge base can be interpreted as a
program, called a logic program.

This slight expansion of the language has a major impact. With just one
function symbol and one constant, infinitely many different terms and in-
finitely many different atoms exist. The infinite number of terms can be used
to describe an infinite number of individuals.

Example 12.26 Suppose you want to define times during the day as in Ex-
ample 12.23. You can use the function symbol am so that am(H, M) denotes the
time H:M a.m., when H is an integer between 1 and 12 and M is an integer
between 0 and 59. For example, am(10, 38) denotes the time 10:38 a.m.; am de-
notes a function from pairs of integers into times. Similarly, you can define the
symbol pm to denote the times after noon.

12.5. Function Symbols 515

The only way to use the function symbol is to write clauses that define rela-
tions using the function symbol. There is no notion of defining the am function;
times are not in a computer any more than people are.

To use function symbols, you can write clauses that are quantified over
the arguments of the function symbol. For example, the following defines the
before(T1, T2) relation that is true if time T1 is before time T2 in a day:

before(am(H1, M1), pm(H2, M2)).
before(am(12, M1), am(H2, M2))←

H2 < 12.
before(am(H1, M1), am(H2, M2))←

H1 < H2∧
H2 < 12.

before(am(H, M1), am(H, M2))←
M1 < M2.

before(pm(12, M1), pm(H2, M2))←
H2 < 12.

before(pm(H1, M1), pm(H2, M2))←
H1 < H2∧
H2 < 12.

before(pm(H, M1), pm(H, M2))←
M1 < M2.

This is complicated because the morning and afternoon hours start with 12,
then go to 1, so that, for example, 12:37 a.m. is before 1:12 a.m.

Function symbols are used to build data structures.

Example 12.27 A tree is a useful data structure. You could use a tree to build a
syntactic representation of a sentence for a natural language processing system.
We could decide that a labeled tree is either of the form node(N, LT, RT) or of
the form leaf (L). Thus, node is a function from a name, a left tree, and a right
tree into a tree. The function symbol leaf denotes a function from a node into a
tree.

The relation at leaf (L, T) is true if label L is the label of a leaf in tree T. It can
be defined by

at leaf (L, leaf (L)).
at leaf (L, node(N, LT, RT))←

at leaf (L, LT).
at leaf (L, node(N, LT, RT))←

at leaf (L, RT).

This is an example of a structural recursive program. The rules cover all of the
cases for each of the structures representing trees.

516 12. Individuals and Relations

The relation in tree(L, T), which is true if label L is the label of an interior
node of tree T, can be defined by

in tree(L, node(L, LT, RT)).
in tree(L, node(N, LT, RT))←

in tree(L, LT).
in tree(L, node(N, LT, RT))←

in tree(L, RT).

Example 12.28 You can reason about lists without any notion of a list being
built in. A list is either the empty list or an element followed by a list. You can
invent a constant to denote the empty list. Suppose you use the constant nil to
denote the empty list. You can choose a function symbol, say cons(Hd, Tl), with
the intended interpretation that it denotes a list with first element Hd and rest of
the list Tl. The list containing the elements a, b, c would then be represented as

cons(a, cons(b, cons(c, nil))).

To use lists, one must write predicates that do something with them. For
example, the relation append(X, Y, Z) that is true when X, Y, and Z are lists,
such that Z contains the elements of X followed by the elements of Z, can be
defined recursively by

append(nil, L, L).
append(cons(Hd, X), Y, cons(Hd, Z))←

append(X, Y, Z).

There is nothing special about cons or nil; we could have just as well used foo
and bar.

12.5.1 Proof Procedures with Function Symbols

The proof procedures with variables carry over for the case with function sym-
bols. The main difference is that the class of terms is expanded to include func-
tion symbols.

The use of function symbols involves infinitely many terms. This means
that, when forward chaining on the clauses, we have to ensure that the selec-
tion criterion for selecting clauses is fair (page 170).

Example 12.29 To see why fairness is important, consider the following
clauses as part of a larger program:

num(0).
num(s(N))← num(N).

An unfair strategy could initially select the first of these clauses to forward
chain on and, for every subsequent selection, select the second clause. The
second clause can always be used to derive a new consequence. This strat-
egy never selects any other clauses and thus never derives the consequences
of these other clauses.

12.5. Function Symbols 517

First-Order and Second-Order Logic

First-order predicate calculus is a logic that extends propositional calculus
(page 157) to include atoms with function symbols and logical variables. All
logical variables must have explicit quantification in terms of “for all” (∀) and
“there exists” (∃) (page 500). The semantics of first-order predicate calculus
is like the semantics of logic programs presented in this chapter, but with a
richer set of operators.

The language of logic programs forms a pragmatic subset of first-order
predicate calculus, which has been developed because it is useful for many
tasks. First-order predicate calculus can be seen as a language that adds dis-
junction and explicit quantification to logic programs.

First-order logic is of first order because it allows quantification over indi-
viduals in the domain. First-order logic allows neither predicates as variables
nor quantification over predicates.

Second-order logic allows for quantification over first-order relations and
predicates whose arguments are first-order relations. These are second-order
relations. For example, the second-order logic formula

∀R symmetric(R)↔ (∀X∀Y R(X, Y)→ R(Y, X))

defines the second-order relation symmetric, which is true if its argument is a
symmetric relation.

Second-order logic seems necessary for many applications because transi-
tive closure is not first-order definable. For example, suppose you want before
to be the transitive closure of next, where next(X, s(X)) is true. Think of next
meaning the “next millisecond” and before denoting “before.” The natural
first-order definition would be the definition

∀X∀Y before(X, Y)↔ (Y = s(X) ∨ before(s(X), Y)) . (12.1)

This expression does not accurately capture the definition, because, for
example,

∀X∀Y before(X, Y)→ ∃W Y = s(W)

does not logically follow from Formula (12.1), because there are nonstandard
models of Formula (12.1) with Y denoting infinity. To capture the transitive
closure, you require a formula stating that before is the minimal predicate that
satisfies the definition. This can be stated using second-order logic.

First-order logic is recursively enumerable, which means that a sound
and complete proof procedure exists in which every true statement can be
proved by a sound proof procedure on a Turing machine. Second-order logic
is not recursively enumerable, so there does not exist a sound and complete
proof procedure that can be implemented on a Turing machine.

518 12. Individuals and Relations

This problem of ignoring some clauses forever is known as starvation. A fair
selection criterion is one such that any clause available to be selected will even-
tually be selected. The bottom-up proof procedure is complete only if it is
fair.

The top-down proof procedure is the same as for Datalog [see Figure 12.3
(page 511)]. Unification becomes more complicated, because it must recursively
descend into the structure of terms. There is one change to the unification al-
gorithm: a variable X does not unify with a term t in which X occurs and is
not X itself. Checking for this condition is known as the occurs check. If the oc-
curs check is not used and a variable is allowed to unify with a term in which
it appears, the proof procedure becomes unsound, as shown in the following
example.

Example 12.30 Consider the knowledge base with only one clause:

lt(X, s(X)).

Suppose the intended interpretation is the domain of integers in which lt means
“less than” and s(X) denotes the integer after X. The query ask lt(Y, Y) should
fail because it is false in our intended interpretation that there is no number less
than itself. However, if X and s(X) could unify, this query would succeed. In
this case, the proof procedure would be unsound because something could be
derived that is false in a model of the axioms.

The unification algorithm of Figure 12.5 (page 513) finds the MGU of two terms
with function symbols with one change. The algorithm should return⊥ if it se-
lects an equality x = y, where x is a variable and y is a term that is not x,
but contains x. This last step is the occurs check. The occurs check is some-
times omitted (e.g., in Prolog), because removing it makes the proof proce-
dure more efficient, even though removing it makes the proof procedure un-
sound.

The following example shows the details of SLD resolution with function
symbols.

Example 12.31 Consider the clauses

append(c(A, X), Y, c(A, Z))←
append(X, Y, Z).

append(nil, Z, Z).

For now, ignore what this may mean. Like the computer, treat this as a problem
of symbol manipulation. Consider the following query:

ask append(F, c(L, nil), c(l, c(i, c(s, c(t, nil))))).

12.5. Function Symbols 519

The following is a derivation:

yes(F, L)← append(F, c(L, nil), c(l, c(i, c(s, c(t, nil)))))
resolve with append(c(A1, X1), Y1, c(A1, Z1))← append(X1, Y1, Z1)
substitution: {F/c(l, X1), Y1/c(L, nil), A1/l, Z1/c(i, c(s, c(t, nil)))}

yes(c(l, X1), L)← append(X1, c(L, nil), c(i, c(s, c(t, nil))))
resolve with append(c(A2, X2), Y2, c(A2, Z2))← append(X2, Y2, Z2)
substitution: {X1/c(i, X2), Y2/c(L, nil), A2/i, Z2/c(s, c(t, nil))}

yes(c(l, c(i, X2)), L)← append(X2, c(L, nil), c(s, c(t, nil)))
resolve with append(c(A3, X3), Y3, c(A3, Z3))← append(X3, Y3, Z3)
substitution: {X2/c(s, X3), Y3/c(L, nil), A3/s, Z3/c(t, nil)}

yes(c(l, c(i, c(s, X3))), L)← append(X3, c(L, nil), c(t, nil))

At this stage both clauses are applicable. Choosing the first clause gives

resolve with append(c(A4, X4), Y4, c(A4, Z4))← append(X4, Y4, Z4)
substitution: {X3/c(t, X4), Y4/c(L, nil), A4/t, Z4/nil}

yes(c(l, c(i, c(s, X3))), L)← append(X4, c(L, nil), nil)

At this point, there are no clauses whose head unifies with the atom in the
generalized answer clause’s body. The proof fails.

Choosing the second clause instead of the first gives

resolve with append(nil, Z5, Z5).
substitution: {Z5/c(t, nil), X3/nil, L/t}

yes(c(l, c(i, c(s, nil))), t)←
At this point, the proof succeeds, with answer F = c(l, c(i, c(s, nil))), L = t.

For the rest of this chapter, we use the “syntactic sugar” notation of Prolog
for representing lists. The empty list, nil, is written as []. The list with first
element E and the rest of the list R, which was cons(E, R), is now written as
[E|R]. There is one notational simplification: [X|[Y]] is written as [X, Y], where
Y can be a sequence of values. For example, [a|[]] is written as [a], and [b|[a|[]]]
is written as [b, a]; [a|[b|c]] is written as [a, b|c].

Example 12.32 Using the list notation, append from the previous example can
be written as

append([A|X], Y, [A|Z])←
append(X, Y, Z).

append([], Z, Z).

The query

ask append(F, [L], [l, i, s, t])

has an answer F = [l, i, s], L = t. The proof is exactly as in the previous example.
As far as the proof procedure is concerned, nothing has changed; there is just a
renamed function symbol and constant.

520 12. Individuals and Relations

12.6 Applications in Natural Language Processing

Natural language processing is an interesting and difficult domain in which to
develop and evaluate representation and reasoning theories. All of the prob-
lems of AI arise in this domain; solving “the natural language problem” is as
difficult as solving “the AI problem” because any domain can be expressed in
natural language. The field of computational linguistics has a wealth of tech-
niques and knowledge. In this book, we can only give an overview.

There are at least three reasons for studying natural language processing:

• You want a computer to communicate with users in their terms; you would
rather not force users to learn a new language. This is particularly important
for casual users and those users, such as managers and children, who have
neither the time nor the inclination to learn new interaction skills.

• There is a vast store of information recorded in natural language that could
be accessible via computers. Information is constantly generated in the form
of books, news, business and government reports, and scientific papers,
many of which are available online. A system requiring a great deal of in-
formation must be able to process natural language to retrieve much of the
information available on computers.

• Many of the problems of AI arise in a very clear and explicit form in natural
language processing and, thus, it is a good domain in which to experiment
with general theories.

The development of natural language processing provides the possibility
of natural language interfaces to knowledge bases and natural language trans-
lation. We show in the next section how to write a natural language query
answering system that is applicable to very narrow domains for which styl-
ized natural language is adequate and in which little, if any, ambiguity ex-
ists. At the other extreme are shallow but broad systems, such as the help
system presented in Example 6.16 (page 246) and Example 7.13 (page 312).
Example 7.13 (page 312). Developing useful systems that are both deep and
broad is difficult.

There are three major aspects of any natural language understanding
theory:

Syntax The syntax describes the form of the language. It is usually specified by
a grammar. Natural language is much more complicated than the formal
languages used for the artificial languages of logics and computer programs.

Semantics The semantics provides the meaning of the utterances or sentences
of the language. Although general semantic theories exist, when we build a
natural language understanding system for a particular application, we try
to use the simplest representation we can. For example, in the development
that follows, there is a fixed mapping between words and concepts in the
knowledge base, which is inappropriate for many domains but simplifies
development.

12.6. Applications in Natural Language Processing 521

Pragmatics The pragmatic component explains how the utterances relate to the
world. To understand language, an agent should consider more than the
sentence; it has to take into account the context of the sentence, the state of
the world, the goals of the speaker and the listener, special conventions, and
the like.

To understand the difference among these aspects, consider the following sen-
tences, which might appear at the start of an AI textbook:

• This book is about artificial intelligence.

• The green frogs sleep soundly.

• Colorless green ideas sleep furiously.

• Furiously sleep ideas green colorless.

The first sentence would be quite appropriate at the start of such a book; it
is syntactically, semantically, and pragmatically well formed. The second sen-
tence is syntactically and semantically well formed, but it would appear very
strange at the start of an AI book; it is thus not pragmatically well formed for
that context. The last two sentences are attributed to linguist Noam Chomsky
[1957]. The third sentence is syntactically well formed, but it is semantically
non-sensical. The fourth sentence is syntactically ill formed; it does not make
any sense – syntactically, semantically, or pragmatically.

In this book, we are not attempting to give a comprehensive introduction to
computational linguistics. See the references at the end of the chapter for such
introductions.

12.6.1 Using Definite Clauses for Context-Free Grammars

This section shows how to use definite clauses to represent aspects of the syn-
tax and semantics of natural language.

Languages are defined by their legal sentences. Sentences are sequences of
symbols. The legal sentences are specified by a grammar.

Our first approximation of natural language is a context-free grammar. A
context-free grammar is a set of rewrite rules, with non-terminal symbols
transforming into a sequence of terminal and non-terminal symbols. A sen-
tence of the language is a sequence of terminal symbols generated by such
rewriting rules. For example, the grammar rule

sentence �−→ noun phrase, verb phrase

means that a non-terminal symbol sentence can be a noun phrase followed by
a verb phrase. The symbol “ �−→” means “can be rewritten as.” If a sentence of
natural language is represented as a list of words, this rule means that a list of
words is a sentence if it is a noun phrase followed by a verb phrase:

sentence(S)← noun phrase(N), verb phrase(V), append(N, V, S).

522 12. Individuals and Relations

To say that the word “computer” is a noun, you would write

noun([computer]).

There is an alternative, simpler representation of context-free grammar
rules using definite clauses that does not require an explicit append, known
as a definite clause grammar (DCG). Each non-terminal symbol s becomes a
predicate with two arguments, s(T1, T2), which means that list T2 is an ending
of the list T1 such that all of the words in T1 before T2 form a sequence of words
of the category s. Lists T1 and T2 together form a difference list of words that
make the class given by the non-terminal symbol, because it is the difference
of these that forms the syntactic category.

Example 12.33 Under this representation, noun phrase(T1, T2) is true if list T2
is an ending of list T1 such that all of the words in T1 before T2 form a noun
phrase. T2 is the rest of the sentence. You can think of T2 as representing a
position in a list that is after position T1. The difference list represents the words
between these positions.

The atomic symbol

noun phrase([the, student, passed, the, course, with, a, computer],
[passed, the, course, with, a, computer])

is true in the intended interpretation because “the student” forms a noun
phrase.

The grammar rule

sentence �−→ noun phrase, verb phrase

means that there is a sentence between some T0 and T2 if there exists a noun
phrase between T0 and T1 and a verb phrase between T1 and T2:

sentence︷ ︸︸ ︷
T0︸ ︷︷ ︸

noun phrase

T1︸ ︷︷ ︸
verb phrase

T2

This grammar rule can be specified as the following clause:

sentence(T0, T2)←
noun phrase(T0, T1) ∧
verb phrase(T1, T2).

In general, the rule

h �−→ b1, b2, . . . , bn

12.6. Applications in Natural Language Processing 523

says that h is composed of a b1 followed by a b2, . . . , followed by a bn, and is
written as the definite clause

h(T0, Tn)←
b1(T0, T1) ∧
b2(T1, T2) ∧
...

bn(Tn−1, Tn).

using the interpretation

h︷ ︸︸ ︷
T0︸ ︷︷ ︸

b1

T1︸ ︷︷ ︸
b2

T2 · · ·Tn−1︸ ︷︷ ︸
bn

Tn

where the Ti are new variables.
To say that non-terminal h gets mapped to the terminal symbols, t1, . . . , tn,

one would write

h([t1, · · · , tn|T], T)

using the interpretation

h︷ ︸︸ ︷
t1, · · · , tn T

Thus, h(T1, T2) is true if T1 = [t1, . . . , tn|T2].

Example 12.34 The rule that specifies that the non-terminal h can be rewritten
to the non-terminal a followed by the non-terminal b followed by the terminal
symbols c and d, followed by the non-terminal symbol e followed by the termi-
nal symbol f and the non-terminal symbol g, can be written as

h �−→ a, b, [c, d], e, [f], g

and can be represented as

h(T0, T6)←
a(T0, T1) ∧
b(T1, [c, d|T3]) ∧
e(T3, [f |T5]) ∧
g(T5, T6).

Note that the translations T2 = [c, d|T3] and T4 = [f |T5] were done manually.

Figure 12.6 (on the next page) axiomatizes a simple grammar of English.
Figure 12.7 (page 525) gives a simple dictionary of words and their parts of
speech, which can be used with this grammar.

524 12. Individuals and Relations

A sentence is a noun phrase followed by a verb phrase.%%%%%%%%%%

sentence(T0, T2)←
noun phrase(T0, T1) ∧
verb phrase(T1, T2).

A noun phrase is a determiner followed by modifiers followed by a noun%%%%%%%%%%%%
followed by an optional prepositional phrase.%%%%%

noun phrase(T0, T4)←
det(T0, T1) ∧
modifiers(T1, T2) ∧
noun(T2, T3) ∧
pp(T3, T4).

Modifiers consist of a (possibly empty) sequence of adjectives.%%%%%%%%

modifiers(T, T).

modifiers(T0, T2)←
adjective(T0, T1) ∧
modifiers(T1, T2).

An optional prepositional phrase is either nothing or a preposition followed%%%%%%%%%%
by a noun phrase.%%%

pp(T, T).

pp(T0, T2)←
preposition(T0, T1) ∧
noun phrase(T1, T2).

A verb phrase is a verb followed by a noun phrase and an optional%%%%%%%%%%%%
prepositional phrase.%%%

verb phrase(T0, T3)←
verb(T0, T1) ∧
noun phrase(T1, T2) ∧
pp(T2, T3).

Figure 12.6: A context-free grammar for a very restricted subset of English

12.6. Applications in Natural Language Processing 525

det(T, T).

det([a|T], T).

det([the|T], T).

noun([student|T], T).

noun([course|T], T).

noun([computer|T], T).

adjective([practical|T], T).

verb([passed|T], T).

preposition([with|T], T).

Figure 12.7: A simple dictionary

Example 12.35 For the grammar of Figure 12.6 and the dictionary of Figure
12.7, the query

ask noun phrase([the, student, passed, the, course, with, a, computer], R).

will return

R = [passed, the, course, with, a, computer].

The sentence “The student passed the course with a computer.” has two differ-
ent parses, one using the clause instance

verb phrase([passed, the, course, with, a, computer], [])←
verb([passed, the, course, with, a, computer],

[the, course, with, a, computer]) ∧
noun phrase([the, course, with, a, computer], []) ∧
pp([], [])

and one using the instance

verb phrase([passed, the, course, with, a, computer], [])←
verb([passed, the, course, with, a, computer],

[the, course, with, a, computer]) ∧
noun phrase([the, course, with, a, computer], [with, a, computer]) ∧
pp([with, a, computer], []).

In the first of these, the prepositional phrase modifies the noun phrase (i.e., the
course is with a computer); and in the second, the prepositional phrase modifies
the verb phrase (i.e., the course was passed with a computer).

526 12. Individuals and Relations

12.6.2 Augmenting the Grammar

A context-free grammar does not adequately express the complexity of the
grammar of natural languages, such as English. Two mechanisms can be added
to this grammar to make it more expressive:

• extra arguments to the non-terminal symbols and

• arbitrary conditions on the rules.

The extra arguments will enable us to do several things: to construct a parse
tree, to represent the semantic structure of a sentence, to incrementally build a
query that represents a question to a database, and to accumulate information
about phrase agreement (such as number, tense, gender, and person).

12.6.3 Building Structures for Non-terminals

You can add an extra argument to the predicates to represent a parse tree, form-
ing a rule such as

sentence(T0, T2, s(NP, VP))←
noun phrase(T0, T1, NP) ∧
verb phrase(T1, T2, VP).

which means that the parse tree for a sentence is of the form s(NP, VP), where
NP is the parse tree for the noun phrase and VP is the parse tree for the verb
phrase.

This is important if you want some result from the syntactic analysis, not
just to know whether the sentence is syntactically valid. The notion of a parse
tree is a simplistic form of what is required because it does not adequately rep-
resent the meaning or “deep structure” of a sentence. For example, you would
really like to recognize that “Alex taught the AI course” and “the AI course was
taught by Alex” have the same meaning, only differing in the active or passive
voice.

12.6.4 Canned Text Output

There is nothing in the definition of the grammar that requires English input
and the parse tree as output. A query of grammar rule with the meaning of
the sentence bound and a free variable representing the sentence can produce
a sentence that matches the meaning.

One such use of grammar rules is to provide canned text output from logic
terms; the output is a sentence in English that matches the logic term. This
is useful for producing English versions of atoms, rules, and questions that a
user – who may not know the intended interpretation of the symbols, or even
the syntax of the formal language – can easily understand.

12.6. Applications in Natural Language Processing 527

trans(Term, T0, T1) is true if Term translates into the words contained in the%%%%%%%%%%
difference list T0− T1.%%

trans(scheduled(S, C, L, R), T1, T8)←
trans(session(S), T1, [of |T3]) ∧
trans(course(C), T3, [is, scheduled, at|T5]) ∧
trans(time(L), T5, [in|T7]) ∧
trans(room(R), T7, T8).

trans(session(w11), [the, winter, 2011, session|T], T).

trans(course(cs422), [the, advanced, artificial, intelligence, course|T], T).

trans(time(clock(0, M)), [12, :, M, am|T], T).

trans(time(clock(H, M)), [H, :, M, am|T], T)←
H > 0∧H < 12.

trans(time(clock(12, M)), [12, :, M, pm|T], T).

trans(time(clock(H, M)), [H1, :, M, pm|T], T)←
H > 12∧
H1 is H− 12.

trans(room(above(R)), [the, room, above|T1], T2)←
trans(room(R), T1, T2).

trans(room(csci333), [the, computer, science, department, office|T], T).

Figure 12.8: Grammar for output of canned English

Example 12.36 Figure 12.8 shows a grammar for producing canned text on
schedule information. For example, the query

ask trans(scheduled(w11, cs422, clock(15, 30), above(csci333)), T, []).

produces the answer T = [the, winter, 2011, session, of, the, advanced, artificial,
intelligence, course, is, scheduled, at, 3, :, 30, pm, in, the, room, above, the, computer,
science, department, office]. This list could be written as a sentence to the user.

This grammar would probably not be useful for understanding natural lan-
guage, because it requires a very stylized form of English; the user would have
to use the exact translation of a term to get a legal parse.

12.6.5 Enforcing Constraints

Natural language imposes constraints which, for example, disallow sentences
such as “a students eat.” Words in a sentence must satisfy some agreement
criteria. “A students eat” fails to satisfy the criterion of number agreement,
which specifies whether the nouns and verbs are singular or plural.

528 12. Individuals and Relations

Number agreement can be enforced in the grammar by parametrizing the
non-terminals by the number and making sure that the numbers of the dif-
ferent parts of speech agree. You only add an extra argument to the relevant
non-terminals.

Example 12.37 The grammar of Figure 12.9 does not allow “a students,” “the
student eat,” or “the students eats,” because all have number disagreement, but
it allows “a green student eats,” “the students,” or “the student,” because “the”
can be either singular or plural.

To parse the sentence “the student eats,” you issue the query

ask sentence([the, student, eats], [], Num, T)

and the answer returned is

Num = singular,
T = s(np(definite, [], student, nopp), vp(eat, nonp, nopp)).

To parse the sentence “the students eat,” you issue the query

ask sentence([the, students, eat], [], Num, T)

and the answer returned is

Num = plural,
T = s(np(definite, [], student, nopp), vp(eat, nonp, nopp)).

To parse the sentence “a student eats,” you issue the query

ask sentence([a, student, eats], [], Num, T)

and the answer returned is

Num = singular,
T = s(np(indefinite, [], student, nopp), vp(eat, nonp, nopp)).

Note that the only difference between the answers is whether the subject is
singular and whether the determiner is definite.

12.6.6 Building a Natural Language Interface to a Database

You can augment the preceding grammar to implement a simple natural lan-
guage interface to a database. The idea is that, instead of transforming sub-
phrases into parse trees, you transform them into a form that can be queried
on a database. For example, a noun phrase becomes an individual with a set of
predicates defining it.

Example 12.38 The phrase “a female student enrolled in a computer science
course” could be translated into

answer(X)←
female(X) ∧ student(X) ∧ enrolled in(X, Y) ∧ course(Y)
∧department(Y, comp science).

12.6. Applications in Natural Language Processing 529

A sentence is a noun phrase followed by a verb phrase.%%%%%%%%%%

sentence(T0, T2, Num, s(NP, VP))←
noun phrase(T0, T1, Num, NP) ∧
verb phrase(T1, T2, Num, VP).

A noun phrase is empty or a determiner followed by modifiers followed by%%%%%%%%%%%%
a noun followed by an optional prepositional phrase.%%%%%%%

noun phrase(T, T, Num, nonp).

noun phrase(T0, T4, Num, np(Det, Mods, Noun, PP))←
det(T0, T1, Num, Det) ∧
modifiers(T1, T2, Mods) ∧
noun(T2, T3, Num, Noun) ∧
pp(T3, T4, PP).

A verb phrase is a verb, followed by a noun phrase, followed by an optional%%%%%%%%%%%%%%
prepositional phrase.%%

verb phrase(T0, T3, Num, vp(V, NP, PP))←
verb(T0, T1, Num, V) ∧
noun phrase(T1, T2, N2, NP) ∧
pp(T2, T3, PP).

An optional prepositional phrase is either nothing or a preposition followed%%%%%%%%%%
by a noun phrase. Only the null case is given here.%%%%%%%%%

pp(T, T, nopp).

Modifiers is a sequence of adjectives. Only the null case is given.%%%%%%%%%%%

modifiers(T, T, []).

The dictionary.%

det([a|T], T, singular, indefinite).

det([the|T], T, Num, definite).

noun([student|T], T, singular, student).

noun([students|T], T, plural, student).

verb([eats|T], T, singular, eat).

verb([eat|T], T, plural, eat).

Figure 12.9: Grammar to enforce number agreement and build parse tree

530 12. Individuals and Relations

A noun phrase is a determiner followed by modifiers followed by a noun%%%%%%%%%%%%
followed by an optional prepositional phrase.%%%%%

noun phrase(T0, T4, Obj, C0, C4)←
det(T0, T1, Obj, C0, C1) ∧
modifiers(T1, T2, Obj, C1, C2) ∧
noun(T2, T3, Obj, C2, C3) ∧
pp(T3, T4, Obj, C3, C4).

Modifiers consist of a sequence of adjectives.%%%%%%

modifiers(T, T, Obj, C, C).

modifiers(T0, T2, Obj, C0, C2)←
adjective(T0, T1, Obj, C0, C1) ∧
modifiers(T1, T2, Obj, C1, C2).

An optional prepositional phrase is either nothing or a preposition followed%%%%%%%%%%
by a noun phrase.%%%

pp(T, T, Obj, C, C).

pp(T0, T2, O1, C0, C2)←
preposition(T0, T1, O1, O2, C0, C1) ∧
noun phrase(T1, T2, O2, C1, C2).

Figure 12.10: A grammar that constructs a query

Let us ignore the problems of quantification, such as how the words “all,” “a,”
and “the” get translated into quantifiers. You can construct a query by allowing
noun phrases to return an individual and a list of constraints imposed by the
noun phrase on the individual. Appropriate grammar rules are specified in
Figure 12.10, and they are used with the dictionary of Figure 12.11.

In this grammar,

noun phrase(T0, T1, O, C0, C1)

means that list T1 is an ending of list T0, and the words in T0 before T1 form
a noun phrase. This noun phrase refers to the individual O. C0 is an ending of
C1, and the formulas in C1, but not in C0, are the constraints on individual O
imposed by the noun phrase.

Example 12.39 The query

ask noun phrase([a, computer, science, course], [], Obj, [], C).

will return

C = [course(Obj), dept(Obj, comp science)].

12.6. Applications in Natural Language Processing 531

The query

ask noun phrase([a, female, student, enrolled, in, a, computer,
science, course], [], P, [], C).

returns

C = [course(X), dept(X, comp science), enrolled(P, X), student(P),
female(P)].

If the elements of list C are queried against a database that uses these rela-
tions and constants, precisely the female students enrolled in a computer sci-
ence course could be found.

12.6.7 Limitations

Thus far, we have assumed a very simple form of natural language. Our aim
was to show what could be easily accomplished with simple tools rather than
with a comprehensive study of natural language. Useful front ends to data-
bases can be built with the tools presented by, for example, constraining the
domain sufficiently and asking the user, if necessary, which of multiple com-
peting interpretations are intended.

This discussion of natural language processing assumes that natural lan-
guage is compositional; the meaning of the whole can be derived from the
meaning of the parts. Compositionality is, in general, a false assumption. You
usually must know the context in the discourse and the situation in the world
to discern what is meant by an utterance. Many types of ambiguity exist that
can only be resolved by understanding the context of the words.

det(T, T, O, C, C).

det([a|T], T, O, C, C).

det([the|T], T, O, C, C).

noun([course|T], T, O, C, [course(O)|C]).

noun([student|T], T, O, C, [student(O)|C]).

noun([john|T], T, john, C, C).

noun([cs312|T], T, 312, C, C).

adjective([computer, science|T], T, O, C, [dept(O, comp science)|C]).

adjective([female|T], T, O, C, [female(O)|C]).

preposition([enrolled, in|T], T, O1, O2, C, [enrolled(O1, O2)|C]).

Figure 12.11: A dictionary for constructing a query

532 12. Individuals and Relations

For example, you cannot always determine the correct reference of a de-
scription without knowledge of the context and the situation. A description
does not always refer to a uniquely determined individual.

Example 12.40 Consider the following paragraph:

The student took many courses. Two computer science courses and
one mathematics course were particularly difficult. The mathematics
course. . .

The referent is defined by the context and not just the description “The math-
ematics course.” There could be more mathematics courses, but we know from
context that the phrase is referring to the particularly difficult one taken by the
student.

Many problems of reference arise in database applications if the use of “the”
or “it” is allowed or if words that have more than one meaning are permitted.
Context is used to disambiguate references in natural language. Consider:

Who is the head of the mathematics department?
Who is her secretary?

It is clear from the previous sentence who “her” refers to, as long as the
reader understands that heads are people who have a gender, but departments
do not.

12.7 Equality

Sometimes it is useful to use more than one term to name a single individual.
For example, the terms 4× 4, 24, 273− 257, and 16 may denote the same num-
ber. Sometimes, you want to have each name refer to a different individual.
For example, you may want a separate name for different courses in a univer-
sity. Sometimes you do not know whether or not two names denote the same
individual – for example, whether the 8 a.m. delivery person is the same as the
1 p.m. delivery person.

This section considers the role of equality, which allows us to represent
whether or not two terms denote the same individual in the world. Note that,
in the definite clause language presented earlier in the chapter, all of the an-
swers were valid whether or not terms denoted the same individuals.

Equality is a special predicate symbol with a standard domain-independent
intended interpretation.

Term t1 equals term t2, written t1 = t2, is true in interpretation I if t1 and t2
denote the same individual in I.

Equality does not mean similarity. If a and b are constants and a = b, it is
not the case that there are two things that are similar or even identical. Rather,
it means there is one thing with two names.

12.7. Equality 533

Figure 12.12: Two chairs

Example 12.41 Consider the world of two chairs given in Figure 12.12. In
this world it is not true that chair1 = chair2, even though the two chairs may be
identical in all respects; without representing the exact position of the chairs,
they cannot be distinguished. It may be the case that chairOnRight = chair2. It
is not the case that the chair on the right is similar to chair2. It is chair2.

12.7.1 Allowing Equality Assertions

If you do not allow equality assertions, the only thing that is equal to a term is
itself. This can be captured as though you had the assertion X = X. This means
that for any ground term t, t denotes the same individual as t.

If you want to permit equality assertions (e.g., stating that chairOnRight =
chair2), the representation and reasoning system must be able to derive what
follows from a knowledge base that includes clauses with equality in the head.
There are two major ways of doing this. The first is to axiomatize equality like
any other predicate. The second is to build special-purpose inference machin-
ery for equality. Both of these ways are considered here.

Axiomatizing Equality

Equality can be axiomatized as follows. The first three axioms state that equal-
ity is reflexive, symmetric, and transitive:

X = X.

X = Y← Y = X.

X = Z← X = Y ∧ Y = Z.

The other axioms depend on the set of function and relation symbols in the
language; thus, they form what is called an axiom schema. The general idea
is that you can substitute a term with a term that is equal in functions and in
relations. For each n-ary function symbol f , there is a rule of the form

f (X1, . . . , Xn) = f (Y1, . . . , Yn)← X1 = Y1 ∧ · · · ∧Xn = Yn.

For each n-ary predicate symbol p, there is a rule of the form

p(X1, . . . , Xn)← p(Y1, . . . , Yn) ∧X1 = Y1 ∧ · · · ∧Xn = Yn.

534 12. Individuals and Relations

Example 12.42 The binary function cons(X, Y) requires the axiom

cons(X1, X2) = cons(Y1, Y2)← X1 = Y1 ∧X2 = Y2.

The ternary relationship prop(I, P, V) requires the axiom

prop(I1, P1, V1)← prop(I2, P2, V2) ∧ I1 = I2 ∧ P1 = P2 ∧V1 = V2.

Having these axioms explicit as part of the knowledge base turns out to be
very inefficient. The use of these rules is not guaranteed to halt using a top-
down depth-first interpreter. For example, the symmetric axiom will cause an
infinite loop unless identical subgoals are noticed.

Special-Purpose Equality Reasoning

Paramodulation is a way to augment a proof procedure to implement equality.
The general idea is that, if t1 = t2, any occurrence of t1 can be replaced by t2.
Equality can thus be treated as a rewrite rule, substituting equals for equals.
This approach works best if you can select a canonical representation for each
individual, which is a term that other representations for that individual can
be mapped into.

One classic example is the representation of numbers. There are many terms
that represent the same number (e.g., 4× 4, 13 + 3, 273− 257, 24, 42, 16), but
typically we treat the sequence of digits (in base ten) as the canonical represen-
tation of the number.

Universities invented student numbers to provide a canonical representa-
tion for each student. Different students with the same name are distinguish-
able and different names for the same person can be mapped to the person’s
student number.

12.7.2 Unique Names Assumption

Instead of being agnostic about the equality of each term and expecting the
user to axiomatize which names denote the same individual and which denote
different individuals, it is often easier to have the convention that different
ground terms denote different individuals.

Example 12.43 Consider a student database example where a student must
have two courses as science electives. Suppose a student has passed math302
and psyc303; then you only know whether they have passed two courses if you
know math302 �= psyc303. That is, the constants math302 and psyc303 denote
different courses. Thus, you must know which course numbers denote different
courses. Rather than writing n× (n− 1) inequality axioms for n individuals,
it may be better to have the convention that every course number denotes a
different course and thus the use of inequality axioms is avoided.

This approach to handling equality is known as the unique names assumption.

12.7. Equality 535

The unique names assumption (UNA) is the assumption that distinct
ground terms denote different individuals. That is, for every pair of distinct
ground terms t1 and t2, assume t1 �= t2, where “ �=” means “not equal to.”

Note that this does not follow from the semantics for the definite clause
language (page 159). As far as that semantics was concerned, distinct ground
terms t1 and t2 could denote the same individual or could denote different
individuals.

In the logic presented thus far, the unique names assumption only matters
if explicit inequalities exist in the bodies of clauses or equality in the head of
clauses. With the unique names assumption, equality does not appear in the
head of clauses, other than in the clauses defining equality presented earlier.
Other clauses implying equality would be either tautologies or inconsistent
with the unique name axioms.

The unique names assumption can be axiomatized with the following ax-
iom schema for inequality, which consists of the axiom schema for equality
(page 533) together with the axiom schema:

• c �= c′ for any distinct constants c and c′.
• f (X1, . . . , Xn) �= g(Y1, . . . , Ym) for any distinct function symbols f and g.
• f (X1, . . . , Xn) �= f (Y1, . . . , Yn) ← Xi �= Yi, for any function symbol f . There

are n instances of this schema for every n-ary function symbol f (one for each
i such that 1 ≤ i ≤ n).

• f (X1, . . . , Xn) �= c for any function symbol f and constant c.
• t �= X for any term t in which X appears (where t is not the term X).

With this axiomatization, two ground terms are not equal if and only if they
do not unify, because ground terms are identical if and only if they unify. This
is not the case for non-ground terms. For example, a �= X has some instances
that are true – for example, when X has value b – and an instance which is false,
namely, when X has value a.

The unique names assumption is very useful for database applications, in
which you do not, for example, want to have to state that kim �= sam and
kim �= chris and chris �= sam. The unique names assumption allows us to use
the convention that each name denotes a different individual.

Sometimes the unique names assumption is inappropriate – for example,
2 + 2 �= 4 is wrong, nor may it be the case that clark kent �= superman.

Top-Down Procedure for the Unique Names Assumption

The top-down procedure incorporating the unique names assumption should
not treat inequality as just another predicate, mainly because too many differ-
ent individuals exist for any given individual.

If there is a subgoal t1 �= t2, for terms t1 and t2 there are three cases:

1. t1 and t2 do not unify. In this case, t1 �= t2 succeeds.

For example, the inequality f (X, a, g(X)) �= f (t(X), X, b) succeeds because
the two terms do not unify.

536 12. Individuals and Relations

2. t1 and t2 are identical, including having the same variables in the same
positions. In this case, t1 �= t2 fails.

For example, f (X, a, g(X)) �= f (X, a, g(X)) fails.

Note that, for any pair of ground terms, one of these first two cases must
occur.

3. Otherwise, there are instances of t1 �= t2 that succeed and instances of
t1 �= t2 that fail.

For example, consider the subgoal f (W, a, g(Z)) �= f (t(X), X, Y). The
MGU of f (W, a, g(Z)) and f (t(X), X, Y) is {X/a, W/t(a), Y/g(Z)}. Some
instances of the inequality, such as the ground instances consistent with
the unifier, should fail. Any instance that is not consistent with the unifier
should succeed. Unlike other goals, you do not want to enumerate every
instance that succeeds because that would mean unifying X with every
function and constant different than a, as well as enumerating every pair
of values for Y and Z where Y is different than g(Z).

The top-down proof procedure can be extended to incorporate the unique
names assumption. Inequalities of the first type can succeed and those of the
second type can fail. Inequalities the third type can be delayed, waiting for
subsequent goals to unify variables so that one of the first two cases occur. To
delay a goal in the proof procedure of Figure 12.3 (page 511), when selecting
an atom in the body of ac, the algorithm should select one of the atoms that is
not being delayed. If there are no other atoms to select, and neither of the first
two cases is applicable, the query should succeed. There is always an instance
of the inequality that succeeds, namely, the instance where every variable gets
a different constant that does not appear anywhere else. When this occurs, the
user has to be careful when interpreting the free variables in the answer. The
answer does not mean that it is true for every instance of the free variables, but
rather that it is true for some instance.

Example 12.44 Consider the rules that specify whether a student has passed
at least two courses:

passed two courses(S)←
C1 �= C2 ∧
passed(S, C1) ∧
passed(S, C2).

passed(S, C)←
grade(S, C, M) ∧
M ≥ 50.

grade(mike, engl101, 87).
grade(mike, phys101, 89).

For the query

ask passed two courses(mike),

12.8. Complete Knowledge Assumption 537

the subgoal C1 �= C2 cannot be determined and so must be delayed. The top-
down proof procedure can, instead, select passed(mike, C1), which binds engl101
to C1. It can then call passed(mike, C2), which in turn calls grade(mike, C2, M),
which can succeed with substitution {C2/engl101, M/87}. At this stage, the
variables for the delayed inequality are bound enough to determine that the
inequality should fail.

Another clause can be chosen for grade(mike, C2, M), returning substitu-
tion {C2/phys101, M/89}. The variables in the delayed inequality are bound
enough to test the inequality and, this time, the inequality succeeds. It can then
go on to prove that 89 > 50, and the goal succeeds.

One question that may arise from this example is “why not simply make the
inequality the last call, because then it does not need to be delayed?” There are
two reasons. First, it may be more efficient to delay. In this example, the delayed
inequality can be tested before checking whether 87 > 50. Although this partic-
ular inequality test may be fast, in many cases substantial computation can be
avoided by noticing violated inequalities as soon as possible. Second, if a sub-
proof were to return one of the values before it is bound, the proof procedure
should still remember the inequality constraint, so that any future unification
that violates the constraint can fail.

12.8 Complete Knowledge Assumption

To extend the complete knowledge assumption of Section 5.5 (page 193) to logic
programs with variables and functions symbols, we require axioms for equal-
ity, and the domain closure, and a more sophisticated notion of the completion.
Again, this defines a form of negation as failure.

Example 12.45 Suppose a student relation is defined by

student(mary).
student(john).
student(ying).

The complete knowledge assumption would say that these three are the only
students; that is,

student(X)↔ X = mary∨X = john∨X = ying.

That is, if X is mary, john, or ying, then X is a student, and if X is a student, X
must be one of these three. In particular, Kim is not a student.

Concluding ¬student(kim) requires proving prove kim �= mary ∧ kim �=
john ∧ kim �= ying. To derive the inequalities, the unique names assumption
(page 534) is required.

The complete knowledge assumption includes the unique names assump-
tion. As a result, we assume the axioms for equality (page 533) and inequality
(page 534) for the rest of this section.

538 12. Individuals and Relations

The Clark normal form of the clause

p(t1, . . . , tk)← B.

is the clause

p(V1, . . . , Vk)← ∃W1 . . . ∃Wm V1 = t1 ∧ . . . ∧Vk = tk ∧ B.

where V1, . . . , Vk are k variables that did not appear in the original clause, and
W1, . . . , Wm are the original variables in the clause. “∃” means “there exists”
(page 500). When the clause is an atomic clause (page 496), B is true.

Suppose all of the clauses for p are put into Clark normal form, with the
same set of introduced variables, giving

p(V1, . . . , Vk)← B1.
...

p(V1, . . . , Vk)← Bn.

which is equivalent to

p(V1, . . . , Vk)← B1 ∨ . . . ∨ Bn.

This implication is logically equivalent to the set of original clauses.
Clark’s completion of predicate p is the equivalence

∀V1 . . . ∀Vk p(V1, . . . , Vk)↔ B1 ∨ . . . ∨ Bn

where negations as failure (∼) in the bodies are replaced by standard logical
negation (¬). The completion means that p(V1, . . . , Vk) is true if and only if at
least one body Bi is true.

Clark’s completion of a knowledge base consists of the completion of every
predicate symbol along with the axioms for equality (page 533) and inequality
(page 534).

Example 12.46 For the clauses

student(mary).
student(john).
student(ying).

the Clark normal form is

student(V)← V = mary.
student(V)← V = john.
student(V)← V = ying.

which is equivalent to

student(V)← V = mary∨V = john∨V = ying.

The completion of the student predicate is

∀V student(V)↔ V = mary∨V = john∨V = ying.

12.8. Complete Knowledge Assumption 539

Example 12.47 Consider the following recursive definition:

passed each([], St, MinPass).
passed each([C|R], St, MinPass)←

passed(St, C, MinPass) ∧
passed each(R, St, MinPass).

In Clark normal form, this can be written as

passed each(L, S, M)← L = [].
passed each(L, S, M)←
∃C ∃R L = [C|R] ∧
passed(S, C, M) ∧
passed each(R, S, M).

Here we have removed the equalities that specify renaming of variables
and have renamed the variables as appropriate. Thus, Clark’s completion of
passed each is

∀L ∀S ∀M passed each(L, S, M)↔ L = [] ∨
∃C ∃R (L = [C|R] ∧
passed(S, C, M) ∧
passed each(R, S, M)).

Under the complete knowledge assumption, relations that cannot be de-
fined using only definite clauses can now be defined.

Example 12.48 Suppose you are given a database of course(C) that is true
if C is a course, and enrolled(S, C), which means that student S is enrolled
in course C. Without the complete knowledge assumption, you cannot define
empty course(C) that is true if there are no students enrolled in course C. This
is because there is always a model of the knowledge base where someone is
enrolled in every course.

Using negation as failure, empty course(C) can be defined by

empty course(C)← course(C) ∧∼has Enrollment(C).
has Enrollment(C)← enrolled(S, C).

The completion of this is

∀C empty course(C)↔ course(C) ∧ ¬has Enrollment(C).
∀C has Enrollment(C)↔ ∃S enrolled(S, C).

Here we offer a word of caution. You should be very careful when you include
free variables within negation as failure. They usually do not mean what you
think they might. We introduced the predicate has Enrollment in the previous

540 12. Individuals and Relations

example to avoid having a free variable within a negation as failure. Consider
what would have happened if you had not done this:

Example 12.49 One may be tempted to define empty course in the following
manner:

empty course(C)← course(C) ∧∼enrolled(S, C).

which has the completion

∀C empty course(C)↔ ∃S course(C) ∧ ¬enrolled(S, C).

This is not correct. Given the clauses

course(cs422).
course(cs486).
enrolled(mary, cs422).
enrolled(sally, cs486).

the clause

empty course(cs422)← course(cs422) ∧∼enrolled(sally, cs422)

is an instance of the preceding clause for which the body is true, and the head is
false, because cs422 is not an empty course. This is a contradiction to the truth
of the preceding clause.

Note that the completion of the definition in Example 12.48 is equivalent to

∀C empty course(C)↔ course(C) ∧ ¬∃S enrolled(S, C).

The existence is in the scope of the negation, so this is equivalent to

∀C empty course(C)↔ course(C) ∧ ∀S ¬enrolled(S, C).

12.8.1 Complete Knowledge Assumption Proof Procedures

The top-down proof procedure for negation as failure with the variables and
functions is much like the top-down procedure for propositional negation as
failure (page 199). As with the unique names assumption, a problem arises
when there are free variables in negated goals.

Example 12.50 Consider the clauses

p(X)← ∼q(X) ∧ r(X).
q(a).
q(b).
r(d).

According to the semantics, there is only one answer to the query ask p(X),
which is X = d. As r(d) follows, so does ∼q(d) and so p(d) logically follows
from the knowledge base.

12.9. Review 541

When the top-down proof procedure encounters ∼q(X), it should not try
to prove q(X), which succeeds (with substitution {X/a}), and so fail ∼q(X).
This would make the goal p(X) fail, when it should succeed. Thus, the proof
procedure would be incomplete. Note that, if the knowledge base contained
s(X) ← ∼q(X), the failure of q(X) would mean s(X) succeeding. Thus, with
negation as failure, incompleteness leads to unsoundness.

As with the unique names assumption [Section 12.7.2 (page 534)], a sound
proof procedure should delay the negated subgoal until the free variable is
bound.

We require a more complicated top-down procedure when there are calls to
negation as failure with free variables:

• Negation as failure goals that contain free variables must be delayed
(page 590) until the variables become bound.

• If the variables never become bound, the goal flounders. In this case, you
cannot conclude anything about the goal. The following example shows that
you should do something more sophisticated for the case of floundering
goals.

Example 12.51 Consider the clauses:

p(X)← ∼q(X)
q(X)← ∼r(X)
r(a)

and the query

ask p(X).

The completion of the knowledge base is

p(X)↔ ¬q(X),
q(X)↔ ¬r(X),
r(X)↔ X = a.

Substituting X = a for r gives q(X) ↔ ¬X = a, and so p(X) ↔ X = a.
Thus, there is one answer, namely X = a, but delaying the goal will not help
find it. A proof procedure should analyze the cases for which the goal failed
to derive this answer. However, such a procedure is beyond the scope of this
book.

12.9 Review

The following are the main points you should have learned from this chapter:

• In domains characterized by individuals and relations, constants denoting
individuals and predicate symbols denoting relations can be reasoned with
to determine what is true in the domain.

542 12. Individuals and Relations

• Datalog is a logical language with constants, universally quantified vari-
ables, relations, and rules.

• Substitutions are used to make instances of atoms and rules. Unification
makes atoms identical for use in proofs.

• Function symbols are used to denote a possibly infinite set of individuals
described in terms of other individuals. Function symbols can be used to
build data structures.

• It is possible to use definite clauses to represent natural language grammars.
• Equality between terms means that the terms denote the same individual.
• Clark’s completion can be used to define the semantics of negation as failure

under the complete knowledge assumption.

12.10 References and Further Reading

Datalog and logic programs are described by Kowalski [1979], Sterling and
Shapiro [1986], and Garcia-Molina, Ullman, and Widom [2009]. The history of
logic programming is described by Kowalski [1988] and Colmerauer and Rous-
sel [1996].

The work on negation as failure (page 193), as well as the unique names
assumption (page 534), is based on the work of Clark [1978]. See the book by
Lloyd [1987] for a formal treatment of logic programming in general and nega-
tion as failure in particular. Apt and Bol [1994] provide a survey of different
techniques for handling negation as failure.

For introductions to computational linguistics see Jurafsky and Martin
[2008] and Manning and Schütze [1999]. The use of definite clauses for de-
scribing natural language is described by Pereira and Shieber [2002] and Dahl
[1994].

12.11 Exercises

Exercise 12.1 Consider a domain with two individuals (✂ and ☎), two predicate
symbols (p and q), and three constants (a, b, and c). The knowledge base KB is
defined by

p(X)← q(X).
q(a).

(a) Give one interpretation that is a model of KB.
(b) Give one interpretation that is not a model of KB.
(c) How many interpretations are there? Give a brief justification for your an-

swer.
(d) How many of these interpretations are models of KB? Give a brief justifica-

tion for your answer.

12.11. Exercises 543

Exercise 12.2 Consider the language that contains the constant symbols a, b, and
c; the predicate symbols p and q; and no function symbols. We have the following
knowledge bases built from this language:

KB1 = { p(a) }.
KB2 = { p(X)← q(X) }.
KB3 = { p(X)← q(X),

p(a),
q(b) }.

Now consider possible interpretations for this language of the form I = 〈D, π, φ〉,
where D = {✂, ☎, ✈, ✎}.

(a) How many interpretations with the four domain elements exist for our sim-
ple language? Give a brief justification for your answer. [Hint: Consider how
many possible assignments φ exist for the constant symbols, and consider
how many extensions predicates p and q can have to determine how many
assignments π exist.] Do not try to enumerate all possible interpretations.

(b) Of the interpretations outlined above, how many are models of KB1? Give a
brief justification for your answer.

(c) Of the interpretations outlined above, how many are models of KB2? Give a
brief justification for your answer.

(d) Of the interpretations outlined above, how many are models of KB3? Give a
brief justification for your answer.

Exercise 12.3 Consider the following knowledge base:

r(a).
r(e).
p(c).
q(b).
s(a, b).
s(d, b).
s(e, d).
p(X)← q(X) ∧ r(X).
q(X)← s(X, Y) ∧ q(Y).

Show the set of ground atomic consequences derivable from this knowledge base.
Assume that a bottom-up proof procedure is used and that at each iteration the
first applicable clause is selected in the order shown. Furthermore, applicable con-
stant substitutions are chosen in “alphabetic order” if more than one applies to a
given clause; for example, if X/a and X/b are both applicable for a clause at some
iteration, derive q(a) first. In what order are consequences derived?

Exercise 12.4 In Example 12.21 (page 511), the algorithm fortuitously chose
imm west(r109, r111) as the clause to resolve against. What would have happened
if another clause had been chosen? Show the sequence of resolutions that arise,

544 12. Individuals and Relations

and either show a different answer or give a generalized answer clause that can-
not resolve with any clause in the knowledge base.

Exercise 12.5 In Example 12.21, we always selected the leftmost conjunct to re-
solve on. Is there a selection rule (a selection of which conjunct in the query to re-
solve against) that would have resulted in only one choice for this example? Give
a general rule that – for this example, at least – results in fewer failing branches
being made. Give an example where your rule does not work.

Exercise 12.6 In a manner similar to Example 12.21 (page 511), show derivations
of the following queries:

(a) ask two doors east(r107, R).

(b) ask next door(R, r107).

(c) ask west(R, r107).

(d) ask west(r107, R).

Give all answers for each query.

Exercise 12.7 Consider the following knowledge base:

has access(X, library)← student(X).
has access(X, library)← faculty(X).
has access(X, library)← has access(Y, library) ∧ parent(Y, X).
has access(X, office)← has keys(X).
faculty(diane).
faculty(ming).
student(william).
student(mary).
parent(diane, karen).
parent(diane, robyn).
parent(susan, sarah).
parent(sarah, ariel).
parent(karen, mary).
parent(karen, todd).

(a) Provide an SLD derivation of the query ask has access(todd, library).

(b) The query ask has access(mary, library) has two SLD derivations. Give both
of them.

(c) Does there exist an SLD derivation for ask has access(ariel, library)? Explain
why or why not.

(d) Explain why the set of answers to the query ask has access(X, office) is empty.

(e) Suppose following the clause is added to the knowledge base:

has keys(X)← faculty(X).

What are the answers to the query ask has access(X, office)?

12.11. Exercises 545

Exercise 12.8 What is the result of the following application of substitutions:

(a) f (A, X, Y, X, Y){A/X, Z/b, Y/c}.
(b) yes(F, L)← append(F, c(L, nil), c(l, c(i, c(s, c(t, nil)))))

{F/c(l, X1), Y1/c(L, nil), A1/l, Z1/c(i, c(s, c(t, nil)))}.
(c) append(c(A1, X1), Y1, c(A1, Z1))← append(X1, Y1, Z1)

{F/c(l, X1), Y1/c(L, nil), A1/l, Z1/c(i, c(s, c(t, nil)))}.

Exercise 12.9 Give a most general unifier of the following pairs of expressions:

(a) p(f (X), g(g(b))) and p(Z, g(Y))

(b) g(f (X), r(X), t) and g(W, r(Q), Q)

(c) bar(val(X, bb), Z) and bar(P, P)

Exercise 12.10 For each of the following pairs of atoms, either give a most gen-
eral unifier or explain why one does not exist:

(a) p(X, Y, a, b, W)
p(E, c, F, G, F)

(b) p(X, Y, Y)
p(E, E, F)

(c) p(Y, a, b, Y)
p(c, F, G, F)

(d) ap(F0, c(b, c(B0, L0)), c(a, c(b, c(b, c(a, emp)))))
ap(c(H1, T1), L1, c(H1, R1))

Exercise 12.11 List all of the ground atomic logical consequences of the following
knowledge base:

q(Y)← s(Y, Z) ∧ r(Z).
p(X)← q(f (X)).
s(f (a), b).
s(f (b), b).
s(c, b).
r(b).

Exercise 12.12 Consider the following logic program:

f (empty, X, X).
f (cons(X, Y), W, Z)←

f (Y, W, cons(X, Z)).

Give each top-down derivation, showing substitutions (as in Example 12.31) for
the query

ask f (cons(a, cons(b, cons(c, empty))), L, empty).

What are all of the answers?

546 12. Individuals and Relations

Exercise 12.13 Consider the following logic program:

rd(cons(H, cons(H, T)), T).
rd(cons(H, T), cons(H, R))←

rd(T, R).

Give a top-down derivation, showing all substitutions for the query

ask rd(cons(a, cons(cons(a, X), cons(B, cons(c, Z)))), W).

What is the answer corresponding to this derivation?
Is there a second answer? If yes, show the derivation; if not, explain why.

Exercise 12.14 Consider the following logic program:

ap(emp, L, L).
ap(c(H, T), L, c(H, R))←

ap(T, L, R).
adj(A, B, L)←

ap(F, c(A, c(B, E)), L).

(a) Give a top-down derivation (including all substitutions) for one answer to
the query

ask adj(b, Y, c(a, c(b, c(b, c(a, emp))))).

(b) Are there any other answers? If so, explain where a different choice could be
made in the derivation in the previous answer, and continue the derivation,
showing another answer. If there are no other answers, explain why not.

[You are meant to do this exercise as would a computer, without knowing what
the symbols mean. If you want to give a meaning to this program, you could read
ap as append, c as cons, emp as empty, and adj as adjacent.]

Exercise 12.15 The aim of this question is to get practice writing simple logic
programs.

(a) Write a relation remove(E, L, R) that is true if R is the resulting list of remov-
ing one instance of E from list L. The relation is false if E is not a member
of L.

(b) Give all of the answers to the following queries:

ask remove(a, [b, a, d, a], R).
ask remove(E, [b, a, d, a], R).
ask remove(E, L, [b, a, d]).
ask remove(p(X), [a, p(a), p(p(a)), p(p(p(a)))], R).

(c) Write a relation subsequence(L1, L2) that is true if list L1 contains a subset of
the elements of L2 in the same order.

12.11. Exercises 547

(d) How many different proofs are there for each of the following queries:

ask subsequence([a, d], [b, a, d, a]).
ask subsequence([b, a], [b, a, d, a]).
ask subsequence([X, Y], [b, a, d, a]).
ask subsequence(S, [b, a, d, a]).

Explain why there are that many.

Exercise 12.16 In this question, you are to write a definite clause knowledge base
for the design of custom video presentations.

Assume that the video is annotated using the relation

segment(SegId, Duration, Covers),

where SegId is an identifier for the segment. (In a real application this will be
enough information to extract the video segment). Duration is the time of the seg-
ment (in seconds). Covers is a list of topics covered by the video segment. An ex-
ample of a video annotation is the database

segment(seg0, 10, [welcome]).
segment(seg1, 30, [skiing, views]).
segment(seg2, 50, [welcome, computationalintelligence, robots]).
segment(seg3, 40, [graphics, dragons]).
segment(seg4, 50, [skiing, robots]).

A presentation is a sequence of segments. You will represent a presentation by a
list of segment identifiers.

(a) Axiomatize a predicate

presentation(MustCover, Maxtime, Segments)

that is true if Segments is a presentation whose total running time is less than
or equal to Maxtime seconds, such that all of the topics in the list MustCover
are covered by a segment in the presentation. The aim of this predicate is
to design presentations that cover a certain number of topics within a time
limit.

For example, the query

ask presentation([welcome, skiing, robots], 90, Segs).

should return at least the following two answers (perhaps with the seg-
ments in some other order):

presentation([welcome, skiing, robots], 90, [seg0, seg4]).
presentation([welcome, skiing, robots], 90, [seg2, seg1]).

Give the intended interpretation of all symbols used and demonstrate
that you have tested your axiomatization (including finding all answers
to your query) in AILog or Prolog. Explain briefly why each answer is
an answer.

548 12. Individuals and Relations

(b) Assuming you have a good user interface and a way to actually view the
presentations, list three things that the preceding program does not do that
you may want in such a presentation system. (There is no correct answer for
this part. You must be creative to get full marks).

Exercise 12.17 Construct a knowledge base and a dictionary [based on Figure
12.11 (page 531)] to answer geographical questions such as that given in Figure 1.2
(page 8). For each query, either show how it can be answered or explain why it is
difficult to answer given the tools presented in this chapter.

Chapter 13

Ontologies and
Knowledge-Based Systems

The most serious problems standing in the way of developing an adequate
theory of computation are as much ontological as they are semantical. It
is not that the semantic problems go away; they remain as challenging as
ever. It is just that they are joined – on center stage, as it were – by even
more demanding problems of ontology.

– Smith [1996, p. 14]

How do you go about representing knowledge about a world so it is easy to
acquire, debug, maintain, communicate, share, and reason with? This chapter
explores how to specify the meaning of symbols in intelligent agents, how to
use the meaning for knowledge-based debugging and explanation, and, finally,
how an agent can represent its own reasoning and how this may be used to
build knowledge-based systems. As Smith points out in the quote above, the
problems of ontology are central for building intelligent computational agents.

13.1 Knowledge Sharing

Having an appropriate representation is only part of the story of building a
knowledge-based agent. We also should be able to ensure that the knowledge
can be acquired, particularly when the knowledge comes from diverse sources
and at multiple points in time and should interoperate with other knowledge.
We should also ensure that the knowledge can be reasoned about effectively.

Recall (page 61) that an ontology is a specification of the meanings of the
symbols in an information system. Here an information system is a knowledge

549

550 13. Ontologies and Knowledge-Based Systems

base or some source of information, such as a thermometer. The meaning is
sometimes just in the mind of the knowledge-base designer or in comments
with the knowledge base. Increasingly, the specification of the meaning is in
machine-interpretable form. This formal specification is important for seman-
tic interoperability – the ability of different knowledge bases to work together.

Example 13.1 A purchasing agent has to know, when a web site claims it
has a good price on “chips,” whether these are potato chips, computer chips,
wood chips, or poker chips. An ontology would specify meaning of the termi-
nology used by the web site. Instead of using the symbol “chip”, a web site
that adheres to ontologies may use the symbol “WoodChipMixed” as defined
by some particular organization that has published an ontology. By using this
symbol and declaring which ontology it is from, it should be unambiguous as
to which use of the word chip is meant. A formal representation of the web page
would use “WoodChipMixed”, which may get translated into English simply
as “chip”. If another information source uses the symbol “ChipOfWood”, some
third party may declare that the use of the term “ChipOfWood” in that infor-
mation source corresponds to “WoodChipMixed” and therefore enable the in-
formation sources to be combined.

Before discussing how ontologies are specified, we first discuss how the
logic of the previous chapter (with variables, terms, and relations) can be used
to build flexible representations. These flexible representations allow for the
modular addition of knowledge, including adding arguments to relations.

Given a specification of the meaning of the symbols, an agent can use that
meaning for knowledge acquisition, explanation, and debugging at the knowl-
edge level.

13.2 Flexible Representations

The first part of this chapter considers a way to build flexible representations
using the tools of logic. These flexible representations are the basis of modern
ontologies.

13.2.1 Choosing Individuals and Relations

Given a logical representation language, such as the one developed in the pre-
vious chapter, and a world to reason about, the people designing knowledge
bases have to choose what, in the world, to refer to. That is, they have to choose
what individuals and relations there are. It may seem that they can just refer to
the individuals and relations that exist in the world. However, the world does
not determine what individuals there are. How the world is divided into indi-
viduals is invented by whomever is modeling the world. The modeler divides
up the world up into things so that the agent can refer to parts of the world
that make sense for the task at hand.

13.2. Flexible Representations 551

Example 13.2 It may seem as though “red” is a reasonable property to ascribe
to things in the world. You may do this because you want to tell the delivery
robot to go and get the red parcel. In the world, there are surfaces absorbing
some frequencies and reflecting other frequencies of light. Some user may have
decided that, for some application, some particular set of reflectance proper-
ties should be called “red.” Some other modeler of the domain might decide
on another mapping of the spectrum and use the terms pink, scarlet, ruby, and
crimson, and yet another modeler may divide the spectrum into regions that do
not correspond to words in any language but are those regions most useful to
distinguish different categories of individuals.

Just as modelers choose what individuals to represent, they also choose what
relations to use. There are, however, some guiding principles that are useful
for choosing relations and individuals. These will be demonstrated through a
sequence of examples.

Example 13.3 Suppose you decide that “red” is an appropriate category for
classifying individuals. You can treat the name red as a unary relation and write
that parcel a is red:

red(a).

If you represent the color information in this way, then you can easily ask what
is red:

?red(X).

The X returned are the red individuals.
With this representation, it is hard to ask the question, “What color is parcel

a?” In the syntax of definite clauses, you cannot ask

ask X(a).

because, in languages based on first-order logic (page 517), predicate names
cannot be variables. In second-order or higher-order logic, this would return
any property of a, not just its color.

There are alternative representations that allow you to ask about the color
of parcel a. There is nothing in the world that forces you to make red a predicate.
You could just as easily say that colors are individuals too, and you could use
the constant red to denote the color red. Given that red is a constant, you can
use the predicate color where color(Ind, Val) means that physical individual Ind
has color Val. “Parcel a is red” can now be written as

color(a, red).

What you have done is reconceive the world: the world now consists of colors
as individuals that you can name. There is now a new binary relation color
between physical individuals and colors. Under this new representation you
can ask, “What color is block a?” with the query

?color(a, C).

552 13. Ontologies and Knowledge-Based Systems

To make an abstract concept into an object is to reify it. In the preceding
example, we reified the color red.

Example 13.4 It seems as though there is no disadvantage to the new rep-
resentation of colors in the previous example. Everything that could be done
before can be done now. It is not much more difficult to write color(X, red) than
red(X), but you can now ask about the color of things. So the question arises of
whether you can do this to every relation, and what do you end up with?

You can do a similar analysis for the color predicate as for the red predicate
in Example 13.3. The representation with color as a predicate does not allow
you to ask the question, “Which property of parcel a has value red?,” where the
appropriate answer is “color.” Carrying out a similar transformation to that of
Example 13.3, you can view properties such as color as individuals, and you can
invent a relation prop and write “individual a has the color of red” as

prop(a, color, red).

This representation allows for all of the queries of this and the previous exam-
ple. You do not have to do this again, because you can write all relations in
terms of the prop relation.

The individual-property-value representation is in terms of a single rela-
tion prop where

prop(Ind, Prop, Val)

means that individual Ind has value Val for property Prop. This is also called
the triple representation because all of the relations are represented as triples.
The first element of the triple is called the subject, the second is the verb, and
the third is the object, using the analogy that a triple is a simple three-word
sentence.

The verb of a triple is a property. The domain of property p is the set of
individuals that can appear as the subject of a triple when p is the verb. The
range of a property p is the set of values that can appear as the object of a triple
that has p as the verb.

An attribute is a property–value pair. For example, an attribute of a parcel
may be that its color is red. Two parcels may be identical if they have the same
attributes – the same values for their properties.

There are some predicates that may seem to be too simple for the triple
representation:

Example 13.5 To transform parcel(a), which means that a is a parcel, there do
not seem to be appropriate properties or values. There are two ways to trans-
form this into the triple representation. The first is to reify the concept parcel
and to say that a is a parcel:

prop(a, type, parcel).

13.2. Flexible Representations 553

Here type is a special property that relates an individual to a class. The constant
parcel denotes the class that is the set of all, real or potential, things that are
parcels. This triple specifies that the individual a is in the class parcel.

The second is to make parcel a property and write “a is a parcel” as

prop(a, parcel, true).

In this representation, parcel is a Boolean property which is true of things that
are parcels.

A Boolean property is a property whose range is {true, false}, where true
and false are constant symbols in the language.

Some predicates may seem to be too complicated for the triple representa-
tion:

Example 13.6 Suppose you want to represent the relation

scheduled(C, S, T, R),

which is to mean that section S of course C is scheduled to start at time T in
room R. For example, “section 2 of course cs422 is scheduled to start at 10:30 in
room cc208” is written as

scheduled(cs422, 2, 1030, cc208).

To represent this in the triple representation, you can invent a new individual,
a booking. Thus, the scheduled relationship is reified into a booking individual.

A booking has a number of properties, namely a course, a section, a start
time, and a room. To represent “section 2 of course cs422 is scheduled at 10:30
in room cc208,” you name the booking, say, the constant b123, and write

prop(b123, course, cs422).
prop(b123, section, 2).
prop(b123, start time, 1030).
prop(b123, room, cc208).

This new representation has a number of advantages. The most important is
that it is modular; which values go with which properties can easily be seen. It
is easy to add new properties such as the instructor or the duration. With the
new representation, it is easy to add that “Fran is teaching section 2 of course
cs422, scheduled at 10:30 in room cc208” or that the duration is 50 minutes:

prop(b123, instructor, fran).
prop(b123, duration, 50).

With scheduled as a predicate, it was very difficult to add the instructor or dura-
tion because it required adding extra arguments to every instance of the predi-
cate.

554 13. Ontologies and Knowledge-Based Systems

comp_2347

yellow

greenfran

sam

lemon_laptop_10000

lemon_computer

lemon_disc

r107

comp_sci

sys_admin

color
color

has_logo

brand

model

managed_by

owned_by

has_office

in_building

occupation

serves_building

light
weight

Figure 13.1: A semantic network

13.2.2 Graphical Representations

You can interpret the prop relation in terms of a graph, where the relation

prop(Ind, Prop, Val)

is depicted with Ind and Val as nodes with an arc labeled with Prop between
them. Such a graph is called a semantic network. Given such a graphical rep-
resentation, there is a straightforward mapping into a knowledge base using
the prop relation.

Example 13.7 Figure 13.1 shows a semantic network for the delivery robot
showing the sort of knowledge that the robot may have about a particular com-
puter. Some of the knowledge represented in the network is

prop(comp 2347, owned by, fran).
prop(comp 2347, managed by, sam).
prop(comp 2347, model, lemon laptop 10000).
prop(comp 2347, brand, lemon computer).
prop(comp 2347, has logo, lemon disc).
prop(comp 2347, color, green).
prop(comp 2347, color, yellow).
prop(comp 2347, weight, light).
prop(fran, has office, r107).
prop(r107, in building, comp sci).

13.2. Flexible Representations 555

The network also shows how the knowledge is structured. For example, it is
easy to see that computer number 2347 is owned by someone (Fran) whose
office (r107) is in the comp sci building. The direct indexing evident in the graph
can be used by humans and machines.

This graphical notation has a number of advantages:

• It is easy for a human to see the relationships without being required to learn
the syntax of a particular logic. The graphical notation helps the builders of
knowledge bases to organize their knowledge.

• You can ignore the labels of nodes that just have meaningless names – for
example, the name b123 in Example 13.6 (page 553), or comp 2347 in Figure
13.1. You can just leave these nodes blank and make up an arbitrary name if
you must map to the logical form.

Terse Language for Triples

Turtle is a simple language for representing triples. It is one of the languages
invented for the semantic web (page 564). It is one of the syntaxes used for the
Resource Description Framework, or RDF, growing out of a similar language
called Notation 3 or N3.

In Turtle and RDF everything – including individuals, classes, and prop-
erties – is a resource. A Uniform Resource Identifier (URI) is a unique name
that can be used to identify anything. A URI is written within angle brackets,
and it often has the form of a URL because URLs are unique. For example,
〈http://aispace.org〉 can be a URI. A “#” in a URI denotes an individual that is re-
ferred to in a web page. For example, 〈http://cs.ubc.ca/∼poole/foaf.rdf#david〉
denotes the individual david referred to in http://cs.ubc.ca/∼poole/foaf.rdf. The
URI 〈〉 refers to the current document, so the URI 〈#comp 2347〉 denotes an
individual defined in the current document.

A triple is written simply as

Subject Verb Object.

where Subject and Verb are URIs, and Object is either a URI or a literal (string
or number). Verb denotes a property. Object is the value of the property Verb for
Subject.

Example 13.8 The triples of Example 13.7 are written in Turtle as follows:

〈#comp 2347〉 〈#owned by〉 〈#fran〉 .

〈#comp 2347〉 〈#managed by〉 〈#sam〉 .

〈#comp 2347〉 〈#model〉 〈#lemon laptop 10000〉 .

〈#comp 2347〉 〈#brand〉 〈#lemon computer〉 .

http://cs.ubc.ca/protect unhbox voidb@x penalty @M {}poole/foaf.rdf

556 13. Ontologies and Knowledge-Based Systems

〈#comp 2347〉 〈#has logo〉 〈#lemon disc〉 .

〈#comp 2347〉 〈#color〉 〈#green〉 .

〈#comp 2347〉 〈#color〉 〈#yellow〉 .

〈#fran〉 〈#has office〉 〈#r107〉 .

〈#r107〉 〈#serves building〉 〈#comp sci〉 .

The identifier “fran” does not tell us the name of the individual. If we wanted
to say that the person’s name is Fran, we would write

〈#fran〉 〈#name〉 “Fran”.

There are some useful abbreviations used in Turtle. A comma is used to group
objects with the same subject and verb. That is,

S V O1, O2.

is an abbreviation for

S V O1.

S V O2.

A semicolon is used to group verb–object pairs for the same subject. That is,

S V1 O1; V2 O2.

is an abbreviation for

S V1 O1.

S V2 O2.

Square brackets are to define an individual that is not given an identifier.
This unnamed resource is used as the object of some triple, but otherwise can-
not be referred to. Both commas and semicolons can be used to give this re-
source properties. Thus,

[V1 O1; V2 O2]

is an individual that has value O1 on property V1 and has value O2 on property
V2. Such descriptions of unnamed individuals are sometimes called frames.
The verbs are sometimes called slots and the objects are fillers.

Example 13.9 The Turtle sentence

〈comp 3645〉 〈#owned by〉 〈#fran〉 ;
〈#color〉 〈#green〉 , 〈#yellow〉 ;
〈#managed by〉 [〈#occupation〉 〈#sys admin〉 ;

〈#serves building〉 〈#comp sci〉].
says that 〈comp 3645〉 is owned by 〈#fran〉, its color is green and yellow, and it
is managed by a resource whose occupation is system administration and who
serves the comp sci building.

13.2. Flexible Representations 557

This is an abbreviation for the triples

〈comp 3645〉 〈#owned by〉 〈#fran〉 .

〈comp 3645〉 〈#color〉 〈#green〉 .

〈comp 3645〉 〈#color〉 〈#yellow〉 .

〈comp 3645〉 〈#managed by〉 〈i2134〉 .

〈i2134〉 〈#occupation〉 〈#sys admin〉 .

〈i2134〉 〈#serves building〉 〈#comp sci〉 .

but where the made-up URI, 〈i2134〉, cannot be referred to elsewhere.

It is difficult for a reader to know what the authors mean by a particular URI
such as 〈#name〉 and how the use of this term relates to other people’s use of the
same term. There are, however, people who have agreed on certain meaning for
specific terms. For example, the property 〈http://xmlns.com/foaf/0.1/#name〉
has a standard definition as the name of an object. Thus, if we write

〈#fran〉 〈http://xmlns.com/foaf/0.1/#name〉 “Fran”.

we mean the particular name property having that agreed-on definition.
It does not matter what is at the URL http://xmlns.com/foaf/0.1/, as long as

those who use the URI 〈http://xmlns.com/foaf/0.1/#name〉 all mean the same
property. That URL, at the time of writing, just redirects to a web page. How-
ever, the “friend of a friend” project (which is what “foaf” stands for) uses that
name space to mean something. This works simply because people use it that
way.

In Turtle, URIs can be abbreviated using a “name:” to replace a URL and
the angle brackets, using an “@prefix” declaration. For example,

@prefix foaf: 〈http://xmlns.com/foaf/0.1/#〉

lets “foaf:name” be an abbreviation for 〈http://xmlns.com/foaf/0.1/#name〉.
Similarly,

@prefix : 〈#〉

lets us write 〈#color〉 as :color.
Turtle also allows for parentheses for arguments to functions that are not

reified. It also uses the abbreviation “a” for “rdf:type”, but we do not follow
that convention.

13.2.3 Primitive Versus Derived Relations

Typically, you know more about a domain than a database of facts; you know
general rules from which other facts can be derived. Which facts are explic-
itly given and which are derived is a choice to be made when designing and
building a knowledge base.

http://xmlns.com/foaf/0.1/

558 13. Ontologies and Knowledge-Based Systems

Primitive knowledge is knowledge that is defined explicitly by facts. De-
rived knowledge is knowledge that can be inferred from other knowledge.
Derived knowledge is usually specified in terms of rules.

The use of rules allows for a more compact representation of knowledge.
Derived relations allow for conclusions to be drawn from observations of the

Classes in Knowledge Bases and Object-Oriented Programming

The use of “individuals” and “classes” in knowledge-based systems is very
similar to the use of “objects” and “classes” in object-oriented programming
(OOP) languages such as Smalltalk or Java. This should not be too surprising
because they have an interrelated history. There are important differences that
tend to make the direct analogy often more confusing than helpful:
• Objects in OOP are computational objects; they are data structures and

associated programs. A “person” object in Java is not a person. How-
ever, individuals in a knowledge base (KB) are (typically) things in the
real world. A “person” individual in a KB can be a real person. A “chair”
individual can be a real chair you can actually sit in; it can hurt you if
you bump into it. You can send a message to, and get answers from, a
“chair” object in Java, whereas a chair in the real world tends to ignore
what you tell it. A KB is not typically used to interact with a chair, but
to reason about a chair. A real chair stays where it is unless it is moved
by a physical agent.
• In a KB, a representation of an object is only an approximation at one

(or a few) levels of abstraction. Real objects tend to be much more com-
plicated than what is represented. We typically do not represent the in-
dividual fibers in a chair. In an OOP system, there are only the repre-
sented properties of an object. The system can know everything about a
Java object, but not about a real individual.
• The class structure of Java is intended to represent designed objects. A

systems analyst or a programmer gets to create a design. For example,
in Java, an object is only a member of one lowest-level class. There is
no multiple inheritance. Real objects are not so well behaved. The same
person could be a football coach, a mathematician, and a mother.
• A computer program cannot be uncertain about its data structures; it

has to select particular data structures to use. However, we can be un-
certain about the types of things in the world.
• The representations in a KB do not actually do anything. In an OOP

system, objects do computational work. In a KB, they just represent –
that is, they just refer to objects in the world.
• Whereas an object-oriented modeling language, like UML, may be used

for representing KBs, it may not be the best choice. A good OO mod-
eling tool has facilities to help build good designs. However, the world
being modeled may not have a good design at all. Trying to force a good
design paradigm on a messy world may not be productive.

13.2. Flexible Representations 559

domain. This is important because you do not directly observe everything
about a domain. Much of what is known about a domain is inferred from the
observations and more general knowledge.

A standard way to use derived knowledge is to put individuals into classes.
We give general properties to classes so that individuals inherit the properties
of classes. The reason we group individuals into classes is because the members
of a class have attributes in common, or they have common properties that
make sense for them (see the box on page 567).

A class is the set of those actual and potential individuals that would be
members of the class. In logic, this is an intensional set, defined by a char-
acteristic function that is true of members of the set and false of other indi-
viduals. The alternative is an extensional set, which is defined by listing its
elements.

For example, the class chair is the set of all things that would be chairs. We
do not want the definition to be the set of things that are chairs, because chairs
that have not yet been built also fall into the class of chairs. We do not want
two classes to be equivalent just because they have the same members. For
example, the class of green unicorns and the class of chairs that are exactly 124
meters high are different classes, even though they contain the same elements;
they are both empty.

The definition of class allows any set that can be described to be a class.
For example, the set consisting of the number 17, the Tower of London, and
Julius Caesar’s left foot may be a class, but it is not very useful. A natural
kind is a class where describing objects using the class is more succinct than
describing objects without the class. For example, “mammal” is a natural kind,
because describing the common attributes of mammals makes a knowledge
base that uses “mammal” more succinct than one that does not use “mammal”
and repeats the attributes for every individual.

We use the property type to mean “is a member of class.” Thus, in the lan-
guage of definite clauses,

prop(X, type, C)

means that individual X is a member of class C.
The people who created RDF and RDF Schema used exactly the property

we want to use here for membership in a class. In the language Turtle, we can
define the abbreviation

@prefix rdf: 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#〉 .

@prefix rdfs: 〈http://www.w3.org/2000/01/rdf-schema#〉 .

Given these declarations, rdf:type means the type property that relates an indi-
vidual to a class of which it is a member. By referring to the definition of type
at that URI, this becomes a standard definition that can be used by others and
can be distinguished from other meanings of the word “type.”

The property rdfs:subClassOf between classes specifies that one class is a
subset of another. In Turtle,

S rdfs:subClassOf C.

560 13. Ontologies and Knowledge-Based Systems

comp_2347

yellow

green

fran

sam

lemon_laptop_10000

lemon_computer

lemon_disc

r107

comp_sci

sys_admin

color

color

has_logo

rdfs:type

managed_by

owned_by

has_office

in_building

occupation

serves_building

rdfs:subClassOf

computer

rdfs:subClassOf

light

weight

Figure 13.2: A semantic network allowing inheritance

means that class S is a subclass of class C. In terms of sets, this means that S is
a subset of C. That is, every individual of type S is of type C.

Example 13.10 Example 13.7 explicitly specified that the logo for computer
comp 2347 was a lemon disc. You may, however, know that all Lemon-brand
computers have this logo. An alternative representation is to associate the logo
with lemon computer and derive the logo of comp 2347. The advantage of this
representation is that if you find another Lemon-brand computer, you can infer
its logo.

In Turtle,
:lemon computer rdfs:subClassOf :computer.
:lemon laptop 10000 rdfs:subClassOf :lemon computer.
:comp 2347 rdf:type :lemon laptop 10000.

says that a lemon computer is a computer, a lemon laptop 10000 is a lemon
computer, and that comp 2347 is a lemon laptop 10000. An extended example
is shown in Figure 13.2, where the shaded rectangles are classes, and arcs from
classes are not the properties of the class but properties of the members of the
class.

13.2. Flexible Representations 561

The relationship between types and subclasses can be written as a definite
clause:

prop(X, type, C)←
prop(X, type, S) ∧
prop(S, subClassOf , C)

You can treat type and subClassOf as special properties that allow property
inheritance. Property inheritance is when a value for a property is specified at
the class level and inherited by the members of the class. If all members of class
c have value v for property p, this can be written in Datalog as

prop(Ind, p, v)←
prop(Ind, type, c).

which, together with the aforementioned rule that relates types and subclasses,
can be used for property inheritance.

Example 13.11 All lemon computers have a lemon disc as a logo and have
color yellow and color green (see the logo and color arcs in Figure 13.2). This can
be represented by the following Datalog program:

prop(X, has logo, lemon disc)←
prop(X, type, lemon computer).

prop(X, color, green)←
prop(X, type, lemon computer).

prop(X, color, yellow)←
prop(X, type, lemon computer).

The prop relations that can be derived from these clauses are essentially the
same as that which can be derived from the flat semantic network of Figure
13.1 (page 554). With the structured representation, to incorporate a new Lemon
Laptop 10000, you only declare that it is a Lemon Laptop 10000 and the color
and logo properties can be derived through inheritance.

RDF and Turtle do not have definite clauses. In these languages, instead of
treating the membership in a class as a predicate, classes are sets. To say that
all of the elements of a set S have value v for a predicate p, we say that S is a
subset of the set of all things with value v for predicate p.

Example 13.12 To state that all lemon computers have a lemon disc as a logo,
we say that the set of lemon computers is a subset of the set of all things for
which the property has logo value lemon disc.

A representation of this is shown in Figure 13.3 (on the next page).
:computer and :logo are both classes. :lemon disc is member of the class :logo.
:has logo is a property, with domain :computer andrange :logo. :lemon computer

562 13. Ontologies and Knowledge-Based Systems

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <#>.

:computer rdf:type rdfs:Class.
:logo rdf:type rdfs:Class.
:lemon_disc rdf:type :logo.
:has_logo

rdf:type rdf:Property ;
rdfs:domain :computer ;
rdfs:range :logo.

:lemon_computer
rdf:type rdfs:Class ;
rdfs:subClassOf :computer ;
rdfs:subClassOf

owl:ObjectHasValue(:has_logo :lemon_disc).

Figure 13.3: Turtle representation of Example 13.12

is a subclass of :computer. It is also a subclass of the set of all individuals that
have value :lemon disc for the property :has logo.

owl:ObjectHasValue is a class constructor for OWL (see below), such that
owl:ObjectHasValue(:has logo :lemon disc) is the class of all individuals that
have the value :lemon disc for the property :has logo.

Some general guidelines are useful for deciding what should be primitive
and what should be derived:

• When associating an attribute with an individual, select the most general
class C, such that the individual is in C and all members of C have that at-
tribute, and associate the attribute with class C. Inheritance can be used to
derive the attribute for the individual and all members of class C. This rep-
resentation methodology tends to make knowledge bases more concise, and
it means that it is easier to incorporate new individuals because they auto-
matically inherit the attribute if they are a member of class C.

• Do not associate a contingent attribute of a class with the class. A contin-
gent attribute is one whose value changes when circumstances change. For
example, it may be true of the current computer environment that all of the
computers come in brown boxes. However, it may not be a good idea to put
that as an attribute of the computer class, because it would not be expected to
be true as other computers are bought.

• Axiomatize in the causal direction (page 204). If a choice exists between
making the cause primitive or the effect primitive, make the cause primitive.
The information is then more likely to be stable when the domain changes.

13.3. Ontologies and Knowledge Sharing 563

13.3 Ontologies and Knowledge Sharing

Building large knowledge-based systems is complex because

• Knowledge often comes from multiple sources and must be integrated.
Moreover, these sources may not have the same division of the world. Often
knowledge comes from different fields that have their own distinctive ter-
minology and divide the world according to their own needs.

• Systems evolve over time and it is difficult to anticipate all future distinc-
tions that should be made.

• The people involved in designing a knowledge base must choose what indi-
viduals and relationships to represent. The world is not divided into individ-
uals; that is something done by intelligent agents to understand the world.
Different people involved in a knowledge-based system should agree on this
division of the world.

• It is difficult to remember what your own notation means, let alone to dis-
cover what someone else’s notation means. This has two aspects:

• given a symbol used in the computer, determining what it means;

• given a concept in someone’s mind, determining what symbol they
should use; that is, determining whether the concept has been used
before and, if it has, discovering what notation has been used for it.

To share and communicate knowledge, it is important to be able to come
up with a common vocabulary and an agreed-on meaning for that vocabulary.

A conceptualization is a mapping between symbols used in the computer
(i.e., the vocabulary) and the individuals and relations in the world. It provides
a particular abstraction of the world and notation for that abstraction. A con-
ceptualization for small knowledge bases can be in the head of the designer or
specified in natural language in the documentation. This informal specification
of a conceptualization does not scale to larger systems where the conceptual-
ization must be shared.

In philosophy, ontology is the study of what exists. In AI, an ontology is a
specification of the meanings of the symbols in an information system. That is,
it is a specification of a conceptualization. It is a specification of what individ-
uals and relationships are assumed to exist and what terminology is used for
them. Typically, it specifies what types of individuals will be modeled, speci-
fies what properties will be used, and gives some axioms that restrict the use
of that vocabulary.

Example 13.13 An ontology of individuals that could appear on a map could
specify that the symbol “ApartmentBuilding” will represent apartment build-
ings. The ontology will not define an apartment building, but it will describe
it well enough so that others can understand the definition. We want other
people, who may be inclined to use different symbols, tobe able to use the

564 13. Ontologies and Knowledge-Based Systems

The Semantic Web

The semantic web is a way to allow machine-interpretable knowledge to be
distributed on the World Wide Web. Instead of just serving HTML pages that
are meant to be read by humans, web sites will also provide information that
can be used by computers.

At the most basic level, XML (the Extensible Markup Language) provides
a syntax designed to be machine readable, but which is possible for humans
to read. It is a text-based language, where items are tagged in a hierarchi-
cal manner. The syntax for XML can be quite complicated, but at the sim-
plest level, the scope of a tag is either in the form 〈tag . . . /〉, or in the form
〈tag . . . 〉 . . . 〈/tag〉.

A URI (a Uniform Resource Identifier) is used to uniquely identify a re-
source. A resource is anything that can be uniquely identified. A URI is a
string that refers to a resource, such as a web page, a person, or a corporation.
Often URIs use the syntax of web addresses.

RDF (the Resource Description Framework) is a language built on XML,
providing individual-property-value triples.

RDF-S (RDF Schema) lets you define resources (and so also properties) in
terms of other resources (e.g., using subClassOf). RDF-S also lets you restrict
the domain and range of properties and provides containers (sets, sequences,
and alternatives – one of which must be true).

RDF allows sentences in its own language to be reified. This means that
it can represent arbitrary logical formulas and so is not decidable in general.
Undecidability is not necessarily a bad thing; it just means that you cannot
put a bound on the time a computation may take. Simple logic programs with
function symbols and virtually all programming languages are undecidable.

OWL (the Web Ontology Language) is an ontology language for the
World Wide Web. It defines some classes and properties with a fixed inter-
pretation that can be used for describing classes, properties, and individuals.
It has built-in mechanisms for equality of individuals, classes, and properties,
in addition to restricting domains and ranges of properties and other restric-
tions on properties (e.g., transitivity, cardinality).

There have been some efforts to build large universal ontologies, such as
cyc (www.cyc.com), but the idea of the semantic web is to allow communities
to converge on ontologies. Anyone can build an ontology. People who want to
develop a knowledge base can use an existing ontology or develop their own
ontology, usually built on existing ontologies. Because it is in their interest
to have semantic interoperability, companies and individuals should tend to
converge on standard ontologies for their domain or to develop mappings
from their ontologies to others’ ontologies.

www.cyc.com

13.3. Ontologies and Knowledge Sharing 565

Figure 13.4: Mapping from a conceptualization to a symbol

ontology to find the appropriate symbol to use (see Figure 13.4). Multiple peo-
ple are able to use the symbol consistently. An ontology should also enable a
person to verify what a symbol means. That is, given a concept, they want to
be able to find the symbol, and, given the symbol, they want to be able to de-
termine what it means.

An ontology may give axioms to restrict the use of some symbol. For exam-
ple, it may specify that apartment buildings are buildings, which are human-
constructed artifacts. It may give some restriction on the size of buildings so
that shoeboxes cannot be buildings or that cities cannot be buildings. It may
state that a building cannot be at two geographically dispersed locations at the
same time (so if you take off some part of the building and move it to a differ-
ent location, it is no longer a single building). Because apartment buildings are
buildings, these restrictions also apply to apartment buildings.

Ontologies are usually written independently of a particular application
and often involve a community to agree on the meanings of symbols. An on-
tology consists of

• a vocabulary of the categories of the things (both classes and properties) that
a knowledge base may want to represent;

• an organization of the categories, for example into an inheritance hier-
archy using subClassOf or subPropertyOf , or using Aristotelian definitions
(page 567); and

566 13. Ontologies and Knowledge-Based Systems

• a set of axioms restricting the meanings of some of the symbols to better re-
flect their meaning – for example, that some property is transitive, or that
the domain and range are restricted, or that there are some restriction on
the number of values a property can take for each individual. Sometimes
relationships are defined in terms of more primitive relationships but, ulti-
mately, the relationships are grounded out into primitive relationships that
are not actually defined.

An ontology does not specify the individuals not known at design time. For
example, an ontology of buildings would typically not include actual build-
ings. An ontology would specify those individuals that are fixed and should
be shared, such as the days of the week, or colors.

Example 13.14 Consider a trading agent that is designed to find accommo-
dations. Users could use such an agent to describe what accommodation they
want. The trading agent could search multiple knowledge bases to find suitable
accommodations or to notify users when some appropriate accommodation be-
comes available. An ontology is required to specify the meaning of the symbols
for the user and to allow the knowledge bases to interoperate. It provides the
semantic glue to tie together the users’ needs with the knowledge bases.

In such a domain, houses and apartment buildings may both be residential
buildings. Although it may be sensible to suggest renting a house or an apart-
ment in an apartment building, it may not be sensible to suggest renting an
apartment building to someone who does not actually specify that they want
to rent the whole building. A “living unit” could be defined to be the collection
of rooms that some people, who are living together, live in. A living unit may
be what a rental agency offers to rent. At some stage, the designer may have to
decide whether a room for rent in a house is a living unit, or even whether part
of a shared room that is rented separately is a living unit. Often the boundary
cases – cases that may not be initially anticipated – are not clearly delineated
but become better defined as the ontology evolves.

The ontology would not contain descriptions of actual houses or apart-
ments because the actual available accommodation would change over time
and would not change the meaning of the vocabulary.

The primary purpose of an ontology is to document what the symbols mean
– the mapping between symbols (in a computer) and concepts (in someone’s
head). Given a symbol, a person is able to use the ontology to determine what
it means. When someone has a concept to be represented, the ontology is used
to find the appropriate symbol or to determine that the concept does not exist
in the ontology. The secondary purpose, achieved by the use of axioms, is to al-
low inference or to determine that some combination of values is inconsistent.
The main challenge in building an ontology is the organization of the concepts
to allow a human to map concepts into symbols in the computer, and for the
computer to infer useful new knowledge from stated facts.

13.3. Ontologies and Knowledge Sharing 567

Aristotelian Definitions

Categorizing objects, the basis for modern ontologies, has a long history. Aris-
totle [350 B.C.] suggested the definition of a class C in terms of
• Genus: a superclass of C. The plural of genus is genera.
• Differentia: the properties that make members of the class C different

from other members of the superclass of C.
He anticipated many of the issues that arise in definitions:

If genera are different and co-ordinate, their differentiae are themselves
different in kind. Take as an instance the genus “animal” and the genus
“knowledge”. “With feet”, “two-footed”, “winged”, “aquatic”, are dif-
ferentiae of “animal”; the species of knowledge are not distinguished by
the same differentiae. One species of knowledge does not differ from an-
other in being “two-footed”. [Aristotle, 350 B.C.]

Note that “co-ordinate” here means neither is subordinate to the other.
In the style of modern ontologies, we would say that “animal” is a class,

and “knowledge” is a class. The property “two-footed” has domain “animal”.
If something is an instance of knowledge, it does not have a value for the
property “two-footed”.

To build an ontology based on Aristotelian definitions:
• For each class you may want to define, determine a relevant superclass,

and then select those attributes that distinguish the class from other sub-
classes. Each attribute gives a property and a value.
• For each property, define the most general class for which it makes

sense, and define the domain of the property to be this class. Make the
range another class that makes sense (perhaps requiring this range class
to be defined, either by enumerating its values or by defining it using
an Aristotelian definition).

This can get quite complicated. For example, defining “luxury furniture”,
perhaps the superclass you want is “furniture” and the distinguishing charac-
teristics are cost is high and luxury furniture is soft. The softness of furniture
is different than the softness of rocks. You also probably want to distinguish
the squishiness from the texture (both of which may be regarded as soft).

This methodology does not, in general, give a tree hierarchy of classes.
Objects can be in many classes. Each class does not have a single most-specific
superclass. However, it is still straightforward to check whether one class is
a subclass of another, to check the meaning of a class, and to determine the
class that corresponds to a concept in your head.

In rare cases, this results in a tree structure, most famously in the Linnaean
taxonomy of living things. It seems that the reason this is a tree is because of
evolution. Trying to force a tree structure in other domains has been much
less successful.

568 13. Ontologies and Knowledge-Based Systems

13.3.1 Description Logic

A Uniform Resource Identifier has some meaning because someone published
that it has that meaning and because people use it with that meaning. This
works, but we want more. We would like to have meanings that allow a com-
puter to do some inference.

Modern ontology languages such as OWL (page 564) are based on descrip-
tion logics. A description logic is used to describe classes, properties, and in-
dividuals. One of the main ideas behind a description logic is to separate

• a terminological knowledge base that describes the terminology, which
should remain constant as the domain being modeled changes, and

• an assertional knowledge base that describes what is true in some domain
at some point in time.

Usually, the terminological knowledge base is defined at the design time of
the system and defines the ontology, and it only changes as the meaning of
the vocabulary changes, which should be rare. The assertional knowledge base
usually contains the knowledge that is situation-specific and is only known at
run time.

It is typical to use triples (page 552) to define the assertional knowledge
base and a language such as OWL to define the terminological knowledge base.

OWL describes domains in terms of the following:

• Individuals are things in the world that is being described (e.g., a particular
house or a particular booking may be individuals).

• Classes are sets of individuals. A class is the set of all real or potential things
that would be in that class. For example, the class “House” may be the set of
all things that would be classified as a house, not just those houses that exist
in the domain of interest.

• Properties are used to describe individuals. A datatype property has val-
ues that are primitive data types, such as integers or strings. For example,
“streetName” may be a datatype property between a street and string. An
object property has values that are other individuals. For example, “nextTo”
may be a property between two houses, and “onStreet” may be a property
between a house and a street.

OWL comes in three variants that differ in restrictions imposed on the classes
and properties. In OWL-DL and OWL-Lite, a class cannot be an individual or
a property, and a property is not an individual. In OWL-Full, the categories
of individuals, properties, and classes are not necessarily disjoint. OWL-Lite
has some syntactic restrictions that do not affect the meaning but can make
reasoning simpler.

OWL does not make the unique names assumption (page 534); two names
do not necessarily denote different individuals or different classes. It also does
not make the complete knowledge assumption (page 193); it does not assume
that all relevant facts have been stated.

13.3. Ontologies and Knowledge Sharing 569

Ck are classes, Pk are properties, Ik are individuals, and n is an integer. #S is the
number of elements in set S:

Class Class Contains
owl:Thing all individuals
owl:Nothing no individuals (empty set)
owl:ObjectIntersectionOf(C1, . . . , Ck) individuals in C1 ∩ · · · ∩ Ck
owl:ObjectUnionOf(C1, . . . , Ck) individuals in C1 ∪ · · · ∪ Ck
owl:ObjectComplementOf(C) the individuals not in C
owl:ObjectOneOf(I1, . . . , Ik) I1, . . . , Ik
owl:ObjectHasValue(P, I) individuals with value I on prop-

erty P, i.e., {x : x P I}
owl:ObjectAllValuesFrom(P, C) individuals with all values in C on

property P; i.e., {x : x P y→ y ∈ C}
owl:ObjectSomeValuesFrom(P, C) individuals with some values in C

on property P; i.e., {x : ∃y ∈
C such that x P y}

owl:ObjectMinCardinality(n, P, C) individuals x with at least n indi-
viduals of class C related to x by P,
i.e., {x : #{y|xPy and y ∈ C} ≥ n}

owl:ObjectMaxCardinality(n, P, C) individuals x with at most n indi-
viduals of class C related to x by P,
i.e., {x : #{y|xPy and y ∈ C} ≤ n}

Figure 13.5: Some OWL built-in classes and class constructors

Figure 13.5 gives some primitive classes and some class constructors. This
figure uses set notation to define the set of individuals in a class. Figure 13.6
(on the next page) gives primitive predicates of OWL. The owl: prefixes are
from OWL. To use these properties and classes in an ontology, you include the
appropriate URI abbreviations:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

In these figures, xPy is a triple. Note that this is meant to define the meaning of
the predicates, rather than any syntax. The predicates can be used with differ-
ent syntaxes, such as XML, Turtle, or traditional relations notation.

There is one property constructor: owl:ObjectInverseOf(P), which is the in-
verse property of P; that is, it is the property P−1 such that yP−1x iff xPy. Note
that it is only applicable to object properties; datatype properties do not have
inverses, because data types cannot be the subject of a triple.

The list of classes and statements in these figures is not complete. There
are corresponding datatype classes for datatype properties, where appropriate.

570 13. Ontologies and Knowledge-Based Systems

OWL has the following predicates with a fixed interpretation, where Ck are
classes, Pk are properties, and Ik are individuals; x and y are universally quan-
tified variables.

Statement Meaning
rdf:type(I, C) I ∈ C
rdfs:subClassOf(C1, C2) C1 ⊆ C2
owl:EquivalentClasses(C1, C2) C1 ≡ C2
owl:DisjointClasses(C1, C2) C1 ∩ C2 = {}
rdfs:domain(P, C) if xPy then x ∈ C
rdfs:range(P, C) if xPy then y ∈ C
rdfs:subPropertyOf(P1, P2) xP1y implies xP2y
owl:EquivalentObjectProperties(P1, P2) xP1y if and only if xP2y
owl:DisjointObjectProperties(P1, P2) xP1y implies not xP2y
owl:InverseObjectProperties(P1, P2) xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ∀j∀k j �= k implies Ij �= Ik
owl:FunctionalObjectProperty(P) if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) if xPy and yPz then y = z
owl:SymmetricObjectProperty if xPy then yPz

Figure 13.6: Some RDF, RDF-S, and OWL built-in predicates

For example, owl:DataSomeValuesFrom and owl:EquivalentDataProperties have
the same definitions as the corresponding object symbols, but are for datatype
properties. There are also other constructs in OWL to define properties, com-
ments, annotations, versioning, and importing other ontologies.

Example 13.15 As an example of a class constructor in Turtle notation, which
uses spaces between arguments,

owl:MinCardinality(2 :owns :building)

is the class of all individuals who own two or more buildings. That is, it is the
set {x : ∃i1∃i2 x :owns i1 and x :owns i2 and i1 �= i2}. This class constructor must
be used in a statement, for example, to say that some individual is a member of
this class or to say that this is equivalent to some other class.

Example 13.16 Consider an Aristotelian definition (page 567) of an apart-
ment building. We can say that an apartment building is a residential building
with multiple units and the units are rented. (This is in contrast to a condo-
minium building, where the units are individually sold, or a house, where there
is only one unit). Suppose we have the class ResidentialBuilding that is a subclass
of Building.

13.3. Ontologies and Knowledge Sharing 571

We first define the functional object property numberOfUnits, with domain
ResidentialBuilding and range {one, two, moreThanTwo}. In Turtle this is written

:numberOfUnits rdf:type owl:FunctionalObjectProperty;
rdfs:domain :ResidentialBuilding;
rdfs:range owl:OneOf(:one :two :moreThanTwo).

The functional object property ownership with domain ResidentialBuilding,
and range {rental, ownerOccupied, coop} can be defined similarly.

We can define an apartment building as a ResidentialBuilding where the
numberOfUnits property has the value moreThanTwo and the ownership property
has the value rental. To specify this in OWL, we define the class of things that
have value moreThanTwo for the property numberOfUnits, the class of things that
have value rental for the property ownership, and say that ApartmentBuilding is
equivalent to the intersection of these classes. In Turtle, this is

:ApartmentBuilding
owl:EquivalentClasses

owl:ObjectIntersectionOf (
owl:ObjectHasValue(:numberOfUnits :moreThanTwo)
owl:ObjectHasValue(:onwership :rental)

:ResidentialBuilding).

This definition can be used to answer questions about apartment buildings,
such as the ownership and the number of units.

Note that the previous example did not really define ownership. The sys-
tem has no idea what this actually means. Hopefully, a user will know what it
means. Someone who wants to adopt an ontology should ensure that they use
a property and a class to mean the same thing as other users of the ontology.

A domain ontology is an ontology about a particular domain of interest.
Most existing ontologies are in a narrow domain that people write for specific
applications. There are some guidelines that have evolved for writing domain
ontologies to enable knowledge sharing:

• If possible, use an existing ontology. This means that your knowledge base
will be able to interact with others who use the same ontology.

• If an existing ontology does not exactly match your needs, import it and add
to it. Do not start from scratch, because then others who want to use the
best ontology will have to choose. If your ontology includes and improves
the other, others who want to adopt an ontology will choose yours, because
their application will be able to interact with adopters of either ontology.

• Make sure that your ontology integrates with neighboring ontologies. For
example, an ontology about resorts will have to interact with ontologies
about food, beaches, recreation activities, and so on. Try to make sure that it
uses the same terminology for the same things.

• Try to fit in with higher-level ontologies (see below). This will make it much
easier for others to integrate their knowledge with yours.

• If you must design a new ontology, consult widely with other potential
users. This will make it most useful and most likely to be adopted.

572 13. Ontologies and Knowledge-Based Systems

• Follow naming conventions. For example, call a class by the singular name
of its members. For example, call a class “Resort” not “Resorts”. Resist the
temptation to call it “ResortConcept” (thinking it is only the concept of a re-
sort, not a resort; see the box on page 572). When naming classes and prop-
erties, think about how they will be used. It sounds better to say that “r1 is of
type Resort” than “r1 is of type Resorts”, which is better than “r1 is of type
ResortConcept”.

• As a last option, specify the matching between ontologies. Sometimes on-
tology matching has to be done when ontologies are developed indepen-
dently. It is best if matching can be avoided; it makes knowledge using the
ontologies much more complicated because there are multiple ways to say
the same thing.

OWL, when written in Turtle, is much easier to read than when using XML.
However, OWL is at a lower level than most people will want to specify or read.
It is designed to be a machine-readable specification. There are many editors

Classes and Concepts

It is tempting to call the classes concepts, because symbols represent concepts:
mappings from the internal representation into the object or relations that the
symbols represent.

For example, it may be tempting to call the class of unicorns “unicornCon-
cept” because there are no unicorns, only the concept of a unicorn. However,
unicorns and the concept of unicorns are very different; one is an animal and
one is a subclass of knowledge. A unicorn has four legs and a horn coming out
of its head. The concept of a unicorn does not have legs or horns. You would
be very surprised if a unicorn appeared in a class about ontologies, but you
should not be surprised if the concept of a unicorn appeared. There are no in-
stances of unicorns, but there are many instances of the concept of a unicorn.
If you mean a unicorn, you should use the term “unicorn”. If you mean the
concept of a unicorn, you should use “concept of a unicorn”. You should not
say that a unicorn concept has four legs, because instances of knowledge do
not have legs; only animals (and furniture) have legs.

As another example, consider a tectonic plate, which is part of the Earth’s
crust. The plates are millions of years old. The concept of a plate is less than
a hundred years old. Someone can have the concept of a tectonic plate in
their head, but they cannot have a tectonic plate in their head. It should be
very clear that a tectonic plate and the concept of a tectonic plate are very
different things, with very different properties. You should not use “concept
of a tectonic plate” when you mean “tectonic plate” or vice versa.

Calling objects concepts is a common error in building ontologies. Al-
though you are free to call things by whatever name you want, it is only use-
ful for knowledge sharing if other people adopt your ontology. They will not
adopt it if it does not make sense to them.

13.3. Ontologies and Knowledge Sharing 573

that let you edit OWL representation. One example is Protégé (http://protege.
stanford.edu/). An ontology editor should support the following:

• It should provide a way for people to input ontologies at the level of abstrac-
tion that makes the most sense.

• Given a concept a user wants to use, an ontology editor should facilitate
finding the terminology for that concept or determining that there is no cor-
responding term.

• It should be straightforward for someone to determine the meaning of a
term.

• It should be as easy as possible to check that the ontology is correct (i.e.,
matches the user’s intended interpretation for the terms).

• It should create an ontology that others can use. This means that it should
use a standardized language as much as possible.

13.3.2 Top-Level Ontologies

Example 13.16 (page 570) defines a domain ontology designed to be used by
people who want to write a knowledge base that refers to apartment buildings.
Each domain ontology implicitly or explicitly assumes a higher-level ontology
that it can fit into. There is interest in building a coherent top-level ontology to
which other ontologies can refer and into which they can fit. Fitting the domain
ontologies into a higher-level ontology should make it easier to allow them to
interoperate.

One such ontology is BFO, the Basic Formal Ontology. The categories of
BFO are given in Figure 13.7 (on the next page).

At the top is entity. OWL calls the top of the hierarchy thing. Essentially,
everything is an entity.

Entities are either continuants or occurrents. A continuant is something ex-
isting at an instant in time, such as a person, a country, a smile, the smell of a
flower, or an email. Continuants maintain their identity though time. An occur-
rent is something that has temporal parts such as a life, smiling, the opening
of a flower, and sending an email. One way to think about the difference is to
consider the entity’s parts: a finger is part of a person, but is not part of a life;
infancy is part of a life, but is not part of a person. Continuants participate in
occurrents. Processes that last through time and events that occur at an instant
in time are also both occurrents.

A continuant is an independent continuant, a dependent continuant, or a
spatial region. An independent continuant is an entity that can exist by itself or
is part of another entity. For example, a person, a face, a pen, the surface of an
apple, the equator, a country, and the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity and is not a part
of that entity. For example, a smile, the smell of a flower, or the ability to laugh
can only exist in relation to another object. A spatial region is a region in space,

http://protege.stanford.edu/
http://protege.stanford.edu/

574 13. Ontologies and Knowledge-Based Systems

entity
continuant

independent continuant
site
object aggregate
object
fiat part of object
boundary of object

dependent continuant
realizable entity

function
role
disposition

quality
spatial region

volume
surface
line
point

occurrent
temporal region

connected temporal region
temporal interval
temporal instant

scattered temporal region
spatio-temporal region

connected spatio-temporal region
spatio-temporal interval
spatio-temporal instant

scattered spatio-temporal region
processual entity

process
process aggregate
processual context
fiat part of process
boundary of process

Figure 13.7: Categories of Basic Formal Ontology (BFO). The indentation shows
the subclass relationship. Each category is an immediate subclass of the lowest
category above it that is less indented.

13.3. Ontologies and Knowledge Sharing 575

for example, the space occupied by a doughnut now, the boundary of a county,
or the point in a landscape that has the best view.

An independent continuant can further be subdivided into the fol-
lowing:

• A site is a shape that is defined by some other continuants. For example, the
hole in a donut, a city, someone’s mouth, or a room are all sites. Whereas
sites may be at a spatial region at every instance, they move with the object
that contains them.

• An object aggregate is made up of other objects, such as a flock of sheep, a
football team, or a heap of sand.

• An object is a self-connected entity that maintains its identity through time
even if it gains or loses parts (e.g., a person who loses some hair, a belief,
or even a leg, is still the same person). Common objects are cups, people,
emails, the theory of relativity, or the knowledge of how to tie shoelaces.

• A fiat part of an object is part of an object that does not have clear bound-
aries, such as the dangerous part of a city, a tissue sample, or the secluded
part of a beach.

• The boundary of an object is a lower-dimensional part of some continuant,
for example the surface of the Earth, or a cell boundary.

A spatial region is three-dimensional (a volume), two-dimensional (a sur-
face), one-dimensional (a line), or zero-dimensional (a point). These are parts
of space that do not depend on other objects to give them identity. They re-
main static, as opposed to sites and boundaries that move with the objects that
define them.

A dependent continuant is a quality or a realizable entity. A quality is
something that all objects of a particular type have for all of the time they
exist – for example, the mass of a bag of sugar, the shape of a hand, the fragility
of a cup, the beauty of a view, the brightness of a light, and the smell of the
ocean. Although these can change, the bag of sugar always has a mass and the
hand always has a shape. This is contrasted with a realizable entity, where
the value does not need to exist and the existence can change though time. A
realizable entity is one of the following:

• A function specifies the purpose of a object. For example, the function of a
cup may be to hold coffee; the function of the heart is to pump blood.

• A role specifies a goal that is not essential to the object’s design but can be
carried out. Examples of roles include the role of being a judge, the role of
delivering coffee, or the role of a desk to support a computer monitor.

• A disposition is something that can happen to an object, for example, the
disposition of a cup to break if dropped, the disposition of vegetables to rot
if not refrigerated, and the disposition of matches to light if they are not wet.

The other major category of entities is the occurrent. An occurrent is any of
the following:

• A temporal region is a region of time. A temporal region is either connected
(if two points are in the region, so is every point in between) or scattered.

576 13. Ontologies and Knowledge-Based Systems

Connected temporal regions are either intervals or instants (time points).
Tuesday, March 1, 2011, is a temporal interval; 3:31 p.m. on that day is a
temporal point. Tuesdays from 3:00 to 4:00 is a scattered temporal region.

• A spatio-temporal region is a region of multidimensional space-time.
Spatio-temporal regions are either scattered or connected. Some examples
of spatio-temporal regions are the space occupied by a human life, the bor-
der between Canada and the United States in 1812, and the region occupied
by the development of a cancer tumor.

• A processual entity is something that occurs or happens, has temporal
parts (as well as, perhaps, spatial parts), and depends on a continuant. For
example, Joe’s life has parts such as infancy, childhood, adolescence, and
adulthood and involves a continuant, Joe. A processual entity is any of the
following:

• A process is something that happens over time and has distinct ends,
such as a life, a holiday, or a diagnostic session.

• A process aggregate is a collection of processes such as the playing of
the individuals in a band, or the flying of a set of planes in a day.

• A fiat part of process is part of a process having no distinct ends, such
as the most interesting part of a holiday, or the most serious part of an
operation.

• A processual context is the setting for some other occurrent, for exam-
ple, relaxation as the setting for rejuvenation, or a surgery as a setting
for an infection.

• A boundary of a process is the instantaneous temporal boundary of a
process, such as when a robot starts to clean up the lab, or a birth.

The claim is that this is a useful categorization on which to base other on-
tologies. Making it explicit how domain ontologies fit into an upper-level on-
tology promises to facilitate the integration of these ontologies. The integration
of ontologies is necessary to allow applications to refer to multiple knowledge
bases, each of which may each use different ontologies.

Designing a top-level ontology is difficult. It probably will not satisfy ev-
eryone who must use one. There always seem to be some problematic cases.
In particular, boundary cases are often not well specified. However, using a
standard top-level ontology should help in connecting ontologies together.

13.4 Querying Users and Other Knowledge Sources

As discussed in Section 5.3.2 (page 175), users are not experts in the domain of
the knowledge base; however, they often know details about a particular case
and so provide one source of knowledge. Users, typically, do not know what is
relevant or what vocabulary to use and so they cannot be expected to tell the
system what they know. One aspect of the problem of knowledge acquisition
is how to most effectively extract knowledge from a user.

13.4. Querying Users and Other Knowledge Sources 577

The simplest form of a question is the yes-or-no question presented in Sec-
tion 5.3.2 (page 175). When variables and function symbols are involved, more
sophisticated questions can be asked of the user.

Example 13.17 Consider the knowledge base of Example 12.11 (page 502), but
without the rules for up or down. Suppose the user can observe the positions of
the switches. To enable the user to be asked the position of switches, up(S) and
down(S) can be askable. The following is a possible dialog for a top-down proof
procedure for the query ?lit(L), where the user is asked the askable goals. User
responses are in bold:

Is up(s2) true? yes.
Is up(s1) true? no.
Is down(s2) true? no.
Is up(s3) true? yes.
Answer: L = l2.

In this example, up and down are not explicitly related, and so the system asks
both.

In this example, the ontology was simple; we assumed that the user can un-
derstand the questions. In general, asking users is not as simple; the questions
have to be framed in such a way that the user can understand what the ques-
tion means and what answer is expected.

13.4.1 Functional Relations

One case in which the system may know the answer to an askable goal, even
though it has not been directly answered by the user, is when a relation is func-
tional. Relation r(X, Y) is functional if, for every X, there is a unique Y such
that r(X, Y) is true. If the system has already found one Y for a particular X for
which r(X, Y) is true, it should not re-ask for more instances.

Example 13.18 In the preceding example, it is redundant to ask the question
“Is down(s2) true?” when the user has already told the system that up(s2) is true.
It may be better to have a relation pos(Sw, Pos), where the position is a function
of the switch. The system must be told that pos is functional; each switch only
has one position. Once the system has determined the position of a switch, it
does not have to ask any more questions about the position of that switch.

It is usually very inefficient to ask yes-or-no questions of a functional rela-
tion. Rather than enumerating every possible position of the switch and asking
whether or not the switch is in that position, it may be better to ask once for the
position of the switch and not ask this question again. If the system wants to
know the age of a person, it would be better to ask outright for the age of the
person rather than to enumerate all of the ages and ask true-or-false questions.

Asking these kinds of more general questions probably would not be ap-
propriate for non-functional relations. For example, if the switch could be in

578 13. Ontologies and Knowledge-Based Systems

many positions at once, then it would probably be better to ask for each posi-
tion that is required.

A complication arises with respect to the vocabulary of answers. The user
may not know what vocabulary is expected by the knowledge engineer. There
are two sensible solutions to this problem:

• The system designer provides a menu of items from which the user selects
the best fit. This works when there are few items or when the items can be
arranged in a narrow hierarchy.

• The system designer provides a large dictionary to anticipate all possible
answers. When the user gives an answer, the answer is mapped into the in-
ternal forms expected by the system. An assumption would be made that
the vocabulary used by the user would be normal language or some abbre-
viated form. Thus, the user may not expect the system to understand such
terms as “giganormous” (meaning “very big,” of course).

Which of these works better is an empirical question. Such questions about
how a computer can best interact with people is studied in the field of human–
computer interaction (HCI).

13.4.2 More General Questions

Yes-or-no questions and functional relations do not cover all of the cases of a
query. The general form of a query occurs when free variables are present in a
query that is to be asked of the user.

Example 13.19 For the subgoal p(a, X, f (Z)) the user should be asked some-
thing like

for which X, Z is p(a, X, f (Z)) true?

which, of course, should be put in terms that the user can understand.
The user would then be expected to give bindings for X and Z that make

the subgoal true, or to reply no, meaning that there are no more instances. This
follows the spirit of the query protocol for asking questions of the system.

A number of issues arise:

• Should users be expected to give all instances that are true, or should they
give the instances one at a time, with the system prompting for new in-
stances? One of the major criteria for acceptance of a knowledge-based sys-
tem is in how sensible it appears. Asking questions in a natural, logical way
is a big part. For this reason, it may be better to get one instance and then
prompt when another instance is needed. In this way, the system can, for
example, probe into one individual in depth before considering the next in-
dividual. How well this works depends on the structure of the knowledge
base.

• When should you not ask/re-ask a question? For example, consider the
question

For which X is p(X) true?

13.5. Implementing Knowledge-Based Systems 579

to which the user replies with an answer that means X = f (Z), (i.e., “for
all values of Z, p(f (Z)) is true”). In this case, the user should not be asked
about whether p(f (b)) is true or whether p(f (h(W))) is true but should be
asked about whether p(a) or even whether p(X) is true (asking for a different
instance). If the user subsequently replies no to the question

For which X is p(X) true?

what is meant is that there are no more answers to this question, rather than
that p(X) is false for all X (because the system has already been told that
X = f (b) is a true instance).

The general rule is that the system should not ask a question that is more
specific than a positive answer that has already been given or is more specific
than a question to which the user has replied no.

• Should the system ask the question as soon as it is encountered in the proof
process, or should it delay the goal until more variables are bound? There
may be some goals that will subsequently fail no matter what the user an-
swers. For these goals, it may be better to find this out rather than asking the
user at all. There may also be free variables in a query that, subsequently,
will become bound. Rather than asking the user to enumerate the possibili-
ties until they stumble on the instance that does not fail, it may be better to
delay the goal (page 536).

Consider the query ?p(X) ∧ q(X), where p(X) is askable. If there is only
one instance of q that is true, say q(k), it may be better to delay asking the
p(X) question until X is bound to k. Then the system can ask p(k) directly
instead of asking the user to enumerate all of the p’s until they stumble on
p(k) being true. However, if there is a large database of instances of q(X) and
few values of X for which p(X) is true, it may be better to ask for instances
of p(X) and then to check them with the database rather than asking a yes-
or-no question for each element of the database. Which is better depends on
the estimated number of individuals for which p(X) is true, the estimated
number of individuals for which q(X) is true, and the costs associated with
asking the user.

These pragmatic questions are very important when designing a user-friendly
interface to a KB system.

13.5 Implementing Knowledge-Based Systems

It may be useful for an agent to be able to represent its own reasoning. Such
reasoning about an agent’s own representations is called reflection. Explicitly
representing its own reasoning enables the agent to reason more flexibly so that
the designer can craft the most appropriate language for each application.

This section considers one use of reflection, namely, implementing light-
weight tools for building new languages with features that are required for
particular applications. By making it easy to implement new languages and
tools, the best language for each application can be used. The language and
tools can evolve as the application evolves.

580 13. Ontologies and Knowledge-Based Systems

A meta-interpreter for a language is an interpreter for the language writ-
ten in the same language. Such an interpreter is useful because modifications
allow for quick prototyping of new languages with useful features. Once the
language has proven its utility, a compiler for the language can be developed
to improve efficiency.

When implementing one language inside another, the language being im-
plemented is called the base language, or sometimes the object language, and
the language in which it is implemented is called the metalanguage. Expres-
sions in the base language are said to be at the base level, and expressions in
the metalanguage are at the meta-level. We first define a meta-interpreter for
the definite clause language presented in Chapter 12. We then show how the
base language can be modified or extended, and tools such as explanation and
debugging facilities can be provided by modifying the meta-interpreter.

13.5.1 Base Languages and Metalanguages

We require a representation of the base-level expressions that can be manipu-
lated by the interpreter to produce answers. Initially, the base language will
also be the language of definite clauses. Recall (page 163) that the definite
clause language is made up of terms, atoms, bodies, and clauses.

The metalanguage refers to these syntactic elements of the base language.
Thus, meta-level symbols will denote base-level terms, atoms, bodies, and
clauses. Base-level terms will denote objects in the domain being modeled, and
base-level predicates will denote relations in the domain.

One of the advantages of a meta-interpreter over writing an interpreter
for a whole new language is that the object level can use the meta-level con-
structs. When writing a logic programming meta-interpreter, there is a choice
of how to represent variables. In the non-ground representation, base-level
terms are represented as the same term in the metalanguage, so in particular,
base-level variables are represented as meta-level variables. This is in contrast
to the ground representation, where base language variables are represented
as constants in the metalanguage. The non-ground representation means that
meta-level unification is available to be used for unifying base-level terms. The
ground representation allows the implementation of more sophisticated mod-
els of unification.

Example 13.20 In a non-ground representation, the base-level term
foo(X, f (b), X) will be represented as the meta-level term foo(X, f (b), X).

In a ground representation, the base-level term foo(X, f (b), X) may be rep-
resented as foo(var(x), f (b), var(x)), where var is a meta-level function symbol
that denotes the variable with the name given as its argument.

We will develop a non-ground representation for definite clauses. The met-
alanguage must be able to represent all of the base-level constructs.

The base-level variables, constants, and function symbols are represented
as the corresponding meta-level variables, constants, and function symbols.

13.5. Implementing Knowledge-Based Systems 581

Thus, all terms in the base level are represented by the same term in the meta-
level. A base-level predicate symbol p is represented by the corresponding
meta-level function symbol p. Thus, the base-level atom p(t1, . . . , tk) is repre-
sented as the meta-level term p(t1, . . . , tk).

Base-level bodies are also represented as meta-level terms. If e1 and e2 are
meta-level terms that denote base-level atoms or bodies, let the meta-level term
oand(e1, e2) denote the base-level conjunction of e1 and e2. Thus, oand is a meta-
level function symbol that denotes base-level conjunction.

Base-level clauses are represented as meta-level atoms. Base-level rule “h if
b” is represented as the meta-level atom clause(h, b′), where b′ is the representa-
tion of body b. A base-level atomic clause a is represented as the meta-level
atom clause(a, true), where the meta-level constant true represents the base-
level empty body.

Example 13.21 The base-level clauses from Example 12.11 (page 502),

connected to(l1, w0).
connected to(w0, w1)← up(s2).
lit(L)← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

clause(connected to(l1, w0), true).
clause(connected to(w0, w1), up(s2)).
clause(lit(L), oand(light(L), oand(ok(L), live(L)))).

To make the base level more readable, we use the infix function symbol “&”
rather than oand. Instead of writing oand(e1, e2), we write e1 & e2. The conjunc-
tion symbol “&” is an infix function symbol of the metalanguage that denotes
an operator, between atoms, of the base language. This is just a syntactic vari-
ant of the “oand” representation. This use of infix operators makes it easier to
read base-level formulas.

Instead of writing clause(h, b), we write h ⇐ b, where⇐ is an infix meta-
level predicate symbol. Thus, the base-level clause “h ← a1 ∧ · · · ∧ an” is rep-
resented as the meta-level atom

h⇐ a1 & · · · & an.

This meta-level atom is true if the corresponding base-level clause is part of
the base-level knowledge base. In the meta-level, this atom can be used like
any other atom.

Figure 13.8 summarizes how the base language is represented in the meta-
level.

582 13. Ontologies and Knowledge-Based Systems

Syntactic construct Meta-level representation
of the syntactic construct

variable X variable X
constant c constant c
function symbol f function symbol f
predicate symbol p function symbol p
“and” operator ∧ function symbol &
“if” operator ← predicate symbol ⇐
clause h← a1 ∧ · · · ∧ an. atom h⇐ a1 & · · · & an.
clause h. atom h⇐ true.

Figure 13.8: The non-ground representation for the base language

Example 13.22 Using the infix notation, the base-level clauses of Example
13.21 are represented as the meta-level facts

connected to(l1, w0)⇐ true.
connected to(w0, w1)⇐ up(s2).
lit(L)⇐ light(L) & ok(L) & live(L).

This notation is easier for humans to read than the meta-level facts of Example
13.21, but as far as the computer is concerned, it is essentially the same.

The meta-level function symbol “&” and the meta-level predicate symbol “⇐ ”
are not predefined symbols of the meta-level. You could have used any other
symbols. They are written in infix notation for readability.

13.5.2 A Vanilla Meta-interpreter

This section presents a very simple vanilla meta-interpreter for the definite
clause language written in the definite clause language. Subsequent sections
augment this meta-interpreter to provide extra language constructs and knowl-
edge engineering tools. It is important to first understand the simple case be-
fore considering the more sophisticated meta-interpreters presented later.

Figure 13.9 defines a meta-interpreter for the definite clause language. This
is an axiomatization of the relation prove; prove(G) is true when base-level body
G is a logical consequence of the base-level clauses.

As with axiomatizing any other relation, we write the clauses that are true
in the intended interpretation, ensuring that they cover all of the cases and
that there is some simplification through recursion. This meta-interpreter es-
sentially covers each of the cases allowed in the body of a clause or in a query,
and it specifies how to solve each case. A body is either empty, a conjunction,
or an atom. The empty base-level body true is trivially proved. To prove the
base-level conjunction A & B, prove A and prove B. To prove atom H, find a
base-level clause with H as the head, and prove the body of the clause.

13.5. Implementing Knowledge-Based Systems 583

prove(G) is true if base-level body G is a logical consequence of the base-level%%%%%%%%%%%%
clauses that are defined using the predicate symbol “⇐ ”.%%%%%%%

prove(true).

prove((A & B))←
prove(A) ∧
prove(B).

prove(H)←
(H⇐ B) ∧
prove(B).

Figure 13.9: The vanilla definite clause meta-interpreter

Example 13.23 Consider the meta-level representation of the base-level
knowledge base in Figure 13.10 (on the next page). This knowledge base is
adapted from Example 12.11 (page 502). This knowledge base consists of meta-
level atoms, all with the same predicate symbol, namely “⇐ ”. Here, we de-
scribe how a top-down implementation works given the knowledge base that
consists of the vanilla meta-interpreter and the clauses for “⇐ ”.

The base-level goal live(w5) is asked with the following query:

?prove(live(w5)).

The third clause of prove is the only clause matching this query. It then looks for
a clause of the form live(w5)⇐ B and finds

live(W)⇐ connected to(W, W1) & live(W1).

W unifies with w5, and B unifies with connected to(w5, W1) & live(W1). It then
tries to prove

prove((connected to(w5, W1) & live(W1))).

The second clause for prove is applicable. It then tries to prove

prove(connected to(w5, W1)).

Using the third clause for prove, it looks for a clause with a head to unify with

connected to(w5, W1)⇐ B,

and find connected to(w5, outside) ⇐ true, binding W1 to outside. It then tries to
prove prove(true), which succeeds using the first clause for prove.

The second half of the conjunction, prove(live(W1)) with W1 = outside, re-
duces to prove(true) which is, again, immediately solved.

584 13. Ontologies and Knowledge-Based Systems

lit(L)⇐
light(L) &

ok(L) &

live(L).

live(W)⇐
connected to(W, W1) &

live(W1).

live(outside)⇐ true.

light(l1)⇐ true.

light(l2)⇐ true.

down(s1)⇐ true.

up(s2)⇐ true.

up(s3)⇐ true.

connected to(l1, w0)⇐ true.

connected to(w0, w1)⇐ up(s2) & ok(s2).

connected to(w0, w2)⇐ down(s2) & ok(s2).

connected to(w1, w3)⇐ up(s1) & ok(s1).

connected to(w2, w3)⇐ down(s1) & ok(s1).

connected to(l2, w4)⇐ true.

connected to(w4, w3)⇐ up(s3) & ok(s3).

connected to(p1, w3)⇐ true.

connected to(w3, w5)⇐ ok(cb1).

connected to(p2, w6)⇐ true.

connected to(w6, w5)⇐ ok(cb2).

connected to(w5, outside)⇐ true.

ok(X)⇐ true.

Figure 13.10: A base-level knowledge base for house wiring

13.5.3 Expanding the Base Language

The base language can be changed by modifying the meta-interpreter. Adding
clauses is used to increase what can be proved. Adding extra conditions to the
meta-interpreter rules can restrict what can be proved.

In all practical systems, not every predicate is defined by clauses. For exam-
ple, it would be impractical to axiomatize arithmetic on current machines that
can do arithmetic quickly. Instead of axiomatizing such predicates, it is better
to call the underlying system directly. Assume the predicate call(G) evaluates

13.5. Implementing Knowledge-Based Systems 585

G directly. Writing call(p(X)) is the same as writing p(X). The predicate call is
required because the definite clause language does not allow free variables as
atoms.

Built-in procedures can be evaluated at the base level by defining the meta-
level relation built in(X) that is true if all instances of X are to be evaluated
directly; X is a meta-level variable that must denote a base-level atom. Do not
assume that “built in” is provided as a built-in relation. It can be axiomatized
like any other relation.

The base language can be expanded to allow for disjunction (inclusive or)
in the body of a clause.

The disjunction, A ∨ B, is true in an interpretation I when either A is true
in I or B is true in I (or both are true in I).

Allowing disjunction in the body of base-level clauses does not require dis-
junction in the metalanguage.

Example 13.24 An example of the kind of base-level rule you can now inter-
pret is

can see⇐ eyes open & (lit(l1) ∨ lit(l2)),

which says that can see is true if eyes open is true and either lit(l1) or lit(l2) is
true (or both).

Figure 13.11 shows a meta-interpreter that allows built-in procedures to be
evaluated directly and allows disjunction in the bodies of rules. This requires a
database of built-in assertions and assumes that call(G) is a way to prove G in
the meta-level.

Given such an interpreter, the meta-level and the base level are different
languages. The base level allows disjunction in the body. The meta-level does
not require disjunction to provide it for the base language. The meta-level re-
quires a way to interpret call(G), which the base level cannot handle. The base
level, however, can be made to interpret the command call(G) by adding the
following meta-level clause:

prove(call(G))←
prove(G).

13.5.4 Depth-Bounded Search

The previous section showed how adding extra meta-level clauses can be used
to expand the base language. This section shows how adding extra conditions
to the meta-level clauses can reduce what can be proved.

A useful meta-interpreter is one that implements depth-bounded search.
This can be used to look for short proofs or as part of an iterative-deepening
searcher (page 95), which carries out repeated depth-bounded, depth-first
searches, increasing the bound at each stage.

586 13. Ontologies and Knowledge-Based Systems

prove(G) is true if base-level body G is a logical consequence of the base-level%%%%%%%%%%%%
knowledge base.%

prove(true).

prove((A & B))←
prove(A) ∧
prove(B).

prove((A∨ B))←
prove(A).

prove((A∨ B))←
prove(B).

prove(H)←
built in(H) ∧
call(H).

prove(H)←
(H⇐ B) ∧
prove(B).

Figure 13.11: A meta-interpreter that uses built-in calls and disjunction

Figure 13.12 gives an axiomatization of the relation bprove(G, D), which is
true if G can be proved with a proof tree of depth less than or equal to non-
negative integer D. This figure uses Prolog’s infix predicate symbol “is”, where
“V is E” is true if V is the numerical value of expression E. Within the expres-
sion, “−” is the infix subtraction function symbol. Thus, “D1 is D− 1” is true if
D1 is one less than the number D.

One aspect of this meta-interpreter is that, if D is bound to a number in
the query, this meta-interpreter will never go into an infinite loop. It will miss
proofs whose depth is greater than D. As a result, this interpreter is incomplete
when D is set to a fixed number. However, every proof that can be found for the
prove meta-interpreter can be found for this meta-interpreter if the value D is set
large enough. The idea behind an iterative-deepening (page 95) searcher is to
exploit this fact by carrying out repeated depth-bounded searches, each time
increasing the depth bound. Sometimes the depth-bounded meta-interpreter
can find proofs that prove cannot. This occurs when the prove meta-interpreter
goes into an infinite loop before exploring all proofs.

This is not the only way to build a bounded meta-interpreter. An alternative
measure of the size of proof trees could also be used. For example, you could
use the number of nodes in the tree instead of the maximum depth of the proof
tree. You could also make conjunction incur a cost by changing the second rule.
(See Exercise 13.7.)

13.5. Implementing Knowledge-Based Systems 587

bprove(G, D) is true if G can be proved with a proof tree of depth less than or%%%%%%%%%%%%%%%
equal to number D.%%%

bprove(true, D).

bprove((A & B), D)←
bprove(A, D) ∧
bprove(B, D).

bprove(H, D)←
D ≥ 0∧
D1 is D− 1∧
(H⇐ B) ∧
bprove(B, D1).

Figure 13.12: A meta-interpreter for depth-bounded search

13.5.5 Meta-interpreter to Build Proof Trees

To implement the how command of Section 5.3.3 (page 177), the interpreter
maintains a representation of the proof tree for a derived answer. Our meta-
interpreter can be extended to build a proof tree. Figure 13.13 gives a meta-
interpreter that implements built-in predicates and builds a representation of a
proof tree. This proof tree can be traversed to implement how questions.

hprove(G, T) is true if base-level body G is a logical consequence of the base-%%%%%%%%%%%
level knowledge base, and T is a representation of the proof tree for the cor-%%%%%%%%%%%%%
responding proof.%%

hprove(true, true).

hprove((A & B), (L & R))←
hprove(A, L) ∧
hprove(B, R).

hprove(H, if (H, built in))←
built in(H) ∧
call(H).

hprove(H, if (H, T))←
(H⇐ B) ∧
hprove(B, T).

Figure 13.13: A meta-interpreter that builds a proof tree

588 13. Ontologies and Knowledge-Based Systems

Example 13.25 Consider the base-level clauses for the wiring domain
(page 502) and the base-level query ?lit(L). There is one answer, namely L = l2.
The meta-level query ?hprove(lit(L), T) returns the answer L = l2 and the tree

T = if (lit(l2),
if (light(l2), true) &
if (ok(l2), true) &
if (live(l2),

if (connected to(l2, w4), true) &
if (live(w4),

if (connected to(w4, w3),
if (up(s3), true)) &

if (live(w3),
if (connected to(w3, w5),

if (ok(cb1), true)) &
if (live(w5),

if (connected to(w5, outside), true) &
if (live(outside), true)))))).

Although this tree can be understood if properly formatted, it requires a skilled
user to understand it. The how questions of Section 5.3.3 (page 177) traverse
this tree. The user only has to see clauses, not this tree. See Exercise 13.12
(page 595).

13.5.6 Ask the User Meta-interpreter

Figure 13.14 gives a pseudocode interpreter that incorporates querying the
user. This interpreter assumes that there is some extralogical external database
recording answers to queries. The database is updated as queries are answered.
Meta-level facts of the form answered(H, Ans) are being added. ask(H, Ans) is
true if H is asked of the user; and Ans, either yes or no, is given by the user as
a reply. unanswered(H) means answered(H, Ans) is not in the database for any
Ans. Note that the intended meaning of the fourth clause is that it succeeds only
if the answer is yes, but the answer gets recorded whether the user answered
yes or no.

Figure 13.15 gives a meta-interpreter that can be used to find the list of
ancestor rules for a why question. The second argument to wprove is a list of
clauses of the form (H ⇐ B) for each head of a rule in the current part of the
proof tree. This meta-interpreter can be combined with the meta-interpreter of
Figure 13.14 that actually asks questions. When the user is asked a question
and responds with “why,” the list can be used to give the set of rules used to
generate the current subgoal. The “why” described in Section 5.3.3 (page 178)
can be implemented by stepping through the list and, thus, up the proof tree,
one step at a time.

13.5. Implementing Knowledge-Based Systems 589

aprove(G) is true if base-level body G is a logical consequence of the base-%%%%%%%%%%%
level knowledge base and the answers provided by asking the user yes/no%%%%%%%%%%%
questions.

aprove(true).

aprove((A & B))←
aprove(A) ∧
aprove(B).

aprove(H)←
askable(H) ∧
answered(H, yes).

aprove(H)←
askable(H) ∧
unanswered(H) ∧
ask(H, Ans) ∧
record(answered(H, Ans)) ∧
Ans = yes.

aprove(H)←
(H⇐ B) ∧
aprove(B).

Figure 13.14: An ask-the-user interpreter in pseudocode

wprove(G, A) is true if base-level body G is a logical consequence of the base-%%%%%%%%%%%
level knowledge base, and A is a list of ancestors for G in the proof tree for%%%%%%%%%%%%%%%%
the original query.%%%

wprove(true, Anc).

wprove((A & B), Anc)←
wprove(A, Anc) ∧
wprove(B, Anc).

wprove(H, Anc)←
(H⇐ B) ∧
wprove(B, [(H⇐ B)|Anc]).

Figure 13.15: Meta-interpreter to collect ancestor rules for why questions

590 13. Ontologies and Knowledge-Based Systems

dprove(G, D0, D1) is true if D0 is an ending of D1 and G logically follows from%%%%%%%%%%%
the conjunction of the delayable atoms in D1.%%%%%%

dprove(true, D, D).

dprove((A & B), D1, D3)←
dprove(A, D1, D2) ∧
dprove(B, D2, D3).

dprove(G, D, [G|D])←
delay(G).

dprove(H, D1, D2)←
(H⇐ B) ∧
dprove(B, D1, D2).

Figure 13.16: A meta-interpreter that collects delayed goals

13.5.7 Delaying Goals

One of the most useful abilities of a meta-interpreter is to delay goals. Some
goals, rather than being proved, can be collected in a list. At the end of the
proof, the system derives the implication that, if the delayed goals were all
true, the computed answer would be true.

A number of reasons exist for providing a facility for collecting goals that
should be delayed:

• to implement consistency-based diagnosis (page 187) and abduction
(page 199), the assumables are delayed;

• to delay (page 536) subgoals with variables, in the hope that subsequent
calls will ground the variables (page 537); and

• to create new rules that leave out intermediate steps – for example, if the
delayed goals are to be asked of a user or queried from a database. This
is called partial evaluation and is used for explanation-based learning to
leave out intermediate steps in a proof.

Figure 13.16 gives a meta-interpreter that provides delaying. A base-level atom
G can be made delayable using the meta-level fact delay(G). The delayable
atoms can be collected into a list without being proved.

Suppose you can prove dprove(G, [], D). Let D′ be the conjunction of base-
level atoms in the list of delayed goals D. Then you know that the implication
G← D′ is a logical consequence of the clauses, and delay(d) is true for all d ∈ D.

Example 13.26 As an example of delaying for consistency-based diagnosis,
consider the base-level knowledge base of Figure 13.10 (page 584), but without
the rules for ok. Suppose, instead, that ok(G) is delayable. This is represented

13.7. References and Further Reading 591

as the meta-level fact

delay(ok(G)).

The query

ask dprove(live(p1), [], D).

has one answer, namely, D = [ok(cb1)]. If ok(cb1) were true, then live(p1) would
be true.

The query

ask dprove((lit(l2) & live(p1)), [], D).

has the answer D = [ok(cb1), ok(cb1), ok(s3)]. If cb1 and s3 are ok, then l2 will be
lit and p1 will be live.

Note that ok(cb1) appears as an element of this list twice. dprove does not
check for multiple instances of delayables in the list. A less naive version of
dprove would not add duplicate delayables. See Exercise 13.8 (page 594).

13.6 Review

The following are the main points you should have learned from this chapter:

• Individual-property-value triples form a flexible, universal representation
for relations.

• Ontologies are required for knowledge sharing.
• OWL ontologies are built from individuals, classes, and properties. A class

is a set of real and potential individuals. A property links an individual to a
data type or an individual.

• The ability to explain reasoning and debug knowledge in terms of semantic
content can improve the usability of a knowledge-based system.

• A meta-interpreter can be used to build a light-weight implementation of a
knowledge-based system that can be customized to fit the requirements of
the representation language.

13.7 References and Further Reading

Brachman and Levesque [2004] give an overview of knowledge representation.
Davis [1990] is an accessible introduction to a wealth of knowledge representa-
tion issues in commonsense reasoning. Brachman and Levesque [1985] present
many classic knowledge representation papers. See Woods [2007] for a recent
overview of semantic networks.

For an overview of the philosophical and computational aspects of ontolo-
gies, see Smith [2003]. For an overview of the semantic web see Antoniou and
van Harmelen [2008]; Berners-Lee, Hendler, and Lassila [2001]; and Hendler,

592 13. Ontologies and Knowledge-Based Systems

Berners-Lee, and Miller [2002]. The description of OWL in this chapter is based
on OWL-2; see Hitzler, Krötzsch, Parsia, Patel-Schneider, and Rudolph [2009];
Motik, Patel-Schneider, and Parsia [2009b]; and Motik, Patel-Schneider, and
Grau [2009a]. Turtle is presented in Beckett and Berners-Lee [2008].

BFO is described in Grenon and Smith [2004]. Other top-level ontologies
include DOLCE [Gangemi, Guarino, Masolo, and Oltramari, 2003], SUMO
[Niles and Pease, 2001], and Cyc [Panton, Matuszek, Lenat, Schneider, Wit-
brock, Siegel, and Shepard, 2006]. Noy and Hafner [1997] compare a number
of different top-level ontologies.

Meta-interpreters for logic are discussed by Bowen [1985] and Kowalski
[1979]. See the collection by Abramson and Rogers [1989].

13.8 Exercises

Exercise 13.1 The aim of this exercise is to explore multiple representations for
the same domain.

Tic-tac-toe is a game played on a 3× 3 grid. Two players, X and O, alternately
place their marks in an unoccupied position. X wins if, during its turn, it can place
an X in an unoccupied position to make three X’s in a row. For example, from the
state of the game

X O O
X

X O

X can win by moving into the left middle position.
Fred, Jane, Harold, and Jennifer have all written programs to determine if,

given a state of the game, X is able to win in the next move. Each of them has
decided on a different representation of the state of the game. The aim of this
question is to compare their representations.

Fred decides to represent a state of the game as a list of three rows, where each
row is a list containing three elements, either x, o, or b (for blank). Fred represents
the above state as the list

[[x, o, o], [b, x, b], [x, b, o]].

Jane decides that each position on the square could be described by two num-
bers, the position across and the position up. The top left X is in position pos(1, 3),
the bottom left X is in position pos(1, 1), and so forth. She represents the state of
the game as a pair ttt(XPs, OPs) where XPs is the list of X’s positions and OPs is
the list of O’s positions. Thus, Jane represents the above state as

ttt([pos(1, 3), pos(2, 2), pos(1, 1)], [pos(2, 3), pos(3, 3), pos(3, 1)]).

Harold and Jennifer both realize that the positions on the tic-tac-toe board
could be represented in terms of a so-called magic square:

6 7 2
1 5 9
8 3 4

13.8. Exercises 593

The game is transformed into one where the two players alternately select a digit.
No digit can be selected twice, and the player who first selects three digits sum-
ming to 15 wins.

Harold decides to represent a state of game as a list of nine elements, each of
which is x, o, or b, depending on whether the corresponding position in the magic
square is controlled by X, controlled by O, or is blank. Thus, Harold represents the
game state above as the list

[b, o, b, o, x, x, o, x, b].

Jennifer decides to represent the game as a pair consisting of the list of digits
selected by X and the list of digits selected by O. She represents the state of the
game above as

magic([6, 5, 8], [7, 2, 4]).

(a) For each of the four representations, write the relation to determine whether
X has won based on that representation, such as x won fred(State), with the
intended interpretation that X has won the game in state State based on
Fred’s representation (and similarly for the other three representations).

(b) Which representation is easier to use? Explain why.

(c) Which representation is more efficient to determine a win?

(d) Which representation would result in the simplest algorithm to make sure a
player does not lose on the next move, if such a move exists?

(e) Which do you think is the best representation? Explain why. Suggest a better
representation.

Exercise 13.2 Sam has proposed that any n-ary relation P(X1, X2, X3, . . . , Xn) can
be reexpressed as n− 1 binary relations, namely,

P1(X1, X2).
P2(X2, X3).
P3(X3, X4).

...
Pn−1(Xn−1, Xn).

Explain to Sam why this may not be such a good idea. What problems would arise
if Sam tried to do this?

Exercise 13.3 Write an ontology for the objects that often appear on your desk
that may be useful for a robot that is meant to tidy your desk. Think of the cat-
egories that (a) the robot can perceive and (b) should be distinguished for the
task.

Exercise 13.4 Suppose a “beach resort” is a resort that is near a beach that the
resort guests can use. The beach has to be near the sea or a lake, where swimming
is permitted. A resort must have places to sleep and places to eat. Write a definition
of beach resort on OWL.

594 13. Ontologies and Knowledge-Based Systems

Exercise 13.5 A luxury hotel has multiple rooms to rent, each of which is com-
fortable and has a view. The hotel must also have more than one restaurant. There
must be menu items for vegetarians and for meat eaters to eat in the restaurants.

(a) Define a luxury hotel in OWL, based on this description. Make reasonable
assumptions where the specification is ambiguous.

(b) Suggest three other properties you would expect of a luxury hotel. For each,
give the natural language definition and the OWL specification.

Exercise 13.6 For the following, explain how each is categorized by BFO:

(a) your skin

(b) the period at the end of the previous sentence

(c) the excitement a child has before a vacation

(d) the trip home from a vacation

(e) a computer program

(f) summer holidays

(g) the ring of a telephone

(h) the dust on your desk

(i) the task of cleaning your office

(j) the diagnosis of flu in a person

Based on this experience, suggest and justify a modification of BFO. Think about
what distinctions in BFO either don’t cover the cases you need or are not exclusive.

Exercise 13.7 Modify the depth-bound meta-interpreter of Figure 13.12
(page 587) so that

(a) the bound is on the total length of the proof, where the length is the total
number of instances of base-level atoms that appear in the proof.

(b) different base-level atoms can incur different costs on the bound. For exam-
ple, most atoms could have zero cost, and some atoms could incur a positive
cost.

Discuss why either of these may be better or worse than using the depth of the
tree.

What conditions on the atom costs would guarantee that, when a positive
bound is given, the proof procedure does not go into an infinite loop?

Exercise 13.8 The program of Figure 13.16 (page 590) allows duplicate delayed
goals. Write a version of dprove that returns minimal sets of delayed goals, in their
simplest forms.

Exercise 13.9 Write a meta-interpreter that can ask multiple sources for informa-
tion. Suppose that each source is identified by a universal resource identifier (URI).
Suppose you have the predicates

• can answer(Q, URI) is true if the source given by URI can answer questions
that unify with Q.

13.8. Exercises 595

• reliability(URI, R) is true if R is some numerical measure of reliability of URI.
You can assume that R is in the range [−100, 100], in which the higher num-
ber means that it is more reliable.

• askSite(URI, Q, Answer) is true when you ask the source URI a question Q,
it gives the Answer that is one of {yes, no, unknown}. Note that although
can answer and reliability can be simple databases, askSite is a sophisticated
program that accesses the web or asks a human a question.

Write a meta-interpreter that can utilize multiple information sources and returns
a reliability of the answer, where the reliability of an answer is the minimum of the
reliabilities of the information sources used. You must have some convention for
when no external sources were used (e.g., a reliability of 200). You can only ask an
information source a question that you have recorded that it can answer.

Exercise 13.10 Write a meta-interpreter that allows for asking the users yes-or-
no questions. Make sure it does not ask questions to which it already knows the
answer.

Exercise 13.11 Extend the ask-the-user meta-interpreter to have questions that
ask for instances. You should be able to interpret declarations that say that a pred-
icate is functional and respond accordingly.

Exercise 13.12 Write a program that takes in a tree produced from the meta-
interpreter that builds proof trees as shown in Figure 13.13 (page 587) and lets
someone traverse the tree using how questions.

Exercise 13.13 Write a meta-interpreter that allows both how and why questions.
In particular, it should allow the user to ask how questions about a goal that has
been proved after a why question. Explain how such a program may be useful.

Exercise 13.14 Write a meta-interpreter for definite clauses that does iterative
deepening search. Make sure that it only returns one answer for each proof and
that the system says no whenever the depth-first searcher says no. This should
be based on the depth-bounded meta-interpreter (page 587) and the iterative-
deepening search algorithm (page 97).

Exercise 13.15 Build an iterative deepening abductive reasoning system to find
minimal consistent sets of assumables to imply a goal. This can be based on
the depth-bounded meta-interpreter of Figure 13.12 (page 587), and the delay-
ing meta-interpreter of Figure 13.16 (page 590) to collect assumptions. The depth
bound should be based on the number of assumables used in the proof. Assume
that the assumables are all ground.

This should be done in two parts:

(a) Find the minimal sets of assumables that imply some g using iterative deep-
ening on the number of assumables. When g is false, this program finds the
minimal conflicts.

(b) Based on part (a), find the minimal explanations of g by interleaving finding
conflicts and finding minimal sets of assumables that imply g.

596 13. Ontologies and Knowledge-Based Systems

Exercise 13.16 In this question, you will write a meta-interpreter for para-
metrized logic programs. These are logic programs that can use constants in arith-
metic expressions. The values for the constants are given as part of the input to the
meta-interpreter.

Assume that an environment is a list of terms of the form val(Parm, Val), where
Val is the value associated with parameter Parm. Assume that each parameter only
appears once in an environment. An example environment is [val(a, 7), val(b, 5)].

In AILog, you can use <= as the base-level implication and & as the base-level
conjunction. AILog has <= defined as an infix operator and number is a built-in
predicate.

(a) Write a predicate lookup(Parm, Val, Env) that is true if parameter Parm has
value Val in environment Env.

(b) Write a predicate eval(Exp, Val, Env) that is true if parametrized arithmetic
expression Exp evaluates to number Val in environment Env. An expression
is either

• of the form (E1 + E2), (E1 ∗ E2), (E1/E2), (E1 − E2), where E1 and E2
are parameterized arithmetic expressions;

• a number; or

• a parameter.

Assume that the operators have their usual meaning, that numbers evaluate
to themselves, and that parameters evaluate to their value in the environ-
ment. You can use the AILog predicates is, use infix as N is E, which is true
if (unparametrized) expression E evaluates to number N, and number(E),
which is true if E is a number.

(c) Write a predicate pprove(G, Env) that is true if goal G is a logical consequence
of the base-level KB, where parameters are interpreted in environment Env.
An example interaction with AILog is

ailog: tell f(X,Y) <= Y is 2*a+b*X.
ailog: ask pprove(f(3,Z),[val(a,7),val(b,5)]).
Answer: pprove(f(3,29),[val(a,7),val(b,5)]).
[ok,more,how,help]: ok.

ailog: ask pprove(f(3,Z),[val(a,5),val(b,7)]).
Answer: pprove(f(3,31),[val(a,5),val(b,7)]).
[ok,more,how,help]: ok.

ailog: tell dsp(X,Y) <= Z is X*X*a & Y is Z*Z*b.
ailog: ask pprove(dsp(3,Z),[val(a,7),val(b,5)]).
Answer: pprove(dsp(3,19845),[val(a,7),val(b,5)]).
[ok,more,how,help]: ok.

ailog: ask pprove(dsp(3,Z),[val(a,5),val(b,7)]).
Answer: pprove(dsp(3,14175),[val(a,5),val(b,7)]).
[ok,more,how,help]: ok.

Chapter 14

Relational Planning, Learning,
and Probabilistic Reasoning

What is now required is to give the greatest possible development to math-
ematical logic, to allow to the full the importance of relations, and then to
found upon this secure basis a new philosophical logic, which may hope to
borrow some of the exactitude and certainty of its mathematical founda-
tion. If this can be successfully accomplished, there is every reason to hope
that the near future will be as great an epoch in pure philosophy as the
immediate past has been in the principles of mathematics. Great triumphs
inspire great hopes; and pure thought may achieve, within our generation,
such results as will place our time, in this respect, on a level with the
greatest age of Greece.

– Bertrand Russell [1917]

The representation scheme dimension (page 20) has, as its top level, reasoning
in terms of individuals and relations. Reasoning in terms of relations allows for
compact representations that can be built before the agent encounters particu-
lar individuals. When an agent is introduced to a new individual, it can infer
relationships about that individual. This chapter outlines how, in three areas of
AI, feature-based representations are expandable to (also) deal with individu-
als and relations. In each of these areas, the relational representation benefits
from being able to be built before the individuals are known and, therefore, be-
fore the features are known. As Russell points out in the quote above, relational
reasoning brings great advantages over propositional (and feature-based)
representations.

597

598 14. Relational Planning, Learning, and Probabilistic Reasoning

14.1 Planning with Individuals and Relations

An agent’s goals and its environment are often described in terms of individ-
uals and relations. When the agent’s knowledge base is built, and before the
agent knows the objects it should reason about, it requires a representation
that is independent of the individuals. Thus, it must go beyond feature-based
representations. When the individuals become known, it is possible to ground
out the representations in terms of features. Often, it is useful to reason in terms
of the non-grounded representations.

With a relational representation, we can reify time. Time can be represented
in terms of individuals that are points in time or temporal intervals. This sec-
tion presents two relational representations that differ in how time is reified.

14.1.1 Situation Calculus

The idea behind situation calculus is that (reachable) states are definable in
terms of the actions required to reach them. These reachable states are called
situations. What is true in a situation can be defined in terms of relations with
the situation as an argument. Situation calculus can be seen as a relational ver-
sion of the feature-based representation of actions (page 353).

Here we only consider single agents, a fully observable environment, and
deterministic actions.

Situation calculus is defined in terms of situations. A situation is either

• init, the initial situation, or
• do(A, S), the situation resulting from doing action A in situation S, if it is

possible to do action A in situation S.

Example 14.1 Consider the domain of Figure 3.1 (page 73). Suppose in the
initial situation, init, the robot, Rob, is at location o109 and there is a key k1 at
the mail room and a package at storage.

do(move(rob, o109, o103), init)

is the situation resulting from Rob moving from position o109 in situation init
to position o103. In this situation, Rob is at o103, the key k1 is still at mail, and
the package is at storage.

The situation

do(move(rob, o103, mail),
do(move(rob, o109, o103),

init))

is one in which the robot has moved from position o109 to o103 to mail and is
currently at mail. Suppose Rob then picks up the key, k1. The resulting situation
is

do(pickup(rob, k1),
do(move(rob, o103, mail),

14.1. Planning with Individuals and Relations 599

do(move(rob, o109, o103),
init))).

In this situation, Rob is at position mail carrying the key k1.

A situation can be associated with a state. There are two main differences
between situations and states:

• Multiple situations may refer to the same state if multiple sequences of ac-
tions lead to the same state. That is, equality between situations is not the
same as equality between states.

• Not all states have corresponding situations. A state is reachable if a se-
quence of actions exists that can reach that state from the initial state. States
that are not reachable do not have a corresponding situation.

Some do(A, S) terms do not correspond to any state. However, sometimes
an agent must reason about such a (potential) situation without knowing if A
is possible in state S, or if S is possible.

Example 14.2 The term do(unlock(rob, door1), init) does not denote a state at
all, because it is not possible for Rob to unlock the door when Rob is not at the
door and does not have the key.

A static relation is a relation for which the truth value does not depend on
the situation; that is, its truth value is unchanging through time. A dynamic
relation is a relation for which the truth value depends on the situation. To
represent what is true in a situation, predicate symbols denoting dynamic rela-
tions have a situation argument so that the truth can depend on the situation.
A predicate symbol with a situation argument is called a fluent.

Example 14.3 The relation at(O, L, S) is true when object O is at location L in
situation S. Thus, at is a fluent.

The atom

at(rob, o109, init)

is true if the robot rob is at position o109 in the initial situation. The atom

at(rob, o103, do(move(rob, o109, o103), init))

is true if robot rob is at position o103 in the situation resulting from rob moving
from position o109 to position o103 from the initial situation. The atom

at(k1, mail, do(move(rob, o109, o103), init))

is true if k1 is at position mail in the situation resulting from rob moving from
position o109 to position o103 from the initial situation.

A dynamic relation is axiomatized by specifying the situations in which it
is true. Typically, this is done inductively in terms of the structure of situations.

600 14. Relational Planning, Learning, and Probabilistic Reasoning

• Axioms with init as the situation parameter are used to specify what is
true in the initial situation.

• A primitive relation is defined by specifying when it is true in situations
of the form do(A, S) in terms of what is true in situation S. That is, primi-
tive relations are defined in terms of what is true at the previous situation.

• A derived relation is defined using clauses with a variable in the situation
argument. The truth of a derived relation in a situation depends on what
else is true in the same situation.

• Static relations are defined without reference to the situation.

Example 14.4 Suppose the delivery robot, Rob, is in the domain depicted in
Figure 3.1 (page 73). Rob is at location o109, the parcel is in the storage room,
and the key is in the mail room. The following axioms describe this initial situ-
ation:

at(rob, o109, init).
at(parcel, storage, init).
at(k1, mail, init).

The adjacent relation is a dynamic, derived relation defined as follows:

adjacent(o109, o103, S).
adjacent(o103, o109, S).
adjacent(o109, storage, S).
adjacent(storage, o109, S).
adjacent(o109, o111, S).
adjacent(o111, o109, S).
adjacent(o103, mail, S).
adjacent(mail, o103, S).
adjacent(lab2, o109, S).
adjacent(P1, P2, S)←

between(Door, P1, P2) ∧
unlocked(Door, S).

Notice the free S variable; these clauses are true for all situations. We cannot
omit the S because which rooms are adjacent depends on whether a door is
unlocked. This can change from situation to situation.

The between relation is static and does not require a situation variable:

between(door1, o103, lab2).

We also distinguish whether or not an agent is being carried. If an object is not
being carried, we say that the object is sitting at its location. We distinguish this
case because an object being carried moves with the object carrying it. An object
is at a location if it is sitting at that location or is being carried by an object at

14.1. Planning with Individuals and Relations 601

that location. Thus, at is a derived relation:

at(Ob, P, S)←
sitting at(Ob, P, S).

at(Ob, P, S)←
carrying(Ob1, Ob, S) ∧
at(Ob1, P, S).

Note that this definition allows for Rob to be carrying a bag, which, in turn, is
carrying a book.

The precondition (page 350) of an action specifies when it is possible to carry
out the action. The relation poss(A, S) is true when action A is possible in situ-
ation S. This is typically a derived relation.

Example 14.5 An agent can always put down an object it is carrying:

poss(putdown(Ag, Obj), S)←
carrying(Ag, Obj, S).

For the move action, an autonomous agent can move from its current position
to an adjacent position:

poss(move(Ag, P1, P2), S)←
autonomous(Ag) ∧
adjacent(P1, P2, S) ∧
sitting at(Ag, P1, S).

The precondition for the unlock action is more complicated. The agent must be
at the correct side of the door and carrying the appropriate key:

poss(unlock(Ag, Door), S)←
autonomous(Ag) ∧
between(Door, P1, P2) ∧
at(Ag, P1, S) ∧
opens(Key, Door) ∧
carrying(Ag, Key, S).

We do not assume that the between relation is symmetric. Some doors can only
open one way.

We define what is true in each situation recursively in terms of the previous
situation and of what action occurred between the situations. As in the feature-
based representation of actions (page 353), causal rules specify when a relation
becomes true and frame rules specify when a relation remains true.

602 14. Relational Planning, Learning, and Probabilistic Reasoning

Example 14.6 The primitive unlocked relation can be defined by specifying
how different actions can affect its being true. The door is unlocked in the situ-
ation resulting from an unlock action, as long as the unlock action was possible.
This is represented using the following causal rule:

unlocked(Door, do(unlock(Ag, Door), S))←
poss(unlock(Ag, Door), S).

Suppose the only action to make the door locked is to lock the door. Thus,
unlocked is true in a situation following an action if it was true before, if the
action was not to lock the door, and if the action was possible:

unlocked(Door, do(A, S))←
unlocked(Door, S) ∧
A �= lock(Door) ∧
poss(A, S).

This is a frame rule.

Example 14.7 The carrying predicate can be defined as follows.
An agent is carrying an object after picking up the object:

carrying(Ag, Obj, do(pickup(Ag, Obj), S))←
poss(pickup(Ag, Obj), S).

The only action that undoes the carrying predicate is the putdown action.
Thus, carrying is true after an action if it was true before the action, and the
action was not to put down the object. This is represented in the frame rule:

carrying(Ag, Obj, do(A, S))←
carrying(Ag, Obj, S) ∧
poss(A, S) ∧
A �= putdown(Ag, Obj).

Example 14.8 The atom sitting at(Obj, Pos, S1) is true in a situation S1 result-
ing from object Obj moving to Pos, as long as the action was possible:

sitting at(Obj, Pos, do(move(Obj, Pos0, Pos), S))←
poss(move(Obj, Pos0, Pos), S).

The other action that makes sitting at true is the putdown action. An object is
sitting at the location where the agent who put it down was located:

sitting at(Obj, Pos, do(putdown(Ag, Obj), S))←
poss(putdown(Ag, Obj), S) ∧
at(Ag, Pos, S).

The only other time that sitting at is true in a (non-initial) situation is when
it was true in the previous situation and it was not undone by an action. The

14.1. Planning with Individuals and Relations 603

only actions that undo sitting at is a move action or a pickup action. This can be
specified by the following frame axiom:

sitting at(Obj, Pos, do(A, S))←
poss(A, S) ∧
sitting at(Obj, Pos, S) ∧
∀Pos1 A �= move(Obj, Pos, Pos1) ∧
∀Ag A �= pickup(Ag, Obj).

Note that the quantification in the body is not the standard quantification for
rules. This can be represented using negation as failure (page 537):

sitting at(Obj, Pos, do(A, S))←
poss(A, S) ∧
sitting at(Obj, Pos, S) ∧
∼move action(A, Obj, Pos) ∧
∼pickup action(A, Obj).

move action(move(Obj, Pos, Pos1), Obj, Pos).
pickup action(pickup(Ag, Obj), Obj).

These clauses are designed not to have a free variable in the scope of the nega-
tion.

Example 14.9 Situation calculus can represent more complicated actions than
can be represented with simple addition and deletion of propositions in the
state description.

Consider the drop everything action in which an agent drops everything it
is carrying. In situation calculus, the following axiom can be added to the def-
inition of sitting at to say that everything the agent was carrying is now on the
ground:

sitting at(Obj, Pos, do(drop everything(Ag), S))←
poss(drop everything(Ag), S) ∧
at(Ag, Pos, S) ∧
carrying(Ag, Obj, S).

A frame axiom for carrying specifies that an agent is not carrying an object after
a drop everything action.

carrying(Ag, Obj, do(A, S))←
poss(A, S) ∧
carrying(Ag, Obj, S) ∧
A �= drop everything(Ag) ∧
A �= putdown(Ag, Obj).

The drop everything action thus affects an unbounded number of objects.

604 14. Relational Planning, Learning, and Probabilistic Reasoning

Situation calculus is used for planning by asking for a situation in which a
goal is true. Answer extraction (page 504) is used to find a situation in which
the goal is true. This situation can be interpreted as a sequence of actions for
the agent to perform.

Example 14.10 Suppose the goal is for the robot to have the key k1. The fol-
lowing query asks for a situation where this is true:

?carrying(rob, k1, S).

This query has the following answer:

S = do(pickup(rob, k1),
do(move(rob, o103, mail),

do(move(rob, o109, o103),
init))).

The preceding answer can be interpreted as a way for Rob to get the key: it
moves from o109 to o103, then to mail, where it picks up the key.

The goal of delivering the parcel (which is, initially, in the lounge, lng) to
o111 can be asked with the query

?at(parcel, o111, S).

This query has the following answer:

S = do(move(rob, o109, o111),
do(move(rob, lng, o109),

do(pickup(rob, parcel),
do(move(rob, o109, lng), init)))).

Therefore, Rob should go to the lounge, pick up the parcel, go back to o109, and
then go to o111.

Using the top-down proof procedure (page 509) on the situation calculus def-
initions is very inefficient, because a frame axiom is almost always applicable.
A complete proof procedure, such as iterative deepening, searches through all
permutations of actions even if they are not relevant to the goal. The use of
answer extraction does not negate the necessity for efficient planners, such as
the ones in Chapter 8.

14.1.2 Event Calculus

The second representation, event calculus, models how the truth value of re-
lations changes because of events occurring at certain times. Time can be mod-
eled as either continuous or discrete.

14.1. Planning with Individuals and Relations 605

Events are modeled as occurring at particular times. Event E occurring at
time T is written as event(E, T).

Events make some relations true and some no longer true:

• initiates(E, R, T) is true if event E makes primitive relation R true at time T.

• terminates(E, R, T) is true if event E makes primitive relation R no longer true
at time T.

Time T is a parameter to initiates and terminates because the effect of an event
can depend on what else is true at the time. For example, the effect of attempt-
ing to unlock a door depends on the position of the robot and whether it is
carrying the appropriate key.

Relations are either true or false at any time. In event calculus, relations
are reified, where holds(R, T) means that relation R is true at time T. This
is analogous to having T as the last argument to R in situation calculus.
The use of the meta-predicate holds allows general rules that are true for all
relations.

Derived relations are defined in terms of primitive relations and other de-
rived relations for the same time.

Primitive relation R holds at time T if an event occurred before T that made
R true, and there was no intervening event that made R no longer true. This
can be specified as follows:

holds(R, T)←
event(E, T0) ∧
T0 < T ∧
initiates(E, R, T0) ∧
∼clipped(R, T0, T).

clipped(R, T0, T)←
event(E1, T1) ∧
terminates(E1, R, T1) ∧
T0 < T1 ∧
T1 < T.

The atom clipped(R, T0, T) means there is an event between times T0 and T that
makes R no longer true; T0 < T1 is true if time T0 is before time T1. Here ∼
indicates negation as failure (page 193), and so these clauses mean their com-
pletion.

Actions are represented in terms of what properties they initiate and termi-
nate. As in situation calculus, the preconditions of actions are specified using
the poss relation.

606 14. Relational Planning, Learning, and Probabilistic Reasoning

Example 14.11 The pickup action initiates a carrying relation, and it terminates
a sitting at relation as long as the preconditions for pickup are true:

initiates(pickup(Ag, Obj), carrying(Ag, Obj), T)←
poss(pickup(Ag, Obj), T).

terminates(pickup(Ag, Obj), sitting at(Obj, Pos), T)←
poss(pickup(Ag, Obj), T).

poss(pickup(Ag, Obj), T)←
autonomous(Ag) ∧
Ag �= Obj∧
holds(at(Ag, Pos), T) ∧
holds(sitting at(Obj, Pos), T).

This implies that if a pickup is attempted when the preconditions do not hold,
nothing happens. It is also possible to write clauses that specify what happens
under different circumstances, such as when a pickup is attempted for an object
that is being held by something else.

Given particular action occurrences, and making the complete knowledge
assumption that all intervening events are specified, the top-down proof pro-
cedure with negation as failure can be used to prove what is true. For planning,
the agent can use abduction (page 199).

14.2 Learning with Individuals and Relations

Learning in terms of individuals and relations allows for learning where the
structure of relationships is important for prediction. The learning methods
presented in Chapter 7 assumed that the feature values are meaningful; some-
thing useful could be predicted about a case by using the values of features.
However, when the examples are about individuals and relations, the value of
a property may be a meaningless name of an individual. It is only by consider-
ing the attributes of the individual that the name denotes, and its relationship
to other individuals, that an agent is able produce meaningful predictions. The
learned knowledge can also be applied to individuals that did not appear in
the training set.

Because much of this work has been done in the context of logic program-
ming, it is often called inductive logic programming.

Example 14.12 Suppose a trading agent the following data set, in terms of
the individual-property-value triples (page 552), about which resorts a person
likes:

14.2. Learning with Individuals and Relations 607

Individual Property Value
joe likes resort 14
joe dislikes resort 35
.
resort 14 type resort
resort 14 near beach 18
beach 18 type beach
beach 18 covered in ws
ws type sand
ws color white
.

The agent wants to learn what Joe likes. What is important is not the value
of the likes property, which is just a meaningless name, but the properties of the
individual denoted by the name. Feature-based representations cannot do any-
thing with this data set beyond learning that Joe likes resort 14, but not resort 35.

The sort of theory the agent should learn is that Joe likes resorts near sandy
beaches. This theory can be expressed as a logic program:

prop(joe, likes, R)←
prop(R, type, resort) ∧
prop(R, near, B) ∧
prop(B, type, beach) ∧
prop(B, covered in, S) ∧
prop(S, type, sand).

Logic programs provide the ability to be able to represent deterministic theories
about individuals and relations. This rule can be applied to resorts and beaches
that Joe has not visited.

The input to an inductive logic programming learner includes the follow-
ing:

• A is a set of atoms whose definitions the agent is learning.

• E+ is the set of ground instances of elements of A, called the positive exam-
ples, that are observed to be true.

• E− is the set of ground instances of elements of A, called the negative exam-
ples, that are observed to be false.

• B, the background knowledge, is a set of clauses that define relations that
can be used in the learned logic programs.

• H is a space of possible hypotheses. H is often represented implicitly as a set
of operators that can generate the possible hypotheses. We assume that each
hypothesis is a logic program.

608 14. Relational Planning, Learning, and Probabilistic Reasoning

Example 14.13 In Example 14.12 (page 606), suppose the agent wants to learn
what Joe likes. In this case, the inputs are

• A = {prop(joe, likes, R)}
• E+ = {prop(joe, likes, resort 14), . . . }. For the example that follows, we as-

sume there are many such items that Joe likes.

• E− = {prop(joe, likes, resort 35), . . . }. Note that these are written in the pos-
itive form; they have been observed to be false.

• B = {prop(resort 14, type, resort), prop(resort 14, near, beach 18), . . . }. This
set contains all of the facts about the world that are not instances of A.
The agent is not learning about these.

• H is a set of logic programs defining prop(joe, likes, R). The heads of the
clauses unify with prop(joe, likes, R). H is too big to enumerate.

All of these, except for H, are given explicitly in the formulation of the problem.

The aim is to find a simplest hypothesis h ∈ H such that

B∧ h |= E+ and

B∧ h �|= E−.

That is, the hypothesis implies the positive evidence and does not imply the
negative evidence. It must be consistent with the negative evidence being false.

We, thus, want to find an element of the version space (page 328). This
is similar to the definition of abduction (page 199), in which the knowledge
base in abduction corresponds to the background knowledge. The hypothesis
space of inductive logic programming is the set of logic programs. The second
condition corresponds to consistency.

For the rest of this section, assume that there is a single target n-ary relation
whose definition we want to learn, and for which we use the predicate sym-
bol t. That is, A = {t(X1, . . . , Xn)}. The hypothesis space consists of possible
definitions for this relation using a logic program.

There are two main strategies used in inductive logic programming:

• The first strategy is to start with the simplest hypothesis and make it more
complicated to fit the data. Because the logic program only states positive
facts, the simplest hypothesis is the most general hypothesis (page 329),
which is simply that t(X1, . . . , Xn) is always true. This hypothesis implies
the positive examples, but it also implies the negative examples, if any exist.
This strategy involves a general-to-specific search. It tries to find the simplest
hypothesis that fits the data by searching the hypothesis space from the sim-
plest hypothesis to more complex hypotheses, always implying the positive
examples, until a hypothesis that does not imply the negative examples is
found.

• The second strategy is to start with a hypothesis that fits the data and to
make it simpler while still fitting the data. A hypothesis that fits the data
is the set of positive examples. This strategy involves a specific-to-general
search: start with the very specific hypothesis in which only the positive

14.2. Learning with Individuals and Relations 609

examples are true, and then generalize the clauses, avoiding the negative
cases.

We will expand on the general-to-specific search for definite clauses. The initial
hypothesis contains a single clause:

{t(X1, . . . , Xn)←}.

A specialization operator takes a set G of clauses and returns a set S of clauses
that specializes G. To specialize means that S |= G.

The following are three primitive specialization operators:

• Split a clause in G on condition c. Clause a ← b in G is replaced by two
clauses: a← b∧ c and a← b∧ ¬c.

• Split a clause a← b in G on a variable X that appears in a or b. Clause a← b
is replaced by the clauses

a← b∧X = t1.
. . .
a← b∧X = tk.

where the ti are terms.

• Remove a clause that is not necessary to prove the positive examples.

The last operation changes the predictions of the clause set. Those cases no
longer implied by the clauses are false.

These primitive specialization operators are used together to form the op-
erators of H. The operators of H are combinations of primitive specialization
operations designed so that progress can be evaluated using a greedy look-
ahead. That is, the operators are defined so that one step is adequate to evaluate
progress.

The first two primitive specialization operations should be carried out judi-
ciously to ensure that the simplest hypothesis is found. An agent should carry
out the splitting operations only if they make progress. Splitting is only use-
ful when combined with clause removal. For example, adding an atom to the
body of a clause is equivalent to splitting on the atom and then removing the
clause containing the negation of the atom. A higher-level specialization opera-
tor may be to split on the atom prop(X, type, T) for some variable X that appears
in the clause, split on the values of T, and remove the resulting clauses that are
not required to imply the positive examples. This operator makes progress on
determining which types are useful.

Figure 14.1 (on the next page) shows a local search algorithm for the top-
down induction of a logic program. It maintains a single hypothesis that it
iteratively improves until finding a hypothesis that fits the data or until it fails
to find such a hypothesis.

610 14. Relational Planning, Learning, and Probabilistic Reasoning

1: procedure TDInductiveLogicProgram(t, B, E+, E−, R)
2: Inputs
3: t: an atom whose definition is to be learned
4: B: background knowledge is a logic program
5: E+: positive examples
6: E−: negative examples
7: R: set of specialization operators

8: Output
9: logic program that classifies E+ positively and E− negatively or ⊥ if

no program can be found
10: Local
11: H is a set of clauses
12: H← {t(X1, . . . , Xn)←}
13: while there is e ∈ E− such that B∪H |= e do
14: if there is r ∈ R such that B∪ r(H) |= E+ then
15: Select r ∈ R such that B∪ r(H) |= E+

16: H ← r(H)
17: else
18: return ⊥
19: return H

Figure 14.1: Top-down induction of a logic program

At each time step it chooses an operator to apply with the constraint that
every hypothesis entails the positive examples. This algorithm glosses over
two important details:

• which operators to consider and
• which operator to select.

The operators should be at a level so that they can be evaluated according to
which one is making progress toward a good hypothesis. In a manner similar
to decision-tree learning (page 301), the algorithm can perform a myopically
optimal choice. That is, it chooses the operator that makes the most progress in
minimizing the error. The error of a hypothesis can be the number of negative
examples that are implied by the hypothesis.

Example 14.14 Consider Example 14.12 (page 606), in which the agent must
learn about Joe’s likes and dislikes.

The first hypothesis is that Joe likes everything:

{prop(joe, likes, R)← },

which is inconsistent with the negative evidence.
It can split on properties that contain the individuals that Joe likes. The only

way for the specialization to make progress – to prove fewer negative examples

14.3. Probabilistic Relational Models 611

while implying all positive examples – is to contain the variable R in the body.
Thus, it must consider triples in which R is the subject or the object.

• It could consider splitting on the property type, splitting on the value of
type, and keeping only those that are required to prove the positive exam-
ples. This results in the following clause (assuming the positive examples
only include resorts):

{prop(joe, likes, R)← prop(R, type, resort)}.

There can be other clauses if the positive examples include things other
than resorts that Joe likes. If the negative examples include non-resorts,
this split would be useful in reducing the error.

• It could consider splitting on other properties that can be used in proofs
of the positive examples, such as near, resulting in

{prop(joe, likes, R)← prop(R, near, B)}

if all of the positive examples are near something. If some of the nega-
tive examples are not near anything, this specialization could be useful in
reducing the error.

It could then choose whichever of these splits makes the most progress. In the
next step it could add the other one, other properties of R, or properties of B.

14.3 Probabilistic Relational Models

The belief network probability models of Chapter 6 were defined in terms of
features. Many domains are best modeled in terms of individuals and relations.
Agents must often build probabilistic models before they know what individu-
als are in the domain and, therefore, before they know what random variables
exist. When the probabilities are being learned, the probabilities often do not
depend on the individuals. Although it is possible to learn about an individual,
an agent must also learn general knowledge that it can apply when it finds out
about a new individual.

Example 14.15 Consider the problem of an intelligent tutoring system diag-
nosing students’ arithmetic errors. From observing a student’s performance on
a number of examples, the tutor should try to determine whether or not the
student understands the task and, if not, work out what the student is doing
wrong so that appropriate remedies can be applied.

Consider the case of diagnosing two-digit addition of the form

x1 x0
+ y1 y0

z2 z1 z0

The student is given the values for the x’s and the y’s and provides values for
the z’s.

612 14. Relational Planning, Learning, and Probabilistic Reasoning

X0X1

Y0Y1

Z0Z1Z2

C1C2

Knows_Carry Knows_Add

Figure 14.2: Belief network for two-digit addition

Students’ answers depend on whether they know basic addition and
whether they know how to carry. A belief network for this example is shown
in Figure 14.2 . The carry into digit i, given by the variable Ci, depends on the
x-value, the y-value, and the carry for the previous digit, and on whether the
student knows how to carry. The z-value for digit i, given by the variable Zi,
depends on the x-value, the y-value, and the carry for digit i, in addition to
whether the student knows basic addition.

By observing the value of the x’s and the y’s in the problem and the value
of z’s given by the student, the posterior probability that the student knows
addition and knows how to carry can be inferred. One feature of the belief
network model is that it allows students to make random errors; even though
they know arithmetic, they can still get the wrong answer.

The problem with this representation is that it is inflexible. A flexible rep-
resentation would allow for the addition of multiple digits, multiple problems,
multiple students, and multiple times. Multiple digits require the replication
of the network for the digits. Multiple times allow for modeling how students’
knowledge and their answers change over time, even if the problems do not
change over time.

If the conditional probabilities were stored as tables, the size of these tables
would be enormous. For example, if the Xi, Yi, and Zi variables each have a
domain size of 11 (the digits 0 to 9 or the blank), and the Ci and Knows Add
variables are binary, a tabular representation of

P(Z1|X1, Y1, C1, Knows Add)

would have a size greater than 4,000. There is much more structure in the condi-
tional probability than is expressed in the tabular representation. The represen-
tation that follows allows for both relational probabilistic models and compact
descriptions of conditional probabilities.

A probabilistic relational model (PRM) or a relational probability model
is a model in which the probabilities are specified on the relations, indepen-
dently of the actual individuals. Different individuals share the probability pa-
rameters.

14.3. Probabilistic Relational Models 613

A parametrized random variable is either a logical atom or a term
(page 494). That is, it is of the form p(t1, . . . , tn), where each ti is a logi-
cal variable or a constant. The parametrized random variable is said to be
parametrized by the logical variables that appear in it. A ground instance of
a parametrized random variable is obtained by substituting constants for the
logical variables in the parametrized random variable. The ground instances of
a parametrized random variable correspond to random variables. The random
variables are Boolean if p is a predicate symbol. If p is a function symbol, the
domain of the random variables is the range of p.

We use the convention that logical variables are in upper case. Random
variables correspond to ground atoms and ground terms, so, for this section,
these are written in lower case.

Example 14.16 For a PRM of the multidigit arithmetic problem of the previ-
ous example, there is a separate x-variable for each digit D and for each problem
P, represented by the parametrized random variable x(D, P). Thus, for exam-
ple, x(1, prob17) may be a random variable representing the x-value of the first
digit of problem 17. Similarly there is a parametrized random variable, y(D, P),
which represents a random variable for each digit D and problem P.

There is a variable for each student S and time T that represents whether
S knows how to add properly at time T. The parametrized random variable
knows add(S, T) represents whether student S knows addition at time T. The
random variable knows add(fred, mar23) is true if Fred knows addition on March
23. Similarly, there is a parametrized random variable knows carry(S, T).

There is a different z-value and a different carry for each digit, problem,
student, and time. These values are represented by the parametrized random
variables z(D, P, S, T) and carry(D, P, S, T). So, z(1, prob17, fred, mar23) is a ran-
dom variable representing the answer Fred gave on March 23 for digit 1 of
problem 17. Function z has range {0, . . . , 9, blank}, so the random variables all
have this set as their domain.

A plate model consists of

• a directed graph in which the nodes are parameterized random variables,

• a population of individuals for each logical variable, and

• a conditional probability of each node given its parents.

A plate model means its grounding – the belief network in which nodes are all
ground instances of the parametrized random variables (each logical variable
replaced by an individual in its population). The conditional probabilities of
the belief network are the corresponding instances of the plate model.

Example 14.17 Figure 7.17 (page 339) gives a hierarchical Bayesian model as
(a) a plate model and (b) its grounding. The plate representation, on the left
of the figure, has four parametrized random variables: s(X, H), φ(H), α1, and
α2. The population for X is the set of all patients. The population for H is the
set of all hospitals. The grounding of the network is shown on the right of the

614 14. Relational Planning, Learning, and Probabilistic Reasoning

x(D,P)

y(D,P) z(D,P,S,T)

c(D,P,S,T)

knows_carry(S,T) knows_add(S,T)

D,P

S,T

Figure 14.3: Belief network with plates for multidigit addition

figure. There is a separate random variable φ(h) for each hospital h, and a sep-
arate random variable s(x, h) for each patent x and hospital h. There is a con-
ditional probability of each s(x, h) given the corresponding φ(h), a conditional
probability of each φ(h) given α1 and α2, and prior probabilities of α1 and α1.
The s(x, h) variables in the grounding all have the same conditional probability
given parent. The variables s(x1, h) and s(x1, h), for different patients x1 and x2,
are independent of each other given φ(h). The variables s(x1, h1) and s(x2, h2),
for different hospitals h1 and h2, are independent of each other given α1 and α2.

Example 14.18 A plate model with the parametrized random variables of
Example 14.16 is shown in Figure 14.3. The rectangles correspond to plates. For
the plate labeled with D, P, an instance of each variable exists for each digit
D and person P. One way to view this is that the instances come out of the
page, like a stack of plates. Similarly, for the plate labeled S, T, there is a copy
of the variables for each student S and each time T. For the variables in the
intersection of the plates, there is a random variable for each digit D, person
P, student S, and time T. Note that the notation here is redundant; the plates
provide the same information as the explicit parameters; the parameters for c
have to be D, P, S, T because these are the plates it is in.

The plate representation denotes the same independence as a belief net-
work (page 240); each node is independent of its non-descendants given its
parents. In this case, the diagram describes its grounding. Thus, for particular
values d ∈ dom(D), p ∈ dom(P), s ∈ dom(S), and t ∈ dom(T), z(d, p, s, t) is a ran-
dom variable, with parents x(d, p), y(d, p), c(d, p, s, t) and knows add(s, t). There
is a loop in the plate model on the c(D, P, S, T) parametrized random variable
because the carry for one digit depends on the carry for the previous digit for
the same problem, student, and time. Similarly, whether students know how to
carry at some time depends on whether they knew how to carry at the previ-
ous time. However, the conditional probability tables are such that the ground
network is acyclic.

14.3. Probabilistic Relational Models 615

There is a conditional probability of each parametrized random variable,
given its parents. This conditional probability is shared among its ground in-
stances.

Unfortunately, the plate representation is not adequate when the depen-
dency occurs among different instances of the same relation. In the preceding
example, c(D, P, S, T) depends, in part, on c(D− 1, P, S, T), that is, on the carry
from the previous digit (and there is some other case for the first digit). A more
complex example is to determine the probability that two authors are collab-
orators, which depends on whether they have written a paper in common. To
represent such examples, it is useful to be able to specify how the logical vari-
ables interact, as is done in logic programs.

One representation that combines the ideas of belief networks, plates, and
logic programs is the independent choice logic (ICL). The ICL consists of a
set of independent choices, a logic program that gives the consequences of the
choices, and probability distributions over the choices. In more detail, the ICL
is defined as follows:

An alternative is a set of atoms (page 494) all sharing the same logical vari-
ables. A choice space is a set of alternatives such that none of the atoms in the
alternatives unify with each other. An ICL theory contains

• a choice space C. Let C′ be the set of ground instances of the alternatives.
Thus, C′ is a set of sets of ground atoms.

• an acyclic logic program (that can include negation as failure), in which the
head of the clauses doesn’t unify with an element of an alternative in the
choice space.

• a probability distribution over each alternative.

The atoms in the logic program and the choice space can contain constants,
variables, and function symbols.

A selector function selects a single element from each alternative in C′.
There exists a possible world for each selector function. The logic program
specifies what is true in each possible world. Atom g is true in a possible world
if it follows from the atoms selected by the selector function added to the logic
program. The probability of proposition g is given by a measure over sets of
possible worlds, where the atoms in different ground instances of the alterna-
tives are probabilistically independent. The instances of an alternative share the
same probabilities, and the probabilities of different instances are multiplied.

The acyclicity of the logic program means that only a finite number of al-
ternatives exist with atoms involved in proofs of any ground g. So, although
there may be infinitely many possible worlds, for any g, the probability mea-
sure can be defined on the sets of possible worlds that are describable in terms
of a finite number of alternatives. A description of these worlds can be found
by making the atoms in the alternatives assumable (page 187), with different
atoms in the same alternative inconsistent, and by using abduction (page 199)
to find descriptions of the sets of worlds in which g is true.

616 14. Relational Planning, Learning, and Probabilistic Reasoning

An ICL theory can be seen as a causal model (page 206) in which the
causal mechanism is specified as a logic program and the background vari-
ables, corresponding to the alternatives, have independent probability distri-
butions over them. It may seem that this logic, with only unconditionally in-
dependent atoms and a deterministic logic program, is too weak to represent
the sort of knowledge required. However, even without logical variables, the
independent choice logic can represent anything that can be represented in a
belief network.

Example 14.19 Consider representing the belief network of Example 6.10
(page 236) in the ICL. The same technique works for any belief network.

Fire and tampering have no parents, so they can be represented directly as
alternatives:

{fire, nofire},
{tampering, notampering}.

The probability distribution over the first alternative is P(fire) = 0.01,
P(nofire) = 0.99. Similarly, P(tampering) = 0.02, P(notampering) = 0.89.

The dependence of Smoke on Fire can be represented using two alternatives:

{smokeWhenFire, nosmokeWhenFire},
{smokeWhenNoFire, nosmokeWhenNoFire},

with P(smokeWhenFire) = 0.9 and P(smokeWhenNoFire) = 0.01. Two rules can
be used to specify when there is smoke:

smoke← fire∧ smokeWhenFire.
smoke← ∼fire∧ smokeWhenNoFire.

To represent how Alarm depends on Fire and Tampering, there are four alterna-
tives:

{alarmWhenTamperingFire, noalarmWhenTamperingFire},
{alarmWhenNoTamperingFire, noalarmWhenNoTamperingFire},
{alarmWhenTamperingNoFire, noalarmWhenTamperingNoFire},
{alarmWhenNoTamperingNoFire, noalarmWhenNoTamperingNoFire},

where P(alarmWhenTamperingFire) = 0.5, P(alarmWhenNoTamperingFire) =
0.99, and similarly for the other atoms using the probabilities from Example
6.10 (page 236). There are also rules specifying when alarm is true, depending
on tampering and fire:

alarm← tampering∧ fire∧ alarmWhenTamperingFire.
alarm← ∼tampering ∧ fire∧ alarmWhenNoTamperingFire.
alarm← tampering∧∼fire∧ alarmWhenTamperingNoFire.
alarm← ∼tampering ∧∼fire∧ alarmWhenNoTamperingNoFire.

Other random variables are represented analogously, using the same number
of alternatives as there are assignments of values to the parents of a node.

14.3. Probabilistic Relational Models 617

An ICL representation of a conditional probability can be seen as a rule
form of a decision tree (page 298) with probabilities at the leaves. There is a rule
and an alternative for each branch. Non-binary alternatives are useful when
non-binary variables are involved.

The independent choice logic may not seem very intuitive for representing
standard belief networks, but it can make complicated relational models much
simpler, as in the following example.

Example 14.20 Consider the parametrized version of the multidigit addition
of Example 14.16 (page 613). The plates correspond to logical variables.

There are three cases for the value of z(D, P, S, T). The first is when the stu-
dent knows addition at this time, and the student did not make a mistake. In
this case, they get the correct answer:

z(D, P, S, T, V)←
x(D, P, Vx) ∧
y(D, P, Vy) ∧
carry(D, P, S, T, Vc) ∧
knowsAddition(S, T) ∧
∼mistake(D, P, S, T) ∧
V is (Vx + Vy + Vc) div 10.

Here we write the atom z(D, P, S, T, V) to mean that the parametrized random
variable z(D, P, S, T) has value V. This is a standard logical rule and has the
same meaning as a definite clause.

There is an alternative for whether or not the student happened to make a
mistake in this instance:

∀P∀S∀T{noMistake(D, P, S, T), mistake(D, P, S, T)},

where the probability of mistake(D, P, S, T) is 0.05, assuming students make an
error in 5% of the cases even when they know how to do arithmetic.

The second case is when the student knows addition at this time but makes
a mistake. In this case, we assume that the students are equally likely to pick
each of the digits:

z(D, P, S, T, V)←
knowsAddition(S, T) ∧
mistake(D, P, S, T) ∧
selectDig(D, P, S, T, V).

There is an alternative that specifies which digit the student chose:

∀P∀S∀T{selectDig(D, P, S, T, V) | V ∈ {0..9}}.

Suppose that, for each v, the probability of selectDig(D, P, S, T, v) is 0.1.

618 14. Relational Planning, Learning, and Probabilistic Reasoning

The final case is when the student does not know addition. In this case, the
student selects a digit at random:

z(D, P, S, T) = V ←
∼knowsAddition(S, T) ∧
selectDig(D, P, S, T) = V.

These three rules cover all of the rules for z; it is much simpler than the table of
size greater than 4,000 that was required for the tabular representation and it
also allows for arbitrary digits, problems, students, and times. Different digits
and problems give different values for x(D, P), and different students and times
have different values for whether they know addition.

The rules for carry are similar. The main difference is that the carry in the
body of the rule depends on the previous digit.

Whether a student knows addition at any time depends on whether they
know addition at the previous time. Presumably, the student’s knowledge also
depends on what actions occur (what the student and the teacher do). Because
the ICL allows standard logic programs (with “noise”), either of the represen-
tations for modeling change introduced at the start of this chapter can be used.

AILog, as used in the previous chapters, also implements ICL.

14.4 Review

The following are the main points you should have learned from this chapter:

• Relational representations are used when an agent requires models to be
given or learned before it knows what individuals it will encounter.

• Many of the representations in earlier chapters can be made relational.

• Situation calculus represents time in terms of the action of an agent, using
the init constant and the do function.

• Event calculus allows for continuous and discrete time and axiomatizes
what follows from the occurrence of events.

• Inductive logic programming can be used to learn relational models, even
when the values of features are meaningless names.

• The independent choice logic allows for the specification of probabilistic
models before the individuals are known.

14.5 References and Further Reading

Situation calculus was proposed by McCarthy and Hayes [1969]. The form of
the frame axioms presented here can be traced back to Kowalski [1979], Schu-
bert [1990], and Reiter [1991]. Reiter [2001] presents a comprehensive overview
of situation calculus; see also Brachman and Levesque [2004]. There have been
many other suggestions about how to solve the frame problem, which is the
problem of concisely specifying what does not change during an action. Event

14.5. References and Further Reading 619

Relational, Identity, and Existence Uncertainty

The models presented in Section 14.3 are concerned with relational uncer-
tainty; uncertainty about whether a relation is true of some individuals. For
example, we could have a probabilistic model of likes(X, Y) for the case where
X �= Y, which models when different people like each other. This could de-
pend on external characteristic of X and Y. We could also have a probabilis-
tic model for friends(X, X), which models whether someone likes themselves.
This could depend on internal characteristics of themselves. Such models
would be useful for a tutoring system to determine whether two people
should work together, or whether a students errors are due to the difficulty of
the material or the student’s personality.

Given individuals sam and chris, we can use the first of these models for
likes(sam, chris) only if we know that Sam and Chris are different people. The
problem of identity uncertainty concerns uncertainty of whether, or not, two
terms denote the same individual. This is a problem for medical systems,
where it is important to determine whether the person who is interacting
with the system now is the same person as one who visited yesterday. This
problem is particularly difficult if the patient is non-communicative or wants
to deceive the system, for example to get drugs. In the medical community,
this is the problem of record linkage, as the problem is to determine which
medical records are for the same people.

In all of the above cases, the individuals are known to exist; to give names
to Chris and Sam presupposes that they exist. Given a description, the prob-
lem of determining if there exists an individual that fits the description is the
problem of existence uncertainty. Existence uncertainty is problematic be-
cause there may be no individuals who fit the description or there may be
multiple individuals. We cannot give properties to non-existent individuals,
because individuals that do not exist do not have properties. If we want to
give a name to an individual exists, we need to be concerned about which
individual we are referring to if there are multiple individuals that exist.
One particular case of existence uncertainty is number uncertainty, about
the number of individuals that exist. For example, a purchasing agent may
be uncertain about the number of people who would be interested in a pack-
age tour, and whether to offer the tour depends on the number of people who
may be interested.

Reasoning about existence uncertainty can be very tricky if there are com-
plex roles involved, and the problem is to determine if there are individuals
to fill the roles. Consider a purchasing agent who must find an apartment for
Sam and her son Chris. Whether Sam wants an apartment probabilistically
depends, in part, on the size of her room and the color of Chris’ room. How-
ever, individual apartments do not come labeled with Sam’s room and Chris’
room, and there may not exist a room for each of them. Given a model of an
apartment Sam would want, it isn’t obvious how to even condition on the
observations.

620 14. Relational Planning, Learning, and Probabilistic Reasoning

calculus was proposed by Kowalski and Sergot [1986]. Shanahan [1997] pro-
vides an excellent introduction to the issues involved in representing change
and to the frame problem in particular.

For overviews of inductive logic programming see Muggleton and De
Raedt [1994], Muggleton [1995], and Quinlan and Cameron-Jones [1995].

Independent choice logic was proposed by Poole [1993, 1997]. De Raedt,
Frasconi, Kersting, and Muggleton [2008] and Getoor and Taskar [2007] are
collections of papers that provide overviews on probabilistic relational models
and how they can be learned.

14.6 Exercises

Exercise 14.1 Add to the situation calculus example (also available from the
course web page) the ability to paint an object. In particular, add the predicate

color(Obj, Col, Sit)

that is true if object Obj has color Col in situation Sit.
The parcel starts off blue. Thus, we have an axiom:

color(parcel, blue, init).

There is an action paint(Obj, Col) to paint object Obj with color Col. For this
question, assume objects can only be painted red, and they can only be painted
when the object and the robot are both at position o109. Colors accumulate on the
robot (there is nothing that undoes an object being a color; if you paint the parcel
red, it is both red and blue – of course this is unrealistic, but it makes the problem
simpler).

Axiomatize the predicate color and the action paint using situation calculus.
You can do this without using more than three clauses (as well as the aforemen-

tioned clause defining the color in the initial situation), where none of the clauses
has more than two atomic symbols in the body. You do not require equality, in-
equality, or negation as failure. Test it in AILog.

Your output should look something like the following:

ailog: bound 12.
ailog: ask color(parcel,red,S).
Answer: color(parcel,red, do(paint(parcel,red),

do(move(rob,storage,o109),
do(pickup(rob,parcel),
do(move(rob,o109,storage),
init))))).

Exercise 14.2 In this question, you will add a more complicated paint action than
in previous exercise.

Suppose the object paint can(Color) denotes a can of paint of color Color.
Add the action paint(Obj, Color) that results in the object changing its color to

Color. (Unlike the previous question, the object only has one color). The painting
can only be carried out if the object is sitting at o109 and an autonomous agent is
at position o109 carrying the can of paint of the appropriate color.

14.6. Exercises 621

Exercise 14.3 AILog performs depth-bounded search. You will notice that the
processing time for the previous questions was slow, and we required a depth
bound that was close to the actual depth bound to make it work in a reasonable
amount of time.

In this question, estimate how long an iterative deepening search will take to
find a solution to the following query:

ask sitting_at(parcel,lab2,S).

(Do not bother to try it – it takes too long to run.)

(a) Estimate the smallest bound necessary to find a plan. [Hint: How many steps
are needed to solve this problem? How does the number of steps relate to
the required depth bound?] Justify your estimate.

(b) Estimate the branching factor of the search tree. To do this you should look
at the time for a complete search at level k + 1 versus a complete search at
level k. You should justify your answer both experimentally (by running the
program) and theoretically (by considering what is the branching factor).
You do not have to run cases with a large run time to do this problem.

(c) Based on your answers to parts (a) and (b), and the time you found for some
run of the program for a small bound, estimate the time for a complete search
of the search tree at a depth one less than that required to find a solution.
Justify your solution.

Exercise 14.4 In this question, you will investigate using event calculus for the
robot delivery domain.

(a) Represent the move action in the event calculus.

(b) Represent each of the sequences of actions in Example 14.10 (page 604) in
the event calculus.

(c) Show that event calculus can derive the appropriate goals from the sequence
of actions given in part (b).

Exercise 14.5 Suppose that, in event calculus, there are two actions, Open and
Close, and a relation opened that is initially, at time 0, false. Action Open makes
opened true, and action Close makes opened false. Suppose that action Open occurs
at time 5, and action Close occurs at time 10.

(a) Represent this in event calculus.

(b) Is opened true at time 3? Show the derivation.

(c) Is opened true at time 7? Show the derivation.

(d) Is opened true at time 13? Show the derivation.

(e) Is opened true at time 5? Explain.

(f) Is opened true at time 10? Explain.

(g) Suggest an alternative axiomatization for holds that has different behavior at
times 5 and 10.

(h) Argue for one axiomatization as being more sensible than the other.

622 14. Relational Planning, Learning, and Probabilistic Reasoning

Exercise 14.6 Give some concrete specialization operators that can be used for
top-down inductive logic programming. They should be defined so that making
progress can be evaluated myopically. Explain under what circumstances the op-
erators will make progress.

Exercise 14.7 For the representation of addition in Example 14.20 (page 617), it
was assumed that observed z-values would all be digits. Change the representa-
tion so that the observed values can be digits, a blank, or other. Give appropriate
probabilities.

Exercise 14.8 Represent the electrical domain of previous chapters in ICL, so that
it will run in AILog. The representation should include the probabilistic dependen-
cies of Example 6.11 (page 238) and the relations of Example 12.11 (page 502).

Part V

The Big Picture

623

Chapter 15

Retrospect and Prospect

Computation is the fire in our modern-day caves. By 2056, the compu-
tational revolution will be recognised as a transformation as significant
as the industrial revolution. The evolution and widespread diffusion of
computation and its analytical fruits will have major impacts on socioeco-
nomics, science and culture.

– Eric Horvitz [2006]

In this chapter, we stand back and give a big-picture view of what we have cov-
ered. By placing many of the representation schemes in the design space we
introduced earlier, the relationships among the representations become more
apparent. This allows us to see where the frontier of AI research now lies and
to get a sense of the evolution of the field. We also consider some of the many
social and ethical consequences that have arisen from the development and
application of intelligent computational agents. As Horvitz points out in the
quote above, computation is changing the world; we must be aware of its pos-
itive and negative impacts.

15.1 Dimensions of Complexity Revisited

What has AI research achieved? Where do the current frontier issues lie? To
get a systematic sense of the big picture, we use the design space for AI sys-
tems presented in Section 1.5 (page 19). There, we described nine dimensions
that span part of that design space. In this section, we show how some of the
representations presented in the book can be positioned in that space.

Figure 15.1 (on the next page) reviews the dimensions of complexity and
extends Figure 1.6 (page 28) to include a key, in terms of numbers of stars, that
is used in the subsequent figure.

625

626 15. Retrospect and Prospect

Dimension key Value
Modularity * flat

** modular
*** hierarchical

Representation scheme * states
** features
*** relations

Planning horizon * non-planning
** finite stage
*** indefinite stage
**** infinite stage

Sensing Uncertainty * fully observable
** partially observable

Effect Uncertainty * deterministic
** stochastic

Preference * goals
** complex preferences

Learning * knowledge is given
** knowledge is learned

Number of agents * single agent
** multiple agents

Computational limits * perfect rationality
** bounded rationality

Figure 15.1: Dimensions of complexity

Figure 15.2 classifies, in terms of the values for each dimension, some of the
representations covered in this book.

State-space search, as presented in Chapter 3, allows for an indefinite hori-
zon but otherwise gives the simplest value in all the other dimensions. Regres-
sion planning (page 357), using either the feature-based representation or the
STRIPS representation, extends state-space search to reason in terms of fea-
tures. Constraint satisfaction problem (CSP) planning allows for better effi-
ciency but at the cost of planning for only a finite stage.

Decision networks (page 387) allow for the representation of features, sto-
chastic effects, partial observability, and complex preferences in terms of uti-
lities. However, as with CSP planning, these networks only reason for a finite
stage planning horizon.

Markov decision processes (MDPs) (page 399) allow for indefinite and infi-
nite stage problems with stochastic actions and complex preferences; however,
they are state-based representations that assume the state is fully observable.
Partially observable MDPs (POMDPs) (page 411) allow for a partially observ-
able state but are much more difficult to solve. Dynamic decision networks

15.1. Dimensions of Complexity Revisited 627

Dimension M
od

ul
ar

it
y

R
ep

re
se

nt
at

io
n

Sc
he

m
e

Pl
an

ni
ng

H
or

iz
on

Se
ns

in
g

U
nc

er
ta

in
ty

E
ff

ec
tU

nc
er

ta
in

ty

Pr
ef

er
en

ce

L
ea

rn
in

g

N
um

be
r

of
A

ge
nt

s

C
om

pu
ta

ti
on

al
L

im
it

s

State-Space Search * * *** * * * * * *
Regression Planning * ** *** * * * * * *
CSP Planning * ** ** * * * * * *
Decision Networks * ** ** ** ** ** * * *
MDPs * * **** * ** ** * * *
POMDPs * * **** ** ** ** * * *
Dynamic DNs * ** **** * ** ** * * *
Multiagent DNs * ** ** ** ** ** * ** *
Policy Improvement * * * * * ** ** ** *
Reinforcement Learning * ** **** * ** ** ** * *
Situation Calculus * *** *** * * * * * *
Indep. Choice Logic * *** *** ** ** ** * * *

Figure 15.2: Some representations rated by dimensions of complexity

(page 409) extend MDPs to allow for a feature-based representation of states.
They extend decision networks to allow for indefinite or infinite horizons, but
they do not model sensing uncertainty.

Multiagent decision networks (page 428) extend decision networks to allow
for multiple agents. The policy improvement algorithm (page 442) allows for
learning with multiple agents, but it only allows a single state and a planning
horizon of 1 (it plays a repeated single-step game); the only uncertainty is in the
actions of the other agents. It can be seen as a reinforcement learning algorithm
with a single state but with multiple agents.

Reinforcement learning (page 463) extends MDPs to allow for learning. Re-
inforcement learning with features is discussed in Section 11.3.9 (page 482).

Situation calculus (page 598) and event calculus (page 604) allow for the
representation of individuals and relations and an indefinite planning horizon,
but they do not represent uncertainty.

Independent choice logic (page 615) is a relational representation that al-
lows for the representation of uncertainty in the effect of actions, sensing un-
certainty, and utilities; however, in this most general framework, reasoning is
not efficient.

The dimension that adds the most difficulty to building an agent is sensing
uncertainty. Most of the representations that allow sensing uncertainty work

628 15. Retrospect and Prospect

by making actions a function of the history of the agent, which only works
for finite stages. How to extend planning with sensing uncertainty and in-
definite and infinite horizon problems is discussed in the context of POMDPs
(page 411), but the suggested solutions rely on explicit states. How to handle
sensing in all of its forms is one of the most active areas of current AI research.

None of representations presented in the preceding table handle hierarchi-
cal decomposition. However, large bodies of work on hierarchical planning
and hierarchical reinforcement learning are not presented in this book.

Bounded rationality underlies many of the approximation methods used
for applications; however, making the explicit trade-off between thinking and
acting, in which the agent reasons about whether it should act immediately or
think more, is still relatively rare.

As can be seen, we have presented a very small part of the design space of
AI. The current frontier of research goes well beyond what is covered in this
textbook. There is much active research in all areas of AI. There have been and
continue to be impressive advances in planning, learning, perception, natural
language understanding, robotics, and other subareas of AI. In terms of the
dimensions presented here, much of this is very deep work in what is still only
a small part of the design space of AI.

A divide has traditionally existed between relational reasoning, typically in
terms of first-order logic or frames, and reasoning under uncertainty in terms
of probability. This divide is being bridged, but it is still evident in conferences
and research papers.

The decomposition of AI into subareas is not surprising. The design space
is too big to explore all at once. Once a researcher has decided to handle, say,
relational domains and reasoning about the existence of objects, it is difficult to
add sensor uncertainty. If a researcher starts with learning with infinite hori-
zons, it is difficult to add features or hierarchical reasoning, let alone learning
with infinite horizons and relations together with hierarchies.

Some particular points in design space that have been at the frontier of
research over the past few years include the following:

• hierarchical reinforcement learning, where the agent learns at multiple levels
of abstraction at once;

• multiagent reinforcement learning;

• relational probabilistic learning;

• natural understanding that takes into account ambiguity, context, and prag-
matics to give appropriate answers;

• robot cars that can drive through uncertain environments; and

• intelligent tutoring systems that take into account noisy sensors of students’
emotions.

We still do not know how to build an agent that learns about relations
for infinite-stage, partially observable domains in which there are multiple
agents. Arguably humans do this, perhaps by reasoning hierarchically and

15.2. Social and Ethical Consequences 629

approximately. So although we may not yet be able to build an intelligent ar-
tificial agent with human-level performance, we seem to have the building
blocks to develop one. The main challenge is handling the complexity of the
real world. However, so far there seem to be no intrinsic obstacles to building
computational embodied agents capable of human-level performance.

15.2 Social and Ethical Consequences

As the science and technology of AI develops, smart artifacts are increasingly
being deployed and their widespread deployment will have profound ethical,
psychological, social, economic, and legal consequences for human society and
our planet. Here we can only raise, and skim the surface of, some of these is-
sues. Artificial autonomous agents are, in one sense, simply the next stage in
the development of technology. In that sense, the normal concerns about the
impact of technological development apply, but in another sense they repre-
sent a profound discontinuity. Autonomous agents perceive, decide, and act
on their own. This is a radical, qualitative change in our technology and in our
image of technology. This development raises the possibility that these agents
could take unanticipated actions beyond our control. As with any disruptive
technology, there must be substantial positive and negative consequences –
many that will be difficult to judge and many that we simply will not, or can-
not, foresee.

The familiar example of the autonomous vehicle is a convenient starting
point for consideration. Experimental autonomous vehicles are seen by many
as precursors to robot tanks, cargo movers, and automated warfare. Although
there may be, in some sense, significant benefits to robotic warfare, there are
also very real dangers. Luckily, these are, so far, only the nightmares of science
fiction.

Thrun [2006] presents an optimistic view of such vehicles. The positive im-
pact of having intelligent cars would be enormous. Consider the potential eco-
logical savings of using highways so much more efficiently instead of paving
over farmland. There is the safety aspect of reducing the annual carnage on the
roads: it is estimated that 1.2 million people are killed, and more than 50 million
are injured, in traffic accidents each year worldwide. Cars could communicate
and negotiate at intersections. Besides the consequent reduction in accidents,
there could be up to three times the traffic throughput. Elderly and disabled
people would be able to get around on their own. People could dispatch their
cars to the parking warehouse autonomously and then recall them later. There
would indeed be automated warehouses for autonomous cars instead of using
surface land for parking. Truly, the positive implications of success in this area
are most encouraging. That there are two radically different, but not inconsis-
tent, scenarios for the outcomes of the development of autonomous vehicles
suggests the need for wise ethical consideration of their use. The stuff of sci-
ence fiction is rapidly becoming science fact.

630 15. Retrospect and Prospect

AI is now mature, both as a science and, in its technologies and applica-
tions, as an engineering discipline. Many opportunities exist for AI to have a
positive impact on our planet’s environment. AI researchers and development
engineers have a unique perspective and the skills required to contribute prac-
tically to addressing concerns of global warming, poverty, food production,
arms control, health, education, the aging population, and demographic issues.
We could, as a simple example, improve access to tools for learning about AI so
that people could be empowered to try AI techniques on their own problems,
rather than relying on experts to build opaque systems for them. Games and
competitions based on AI systems can be very effective learning, teaching, and
research environments, as shown by the success of RoboCup for robot soccer.

We have already considered some of the environmental impact of intelli-
gent cars and smart traffic control. Work on combinatorial auctions, already
applied to spectrum allocation and logistics, could further be applied to sup-
plying carbon offsets and to optimizing energy supply and demand. There
could be more work on smart energy controllers using distributed sensors and
actuators that would improve energy use in buildings. We could use quali-
tative modeling techniques for climate scenario modeling. The ideas behind
constraint-based systems can be applied to analyze sustainable systems. A
system is sustainable if it is in balance with its environment: satisfying short-
term and long-term constraints on the resources it consumes and the outputs it
produces.

Assistive technology for disabled and aging populations is being pioneered
by many researchers. Assisted cognition is one application but also assisted
perception and assisted action in the form of, for example, smart wheelchairs
and companions for older people and nurses’ assistants in long-term care fa-
cilities. However, Sharkey [2008] warns of some of the dangers of relying on
robotic assistants as companions for the elderly and the very young. As with
autonomous vehicles, researchers must ask cogent questions about the use of
their creations.

Indeed, can we trust robots? There are some real reasons why we cannot
yet rely on robots to do the right thing. They are not fully trustworthy and re-
liable, given the way they are built now. So, can they do the right thing? Will
they do the right thing? What is the right thing? In our collective subconscious,
the fear exists that eventually robots may become completely autonomous,
with free will, intelligence, and consciousness; they may rebel against us as
Frankenstein-like monsters.

What about ethics at the robot–human interface? Do we require ethical
codes, for us and for them? It seems clear that we do. Many researchers are
working on this issue. Indeed, many countries have come to realize that this
is an important area of debate. There are already robot liability and insur-
ance issues. There will have to be legislation that targets robot issues. There
will have to be professional codes of ethics for robot designers and engineers
just as there are for engineers in all other disciplines. We will have to factor
the issues around what we should do ethically in designing, building, and

15.2. Social and Ethical Consequences 631

deploying robots. How should robots make decisions as they develop more
autonomy? What should we do ethically and what ethical issues arise for us as
we interact with robots? Should we give them any rights? We have a human
rights code; will there be a robot rights code?

To factor these issues, let us break them down into three fundamental ques-
tions that must be addressed. First, what should we humans do ethically in
designing, building, and deploying robots? Second, how should robots ethi-
cally decide, as they develop autonomy and free will, what to do? Third, what
ethical issues arise for us as we interact with robots?

In considering these questions we shall consider some interesting, if per-
haps naı̈ve, proposals put forward by the science fiction novelist Isaac Asimov
[1950], one of the earliest thinkers about these issues. His Laws of Robotics are
a good basis from which to start because, at first glance, they seem logical and
succinct. His original three Laws are

I. A robot may not harm a human being, or, through inaction, allow a hu-
man being to come to harm.

II. A robot must obey the orders given to it by human beings except where
such orders would conflict with the First Law.

III. A robot must protect its own existence, as long as such protection does
not conflict with the First or Second Laws.

Asimov’s answers to the three questions posed above are as follows. First, you
must put those laws into every robot and, by law, manufacturers would have
to do that. Second, robots should always have to follow the prioritized laws.
But he did not say much about the third question. Asimov’s plots arise mainly
from the conflict between what the humans intend the robot to do and what
it actually does; or between literal and sensible interpretations of the laws, be-
cause they are not codified in any formal language. Asimov’s fiction explored
many hidden implicit contradictions in the laws and their consequences.

There is much discussion of robot ethics now, but much of the discussion
presupposes technical abilities that we just do not yet have. In fact, Bill Joy
[2000] was so concerned about our inability to control the dangers of new tech-
nologies that he called, unsuccessfully, for a moratorium on the development
of robotics (and AI), nanotechnology, and genetic engineering. In this book we
have presented a coherent view of the design space and clarified the design
principles for intelligent agents, including robots. We hope this will lead to a
more technically informed framework for the development of social and ethi-
cal codes for intelligent agents.

However, robotics may not even be the AI technology with the greatest im-
pact. Consider the embedded, ubiquitous, distributed intelligence in the World
Wide Web and other global computational networks. This amalgam of human
and artificial intelligence can be seen as evolving to become a World Wide
Mind. The impact of this global net on the way we discover and communi-
cate new knowledge is already comparable to the effects of the development

632 15. Retrospect and Prospect

of the printing press. As Marshall McLuhan argued, “We first shape the tools
and thereafter our tools shape us” [McLuhan, 1964]. Although he was thinking
more of books, advertising, and television, this concept applies even more to
the global net and autonomous agents. The kinds of agents we build, and the
kinds of agents we decide to build, will change us as much as they will change
our society; we should make sure it is for the better. Margaret Somerville [2006]
is an ethicist who argues that the species Homo sapiens is evolving into Techno
sapiens as we project our abilities out into our technology at an accelerating
rate. Many of our old social and ethical codes are broken; they do not work in
this new world. As creators of the new science and technology of AI, it is our
joint responsibility to pay serious attention.

15.3 References and Further Reading

Hierarchical planning is discussed by Nau [2007]. Hierarchical reinforcement
learning is covered by Dietterich [2000]. Multiagent reinforcement learning is
addressed by Stone [2007].

Mackworth [2009] presents some of the dangers and potential of AI.
The dangers of robotic warfare are outlined by Sharkey [2008] and Singer

[2009a,b]. The estimate of traffic accidents is from Peden [2004] and the estimate
of the increase in traffic throughput is from Dresner and Stone [2008].

The development of RoboCup is sketched by Visser and Burkhard [2007].
Assistive technology systems are described by Pollack [2005], Liu, Hile,

Kautz, Borriello, Brown, Harniss, and Johnson [2006] and Yang, and Mack-
worth [2007]. Smart wheelchairs are discussed by Mihailidis, Boger, Candido,
and Hoey [2007] and Viswanathan, Mackworth, Little, and Mihailidis [2007].

Shelley [1818] wrote about Dr. Frankenstein and his monster. Anderson and
Leigh Anderson [2007] discusses robot ethics. World Wide Mind is cited by
Hillis [2008] and Kelly [2008].

Appendix A

Mathematical Preliminaries
and Notation

This appendix gives some definitions of fundamental mathematical concepts
that are used in AI, but are traditionally taught in other courses. It also intro-
duces some notation and data structures that are used in various parts of the
book.

A.1 Discrete Mathematics

The mathematical concepts we build on include:

sets A set has elements (members). We write s ∈ S if s is an element of set S. The
elements in a set define the set, so that two sets are equal if they have the
same elements.

tuples An n-tuple is an ordered grouping of n elements, written 〈x1, . . . , xn〉. A
2-tuple is a pair, and a 3-tuple is a triple. Two n-tuples are equal if they have
the same members in the corresponding positions. If S is a set, Sn is the set
of n-tuples 〈x1, . . . , xn〉 where xi is a member of S. S1 × S2 × · · · × Sn is the
set of n-tuples 〈x1, . . . , xn〉 where each xi is in Si.

relations A relation is a set of n-tuples. The tuples in the relation are said to be
true of the relation.

functions A function, or mapping, f from set D, the domain of f , into set R, the
range of f , written f : D → R, is a subset of D× R such that for every d ∈ D
there is a unique r ∈ R such that 〈d, r〉 ∈ f . We write f (d) = r if 〈d, r〉 ∈ f .

While these may seem like obscure definitions for common-sense concepts, you
can now use the common-sense concepts comfortable in the knowledge that if
you are unsure about something, you can check the definitions.

633

634 A. Mathematical Preliminaries and Notation

A.2 Functions, Factors, and Arrays

Many of the algorithms in this book manipulate representations of functions.
We extend the standard definition of function on sets to include functions on
(sets of) variables. A factor is a representation of a function. An array is an
explicit representation of a function that can have its individual components
modified.

If S is a set, we write f (S) to be a function, with domain S. Thus, if c ∈ S,
then f (c) is a value in the range of f . f [S] is like f (S), but individual compo-
nents can be updated. This notation is based on that of C and Java (but these
languages only allow for the case where S is the set of integers {0, . . . , n− 1}
for arrays of size n). Thus f [c] is a value in the range of f . If f [c] is assigned a
new value, it will return that new value.

This notation can be extended to (algebraic) variables. If X is an algebraic
variable with domain D, then f (X) is a function that given a value x ∈ D,
returns a value in the range of f . This value is often written as f (X = x) or
simply as f (x). Similarly, f [X] is an array indexed by X, that is, it is a function
of X whose components can be modified.

This notation can also be extended to set of variables. f (X1, X2, . . . , Xn) is a
function such that given a value v1 for X1, a value v2 for X2, . . . , and a value vn

for Xn returns a value in the range of f . Note that it is the name of the variable
that is important, not the position. This factor applied to the specific values is
written as f (X1=v1, X2=v2, . . . , Xn=vn). The set of variables, X1, X2, . . . , Xn is
called the scope of f . The array f [X1, X2, . . . , Xn] is a function on X1, X2, . . . , Xn

where the values can be updated.
Assigning just some of the variables gives a function on the remaining

variables. Thus, for example, if f is a function with scope X1, X2, . . . , Xn, then
f (X1 = v1) is a function of X2, . . . , Xn, such that

(f (X1=v1))(X2=v2, . . . , Xn=vn) = f (X1=v1, X2=v2, . . . , Xn=vn)

Factors can be added, multiplied or composed with any other operation
level on the elements. If f1 and f2 is a factor, then f1 + f2 is a factor with scope
the union of the scopes of f1 and f2, defined pointwise:

(f1 + f2)(X1=v1, X2=v2, . . . , Xn=vn)
= f1(X1=v1, X2=v2, . . . , Xn=vn) + f2(X1=v1, X2=v2, . . . , Xn=vn)

where we assume that f1 and f2 ignore variables not in their scope. Multiplica-
tion and other binary operators work similarly.

Example 1.1 Suppose f1(X, Y) = X + Y and f2(Y, Z) = Y + Z. Then f1 + f2 is
X + 2Y + Z, which is a function of X, Y and Z. Similarly f1 × f2 = (X + Y) ×
(Y + Z).

f1(X = 2) is a function of Y, defined by 2 + Y.

A.3. Relations and the Relational Algebra 635

Suppose that variable W has domain {0, 1} and X has domain {1, 2}, the
factor f3(W, X) can be defined by a table such as:

W X value
0 1 2
0 2 1
1 1 0
1 2 3

f3 + f1 is a function on W, X, Y, such that, for example,

(f3 + f1)(W = 1, X = 2, Y = 3) = 3 + 5 = 8

Similarly, (f3 × f1)(W = 1, X = 2, Y = 3) = 3× 5 = 15.

Other operations on factors are defined in the book.

A.3 Relations and the Relational Algebra

Relations are common in AI and database systems. The relational algebra de-
fines operations on relations and is the basis of relational databases.

A scope S is a set of variables. A tuple t on scope S, has a value on each
variable in its scope. We write val(t, X) to be the value of tuple t on variable X.
The value of val(t, X) must be in dom(X). This is like the mathematical notion
of tuple, except the index is given by a variable, not by an integer.

A relation is a set of tuples, all with the same scope. A relation is often
given a name. The scope of the tuples is often called the relation scheme. A
relational database is a set of relations. A scheme of a relational database is the
set of pairs of relation names and relation schemes.

A relation with scope X1, . . . , Xn can be seen as a Boolean factor on
X1, . . . , Xn, where the true elements are represented as tuples.

Often a relation is written as a table.

Example 1.2 The following is a tabular depiction of a relation, enrolled:

Course Year Student Grade
cs322 2008 fran 77
cs111 2009 billie 88
cs111 2009 jess 78
cs444 2008 fran 83
cs322 2009 jordan 92

The heading gives the scheme, namely {Course, Year, Student, Grade}, and every
other row is a tuple. The first tuple, call it t1 is defined by val(t1, Course) = cs322,
val(t1, Year) = 2008, val(t1, Student) = fran, val(t1, Grade) = 77.

The order of the columns and the order of the rows is not significant.

If r a relation with scheme S, and c is a condition on the variables in S, the
selection of c in r, written σc(r), is the set of tuples in r for which c holds. The
selection has the same scheme as r.

636 A. Mathematical Preliminaries and Notation

If r is a relation with scheme S, and S0 ⊆ S, the projection of r onto S0,
written πS0(r), is the set of tuples of r where the scope is restricted to S0.

Example 1.3 Suppose enrolled is the relation given in Example A.2.
The relation σGrade>79(enrolled) selects those tuples in enrolled where the

grade is over 79. This is the relation:

Course Year Student Grade
cs111 2009 billie 88
cs444 2008 fran 83
cs322 2009 jordan 92

The relation π{Student,Year}(enrolled) specifies what years students were en-
rolled:

Student Year
fran 2008
billie 2009
jess 2009
jordan 2009

Notice how the first and the fourth tuple of enrolled become the same tuple in
the projection; they represent the same function on {Student, Year}.

If two relations on the same scheme, the union, intersection and set differ-
ence of these are defined as the corresponding operations on the set of tuples.

If r1 and r2 are two relations, the natural join of r1 and r2, written r1 �� r2 is
a relation where

• the scheme of the join is the union of the scheme of r1 and the scheme of r2,
• a tuple is in the join, if the tuple restricted to the scope of r1 is in the relation

r1 and the tuple restricted to the scope of r2 is in the relation r2.

Example 1.4 Consider the relation assisted:

Course Year TA
cs322 2008 yuki
cs111 2009 sam
cs111 2009 chris
cs322 2009 yuki

The join of enrolled and assisted, written enrolled �� assisted is the relation:

Course Year Student Grade TA
cs322 2008 fran 77 yuki
cs111 2009 billie 88 sam
cs111 2009 jess 78 sam
cs111 2009 billie 88 chris
cs111 2009 jess 78 chris
cs322 2009 jordan 92 yuki

Note how in the join, the information about cs444 was lost, as there was no TA
in that course.

Bibliography

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: foundational issues, method-
ological variations, and system approaches. AI Communications, 7(1): 39–59. 341

Abelson, H. and DiSessa, A. (1981). Turtle Geometry: The Computer as a Medium for Ex-
ploring Mathematics. MIT Press, Cambridge, MA. 66

Abramson, H. and Rogers, M.H. (Eds.) (1989). Meta-Programming in Logic Programming.
MIT Press, Cambridge, MA. 592

Agre, P.E. (1995). Computational research on interaction and agency. Artificial Intelli-
gence, 72: 1–52. 66

Aha, D.W., Marling, C., and Watson, I. (Eds.) (2005). The Knowledge Engineering Review,
special edition on case-based reasoning, volume 20 (3). Cambridge University Press.
341

Albus, J.S. (1981). Brains, Behavior and Robotics. BYTE Publications, Peterborough, NH.
66

Allais, M. and Hagen, O. (Eds.) (1979). Expected Utility Hypothesis and the Allais Paradox.
Reidel, Boston, MA. 380

Allen, J., Hendler, J., and Tate, A. (Eds.) (1990). Readings in Planning. Morgan Kauf-
mann, San Mateo, CA. 367

Anderson, M. and Leigh Anderson, S.L. (2007). Machine ethics: Creating an ethical
intelligent agent. AI Magazine, 28(4): 15–26. 632

Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M.I. (2003). An introduction to
MCMC for machine learning. Machine Learning, 50(1–2): 5–43. 275

Antoniou, G. and van Harmelen, F. (2008). A Semantic Web Primer. MIT Pres, Cam-
bridge, MA, 2nd edition. 591

Apt, K. and Bol, R. (1994). Logic programming and negation: A survey. Journal of Logic
Programming, 19,20: 9–71. 207, 542

Aristotle (350 B.C.). Categories. Translated by E. M. Edghill, http://www.classicallibrary
.org/Aristotle/categories/. 567

Asimov, I. (1950). I, Robot. Doubleday, Garden City, NY. 631

637

638 Bibliography

Bacchus, F. and Grove, A. (1995). Graphical models for preference and utility. In
Uncertainty in Artificial Intelligence (UAI-95), pp. 3–10. 413

Bacchus, F., Grove, A.J., Halpern, J.Y., and Koller, D. (1996). From statistical knowledge
bases to degrees of belief. Artificial Intelligence, 87(1-2): 75–143. 274

Bacchus, F. and Kabanza, F. (1996). Using temporal logic to control search in a forward
chaining planner. In M. Ghallab and A. Milani (Eds.), New Directions in AI Planning,
pp. 141–153. ISO Press, Amsterdam. 367

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York, NY. 152

Ballard, B.W. (1983). The *-minimax search procedure for trees containing chance
nodes. Artificial Intelligence, 21(3): 327–350. 449

Baum, E.B. (2004). What is Thought? MIT Press. 491

Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philo-
sophical Transactions of the Royal Society of London, 53: 370–418. Reprinted in Biometrika
45, 298–315, 1958. Reprinted in S. J. Press, Bayesian Statistics, 189–217, Wiley, New
York, 1989. 340

Beckett, D. and Berners-Lee (2008). Turtle – terse RDF triple language. http://www.w3
.org/TeamSubmission/turtle/. 592

Bell, J.L. and Machover, M. (1977). A Course in Mathematical Logic. North-Holland,
Amsterdam. 207

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.
413

Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory. Wiley. 341

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web: A new form
of web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, pp. 28–37. 591

Bertelè, U. and Brioschi, F. (1972). Nonserial dynamic programming, volume 91 of Mathe-
matics in Science and Engineering. Academic Press. 151

Bertsekas, D.P. (1995). Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, Massachusetts. Two volumes. 413

Bertsekas, D.P. and Tsitsiklis, J.N. (1996). Neuro-Dynamic Programming. Athena Scien-
tific, Belmont, Massachusetts. 486

Besnard, P. and Hunter, A. (2008). Elements Of Argumentation. MIT Press, Cambridge,
MA. 208

Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, England. 341

Bishop, C.M. (2008). Pattern Recognition and Machine Learning. Springer-Verlag, New
York. 341

Blum, A. and Furst, M. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90: 281–300. 367

Bobrow, D.G. (1993). Artificial intelligence in perspective: a retrospective on fifty vol-
umes of Artificial Intelligence. Artificial Intelligence, 59: 5–20. 41

Bobrow, D.G. (1967). Natural language input for a computer problem solving sys-
tem. In M. Minsky (Ed.), Semantic Information Processing, pp. 133–215. MIT Press,
Cambridge MA. 8

Bibliography 639

Boddy, M. and Dean, T.L. (1994). Deliberation scheduling for problem solving in time-
constrained environments. Artificial Intelligence, 67(2): 245–285. 41

Bodlaender, H.L. (1993). A tourist guide through treewidth. Acta Cybernetica, 11(1-2):
1–21. 274

Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., and Poole, D. (2004). Cp-nets:
A tool for representing and reasoning with conditional ceteris paribus preference
statements. Journal of Artificial Intelligence Research, 21: 135–191. 413

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structual as-
sumptions and computational leverage. Journal of Artificial Intelligence Research, 11:
1–94. 413

Bowen, K.A. (1985). Meta-level programming and knowledge representation. New
Generation Computing, 3(4): 359–383. 592

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning rate.
Artificial Intelligence, 136(2): 215–250. 449

Brachman, R.J. and Levesque, H.J. (Eds.) (1985). Readings in Knowledge Representation.
Morgan Kaufmann, San Mateo, CA. 41, 591, 646

Brachman, R. and Levesque, H. (2004). Knowledge Representation and Reasoning. Morgan
Kaufmann. 591, 618

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Re-
gression Trees. Wadsworth and Brooks, Monterey, CA. 341

Briscoe, G. and Caelli, T. (1996). A Compendium of Machine Learning, Volume 1: Symbolic
Machine Learning. Ablex, Norwood, NJ. 341

Brooks, R.A. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1): 14–23. Reprinted in Shafer and Pearl [1990]. 66

Brooks, R.A. (1991). Intelligence without representation. Artificial Intelligence, 47: 139–
159. 66

Brooks, R. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, 6: 3–15.
41

Bryce, D. and Kambhampati, S. (2007). A tutorial on planning graph based reachability
heuristics. AI Magazine, 28(47-83): 1. 367

Buchanan, B. and Shortliffe, E. (Eds.) (1984). Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading,
MA. 9

Buchanan, B.G. and Feigenbaum, E.A. (1978). Dendral and meta-dendral: Their appli-
cations dimension. Artificial Intelligence, 11: 5–24. 9

Buchanan, B.G. (2005). A (very) brief history of artificial intelligence. AI Magazine,
26(4): 53–60. 3

Buntine, W. (1992). Learning classification trees. Statistics and Computing, 2: 63–73. 341
Burch, R. (2008). Charles Sanders Peirce. The Stanford Encyclopedia of Philosophy. http://

plato.stanford.edu/archives/spr2008/entries/peirce/. 207
Campbell, M., Hoane Jr., A.J., and Hse, F.h. (2002). Deep blue. Artificial In-

telligence, 134(1-2): 57–83. 449
Castillo, E., Gutiérrez, J.M., and Hadi, A.S. (1996). Expert Systems and Probabilistic Net-

work Models. Springer Verlag, New York. 274
Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence, 32(3): 333–

377. 367

640 Bibliography

Cheeseman, P. (1990). On finding the most probable model. In J. Shranger and P. Lang-
ley (Eds.), Computational Models of Scientific Discovery and Theory Formation, chapter 3,
pp. 73–95. Morgan Kaufmann, San Mateo, CA. 341

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., and Freeman, D. (1988). Autoclass:
A Bayesian classification system. In Proc. Fifth International Conference on Machine
Learning, pp. 54–64. Ann Arbor, MI. Reprinted in Shavlik and Dietterich [1990]. 486

Cheng, J. and Druzdzel, M. (2000). AIS-BN: An adaptive importance sampling algo-
rithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelli-
gence Research, 13: 155–188. 275

Chesnevar, C., Maguitman, A., and Loui, R. (2000). Logical models of argument. ACM
Comput. Surv., 32(4): 337–383. 208

Chomsky, N. (1957). Syntactic Structures. Mouton and Co., The Hague. 521

Chrisley, R. and Begeer, S. (2000). Artificial intelligence: Critical Concepts in Cognitive
Science. Routledge, London and New York. 41, 645

Clark, K.L. (1978). Negation as failure. In H. Gallaire and J. Minker (Eds.), Logic and
Databases, pp. 293–322. Plenum Press, New York. 207, 542

Cohen, P.R. (2005). If not Turing’s test, then what? AI Magazine, 26(4): 61–67. 40

Colmerauer, A., Kanoui, H., Roussel, P., and Pasero, R. (1973). Un système de com-
munication homme-machine en français. Technical report, Groupe de Researche en
Intelligence Artificielle, Université d’Aix-Marseille. 207

Colmerauer, A. and Roussel, P. (1996). The birth of Prolog. In T.J. Bergin and R.G.
Gibson (Eds.), History of Programming Languages. ACM Press/Addison-Wesley. 9,
542

Copi, I.M. (1982). Introduction to Logic. Macmillan, New York, sixth edition. 207

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2001). Introduction to Algo-
rithms. MIT Press and McGraw-Hill, second edition. 106

Cover, T.M. and Thomas, J.A. (1991). Elements of information theory. Wiley, New York.
275

Culberson, J. and Schaeffer, J. (1998). Pattern databases. Computational Intelligence,
14(3): 318–334. 106

Dahl, V. (1994). Natural language processing and logic programming. Journal of Logic
Programming, 19,20: 681–714. 542

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press. 274, 486

Dasarathy, B.V. (1991). NN concepts and techniques. In B.V. Dasarathy (Ed.), Nearest
Neighbour (NN) Norms: NN Pattern Classification Techniques, pp. 1–30. IEEE Computer
Society Press, New York. 341

Davis, E. (1990). Representations of Commonsense Knowledge. Morgan Kaufmann, San
Mateo, CA. 591

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and roc
curves. In Proceedings of the 23rd international conference on Machine Learning, pp. 233–
240. 341

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem
proving. Communications of the ACM, 5(7): 394–397. 151

Davis, M. and Putnam, H. (1960). A computing procedure for quantification theory.
Journal of the ACM, 7(3): 201–215. 151

Bibliography 641

de Kleer, J. (1986). An assumption-based TMS. Artificial Intelligence, 28(2): 127–162. 207,
208

de Kleer, J., Mackworth, A.K., and Reiter, R. (1992). Characterizing diagnoses and sys-
tems. Artificial Intelligence, 56: 197–222. 207

De Raedt, L., Frasconi, P., Kersting, K., and Muggleton, S.H. (Eds.) (2008). Probabilistic
Inductive Logic Programming. Springer. 620

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and cau-
sation. Computational Intelligence, 5(3): 142–150. 275

Dean, T.L. and Wellman, M.P. (1991). Planning and Control. Morgan Kaufmann, San
Mateo, CA. 41, 66

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic infer-
ence. In E. Horvitz and F. Jensen (Eds.), Proc. Twelfth Conf. on Uncertainty in Artificial
Intelligence (UAI-96), pp. 211–219. Portland, OR. 274

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann. 151
Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999). Monte Carlo localization for

mobile robots. In IEEE International Conference on Robotics and Automation (ICRA99).
275

Dietterich, T.G. (2000). Hierarchical reinforcement learning with the maxq value func-
tion decomposition. Journal of Artificial Intelligence Research, 13: 227–303. 632

Dietterich, T.G. (2002). Ensemble learning. In M. Arbib (Ed.), The Handbook of Brain
Theory and Neural Networks, pp. 405–408. MIT Press, Cambridge, MA, second edi-
tion. 341

Dijkstra, E.W. (1976). A discipline of programming. Prentice-Hall, Englewood Cliffs, NJ.
367

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1: 269–271. 106

Doucet, A., de Freitas, N., and Gordon, N. (Eds.) (2001). Sequential Monte Carlo in Prac-
tice. Springer-Verlag. 275

Doyle, J. (1979). A truth maintenance system. AI Memo 521, MIT Artificial Intelligence
Laboratory. 207

Dresner, K. and Stone, P. (2008). A multiagent approach to autonomous intersection
management. Journal of Artificial Intelligence Research, 31: 591–656. 632

Duda, R.O., Hart, P.E., and Stork, D.G. (2001). Pattern Classification. Wiley-Interscience,
2nd edition. 341, 486

Dung, P. (1995). On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2): 321–357. 207

Dung, P., Mancarella, P., and Toni, F. (2007). Computing ideal sceptical argumentation.
Artificial Intelligence, 171(10-15): 642–674. 207

Edwards, P. (Ed.) (1967). The Encyclopedia of Philosophy. Macmillan, New York. 287
Enderton, H.B. (1972). A Mathematical Introduction to Logic. Academic Press, Orlando,

FL. 207
Felner, A., Korf, R.E., and Hanan, S. (2004). Additive pattern database heuristics.

Journal of Artificial Intelligence Research (JAIR), 22: 279–318. 106
Fikes, R.E. and Nilsson, N.J. (1971). STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3-4): 189–208. 367

642 Bibliography

Fischer, D. (1987). Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2: 139–172. Reprinted in Shavlik and Dietterich [1990]. 486

Forbus, K.D. (1996). Qualitative reasoning. In CRC Hand-book of Computer Science and
Engineering. CRC Press. 66

Freuder, E.C. and Mackworth, A.K. (2006). Constraint satisfaction: An emerging
paradigm. In P.V.B. F. Rossi and T. Walsh (Eds.), Handbook of Constraint Programming,
pp. 13–28. Elsevier. 151

Friedman, N. and Goldszmidt, M. (1996a). Building classifiers using Bayesian net-
works. In Proc. 13th National Conference on Artificial Intelligence, pp. 1277–1284. Port-
land, OR. 486

Friedman, N. and Goldszmidt, M. (1996b). Learning Bayesian networks with lo-
cal structure. In Proc. Twelfth Conf. on Uncertainty in Artificial Intelligence (UAI-96),
pp. 252–262. 486

Friedman, N., Greiger, D., and Goldszmidt, M. (1997). Bayesian network classifiers.
Machine Learning, 29: 103–130. 341

Gabbay, D.M., Hogger, C.J., and Robinson, J.A. (Eds.) (1993). Handbook of Logic in
Artificial Intelligence and Logic Programming. Clarendon Press, Oxford, England.
5 volumes. 207

Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A. (2003). Sweetening wordnet
with dolce. AI Magazine, 24(3): 13–24. 592

Garcia-Molina, H., Ullman, J.D., and Widom, J. (2009). Database Systems: The Complete
Book. Prentice Hall, 2nd edition. 542

Gardner, H. (1985). The Mind’s New Science. Basic Books, New York. 41
Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis.

Chapman and Hall/CRC, 2nd edition. 341
Getoor, L. and Taskar, B. (Eds.) (2007). Introduction to Statistical Relational Learning. MIT

Press, Cambridge, MA. 620
Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, Reading, MA. 152
Goldberg, D.E. (2002). The Design of Innovation: Lessons from and for Competent Genetic

Algorithms. Addison-Wesley, Reading, MA. 152
Green, C. (1969). Application of theorem proving to problem solving. In Proc. 1st Inter-

national Joint Conf. on Artificial Intelligence, pp. 219–237. Washington, DC. Reprinted
in Webber and Nilsson [1981]. 207

Grenon, P. and Smith, B. (2004). Snap and span: Towards dynamic spatial ontology.
Spatial Cognition and Computation, 4(1): 69–103. 592

Grünwald, P.D. (2007). The Minimum Description Length Principle. The MIT Press,
Cambridge, MA. 275, 341

Halpern, J. (1997). A logical approach to reasoning about uncertainty: A tutorial. In
X. Arrazola, K. Kortha, and F. Pelletier (Eds.), Discourse, Interaction and Communica-
tion. Kluwer. 274

Hart, P.E., Nilsson, N.J., and Raphael, B. (1968). A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and Cybernet-
ics, 4(2): 100–107. 106

Hart, T.P. and Edwards, D.J. (1961). The tree prune (TP) algorithm. Memo 30, MIT
Artificial Intelligence Project, Cambridge MA. 449

Bibliography 643

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, second edition. 341

Haugeland, J. (1985). Artificial Intelligence: The Very Idea. MIT Press, Cambridge, MA. 6,
41, 66

Haugeland, J. (Ed.) (1997). Mind Design II: Philosohpy, Psycholgy, Artificial Intelligence.
MIT Press, Cambridge, MA, revised and enlarged edition. 40, 646, 647, 651

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework. Artificial Intelligence, 36(2): 177–221. Reprinted in Shavlik and
Dietterich [1990]. 341

Hayes, P.J. (1973). Computation and deduction. In Proc. 2nd Symposium on Mathematical
Foundations of Computer Science, pp. 105–118. Czechoslovak Academy of Sciences.
207

Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. Jordan
(Ed.), Learning in Graphical Models. MIT press. 486

Hendler, J., Berners-Lee, T., and Miller, E. (2002). Integrating applications on the se-
mantic web. Journal of the Institute of Electrical Engineers of Japan, 122(10): 676–680.
591

Henrion, M. (1988). Propagating uncertainty in Bayesian networks by probabilistic
logic sampling. In J.F. Lemmer and L.N. Kanal (Eds.), Uncertainty in Artificial In-
telligence 2, pp. 149–163. Elsevier Science Publishers B.V. 275

Hertz, J., Krogh, A., and Palmer, R.G. (1991). Introduction to the Theory of Neural Com-
putation. Lecture Notes, Volume I, Santa Fe Institute Studies in the Sciences of Com-
plexity. Addison-Wesley, Reading, MA. 341

Hewitt, C. (1969). Planner: A language for proving theorems in robots. In Proc. 1st
International Joint Conf. on Artificial Intelligence, pp. 295–301. Washington, DC. 207

Hillis, W.D. (2008). A forebrain for the world mind. Edge: World Question Center.
http://www.edge.org/q2009/q09 12.html#hillis. 632

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., and Rudolph, S. (2009). OWL
2 Web Ontology Language Primer. W3C. http://www.w3.org/TR/owl2-primer/. 592

Hobbs, J.R., Stickel, M.E., Appelt, D.E., and Martin, P. (1993). Interpretation as abduc-
tion. Artificial Intelligence, 63(1–2): 69–142. 207

Holland, J.H. (1975). Adaption in Natural and Artificial Systems: an introductory analysis
with applications to biology, control, and artificial intelligence. University of Michigan
Press, Ann Arbor, MI. 152

Hoos, H.H. and Stützle, T. (2004). Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann / Elsevier. 152

Horvitz, E.J. (1989). Reasoning about beliefs and actions under computational resource
constraints. In L. Kanal, T. Levitt, and J. Lemmer (Eds.), Uncertainty in Artificial In-
telligence 3, pp. 301–324. Elsevier, New York. 41

Horvitz, E. (2006). Eric Horvitz forecasts the future. New Scientist, 2578: 72. 625
Howard, R.A. and Matheson, J.E. (1984). Influence diagrams. In R.A. Howard and J.E.

Matheson (Eds.), The Principles and Applications of Decision Analysis. Strategic Deci-
sions Group, Menlo Park, CA. 413

Howson, C. and Urbach, P. (2006). Scientific Reasoning: the Bayesian Approach. Open
Court, Chicago, Illinois, 3rd edition. 341

Jaynes, E.T. (2003). Probability Theory: The Logic of Science. Cambridge University Press.
341

644 Bibliography

Jensen, F.V. (1996). An Introduction to Bayesian Networks. Springer Verlag, New York.
274

Jordan, M. and Bishop, C. (1996). Neural networks. Memo 1562, MIT Artificial Intelli-
gence Lab, Cambridge, MA. 341

Joy, B. (2000). Why the future doesn’t need us. Wired. http://www.wired.com/wired/
archive/8.04/joy.html. 631

Jurafsky, D. and Martin, J.H. (2008). Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition. Pren-
tice Hall, second edition. 542

Kaelbling, L.P., Littman, M.L., and Moore, A.W. (1996). Reinforcement learning: A sur-
vey. Journal of Artificial Intelligence Research, 4: 237–285. 486

Kakas, A. and Denecker, M. (2002). Abduction in logic programming. In A. Kakas and
F. Sadri (Eds.), Computational Logic: Logic Programming and Beyond, number 2407 in
LNAI, pp. 402–436. Springer Verlag. 207

Kakas, A.C., Kowalski, R.A., and Toni, F. (1993). Abductive logic programming. Journal
of Logic and Computation, 2(6): 719–770. 207

Kambhampati, S., Knoblock, C.A., and Yang, Q. (1995). Planning as refinement search:
a unified framework for evaluating design tradeoffs in partial order planning. Arti-
ficial Intelligence, 76: 167–238. Special issue on Planning and Scheduling. 367

Kautz, H. and Selman, B. (1996). Pushing the envelope: Planning, propositional logic
and stochastic search. In Proc. 13th National Conference on Artificial Intelligence,
pp. 1194–1201. Portland, OR. 367

Kearns, M. and Vazirani, U. (1994). An Introduction to Computational Learning Theory.
MIT Press, Cambridge, MA. 341

Keeney, R.L. and Raiffa, H. (1976). Decisions with Multiple Objectives. John Wiley and
Sons. 413

Kelly, K. (2008). A new kind of mind. Edge: World Question Center. http://www.edge.org/
q2009/q09 1.html#kelly. 632

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). Optimization by simulated an-
nealing. Science, 220: 671–680. 152

Kirsh, D. (1991a). Foundations of AI: the big issues. Artificial Intelligence, 47: 3–30. 41
Kirsh, D. (1991b). Today the earwig, tomorrow man? Artificial Intelligence, 47: 161–184.

66
Knuth, D.E. and Moore, R.W. (1975). An analysis of alpha-beta pruning. Artificial Intel-

ligence, 6(4): 293–326. 449
Koller, D. and Friedman, N. (2009). Probabilsitic Graphical Models: Principles and Tech-

niques. MIT Press. 274, 486
Koller, D. and Milch, B. (2003). Multi-agent influence diagrams for representing and

solving games. Games and Economic Behavior, 45(1): 181–221. 449
Kolodner, J. and Leake, D. (1996). A tutorial introduction to case-based reasoning.

In D. Leake (Ed.), Case-Based Reasoning: Experiences, Lessons, and Future Directions,
pp. 31–65. AAAI Press/MIT Press. 341

Korf, K.E. (1985). Depth-first iterative deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1): 97–109. 106

Kowalski, R. (1979). Logic for Problem Solving. Artificial Intelligence Series. North-
Holland, New York. 542, 592, 618

Bibliography 645

Kowalski, R. and Sergot, M. (1986). A logic-based calculus of events. New Generation
Computing, 4(1): 67–95. 620

Kowalski, R.A. (1974). Predicate logic as a programming language. In Information Pro-
cessing 74, pp. 569–574. North-Holland, Stockholm. 207

Kowalski, R.A. (1988). The early history of logic programming. CACM, 31(1): 38–43. 9,
542

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA. 152

Kuipers, B. (2001). Qualitative simulation. In R.A. Meyers (Ed.), Encyclopedia of Physical
Science and Technology, pp. 287–300. Academic Press, NY, third edition. 66

Langley, P., Iba, W., and Thompson, K. (1992). An analysis of Bayesian classifiers. In
Proc. 10th National Conference on Artificial Intelligence, pp. 223–228. San Jose, CA. 486

Laplace, P. (1812). Théorie Analytique de Probabilités. Courcier, Paris. 219, 223, 296
Latombe, J.C. (1991). Robot Motion Planning. Kluwer Academic Publishers, Boston. 66
Lawler, E.L. and Wood, D.E. (1966). Branch-and-bound methods: A survey. Operations

Research, 14(4): 699–719. 106
Leibniz, G.W. (1677). The Method of Mathematics: Preface to the General Science. Selections

reprinted by Chrisley and Begeer [2000]. 157
Lenat, D.B. and Feigenbaum, E.A. (1991). On the thresholds of knowledge. Artificial

Intelligence, 47: 185–250. 41
Levesque, H.J. (1984). Foundations of a functional approach to knowledge representa-

tion. Artificial Intelligence, 23(2): 155–212. 207
Liu, A.L., Hile, H., Kautz, H., Borriello, G., Brown, P.A., Harniss, M., and Johnson, K.

(2006). Indoor wayfinding: Developing a functional interface for individuals with
cognitive impairments. In Proceedings of the 8th International ACM SIGACCESS Con-
ference on Computers and Accessibility, pp. 95–102. Association for Computing Ma-
chinery, New York. 632

Lloyd, J.W. (1987). Foundations of Logic Programming. Symbolic Computation Series.
Springer-Verlag, Berlin, second edition. 207, 542

Lopez, A. and Bacchus, F. (2003). Generalizing GraphPlan by formulating planning as
a CSP. In IJCAI-03, pp. 954–960. 367

Lopez De Mantaras, R., Mcsherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., and
Watson, I. (2005). Retrieval, reuse, revision and retention in case-based reasoning.
The Knowledge Engineering Review, 20(3): 215–240. 341

Loredo, T. (1990). From Laplace to supernova SN 1987A: Bayesian inference in astro-
physics. In P. Fougère (Ed.), Maximum Entropy and Bayesian Methods, pp. 81–142.
Kluwer Academic Press, Dordrecht, The Netherlands. 341

Lowe, D.G. (1995). Similarity metric learning for a variable-kernel classifier. Neural
Computation, 7: 72–85. 341

Luenberger, D.G. (1979). Introduction to Dynamic Systems: Theory, Models and Applica-
tions. Wiley, New York. 66

Mackworth, A.K. (1993). On seeing robots. In A. Basu and X. Li (Eds.), Computer Vision:
Systems, Theory, and Applications, pp. 1–13. World Scientific Press, Singapore. 66

Mackworth, A.K. (2009). Agents, bodies, constraints, dynamics and evolution. AI Mag-
azine. 632

646 Bibliography

Mackworth, A.K. (1977). On reading sketch maps. In Proc. Fifth International Joint Conf.
on Artificial Intelligence, pp. 598–606. MIT, Cambridge, MA. 151

Manning, C. and Schütze, H. (1999). Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA. 542

Mas-Colell, A., Whinston, M.D., and Green, J.R. (1995). Microeconomic Theory. Oxford
University Press, New York, NY. 449

Matheson, J.E. (1990). Using influence diagrams to value information and control. In
R.M. Oliver and J.Q. Smith (Eds.), Influence Diagrams, Belief Nets and Decision Analy-
sis, chapter 1, pp. 25–48. Wiley. 413

McAllester, D. and Rosenblitt, D. (1991). Systematic nonlinear planning. In Proc. 9th
National Conference on Artificial Intelligence, pp. 634–639. 367

McCarthy, J. (1986). Applications of circumscription to formalizing common-sense
knowledge. Artificial Intelligence, 28(1): 89–116. 207

McCarthy, J. and Hayes, P.J. (1969). Some philosophical problems from the standpoint
of artificial intelligence. In M. Meltzer and D. Michie (Eds.), Machine Intelligence 4,
pp. 463–502. Edinburgh University Press. 8, 618

McCulloch, W. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5: 115–133. 7

McDermott, D. and Hendler, J. (1995). Planning: What it is, what it could be, an in-
troduction to the special issue on planning and scheduling. Artificial Intelligence, 76:
1–16. 367

McLuhan, M. (1964). Understanding Media: The Extensions of Man. New American Li-
brary, New York. 632

Meir, R. and Rätsch, G. (2003). An introduction to boosting and leveraging. In In Ad-
vanced Lectures on Machine Learning (LNAI2600), pp. 119–184. Springer. 341

Mendelson, E. (1987). Introduction to Mathematical Logic. Wadsworth and Brooks,
Monterey, CA, third edition. 207

Michie, D., Spiegelhalter, D.J., and Taylor, C.C. (Eds.) (1994). Machine Learning, Neural
and Statistical Classification. Series in Artificial Intelligence. Ellis Horwood, Hemel
Hempstead, Hertfordshire, England. 341

Mihailidis, A., Boger, J., Candido, M., and Hoey, J. (2007). The use of an intelligent
prompting system for people with dementia. ACM Interactions, 14(4): 34–37. 632

Minsky, M. (1961). Steps towards artificial intelligence. Proceedings of the IEEE, 49: 8–30.
106

Minsky, M. (1986). The Society of Mind. Simon and Schuster, New York. 29
Minsky, M. and Papert, S. (1988). Perceptrons: An Introduction to Computational Geometry.

MIT Press, Cambridge, MA, expanded edition. 7, 341
Minsky, M.L. (1975). A framework for representing knowledge. In P. Winston (Ed.),

The Psychology of Computer Vision, pp. 211–277. McGraw-Hill, New York. Alternative
version is in Haugeland [1997], and reprinted in Brachman and Levesque [1985]. 8

Minsky, M. (1952). A neural-analogue calculator based upon a probability model of
reinforcement. Technical report, Harvard University Psychological Laboratories,
Cambridge, MA. 7

Minton, S., Johnston, M.D., Philips, A.B., and Laird, P. (1992). Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems. Artifi-
cial Intelligence, 58(1-3): 161–205. 152

Bibliography 647

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.
152

Mitchell, T. (1997). Machine Learning. McGraw-Hill, New York. 341

Mitchell, T.M. (1977). Version spaces: A candidate elimination approach to rule learn-
ing. In Proc. 5th International Joint Conf. on Artificial Intelligence, pp. 305–310. Cam-
bridge, MA. 341

Motik, B., Patel-Schneider, P.F., and Grau, B.C. (Eds.) (2009a). OWL 2 Web Ontology
Language Direct Semantics. W3C. http://www.w3.org/TR/owl2-semantics/. 592

Motik, B., Patel-Schneider, P.F., and Parsia, B. (Eds.) (2009b). OWL 2 Web Ontol-
ogy Language Structural Specification and Functional-Style Syntax. W3C. http://www
.w3.org/TR/owl2-syntax/. 592

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing,
13(3,4): 245–286. 620

Muggleton, S. and De Raedt, L. (1994). Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19,20: 629–679. 620

Muscettola, N., Nayak, P., Pell, B., and Williams, B. (1998). Remote agent: to boldly go
where no AI system has gone before. Artificial Intelligence, 103: 5–47. 212

Nash, Jr., J.F. (1950). Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36: 48–49. 436

Nau, D.S. (2007). Current trends in automated planning. AI Magazine, 28(4): 43–58. 367,
632

Neumann, J.V. and Morgenstern, O. (1953). Theory of Games and Economic Behavior.
Princeton University Press, Princeton, NJ, third edition. 413, 424

Newell, A. and Simon, H.A. (1976). Computer science as empirical enquiry: Symbols
and search. Communications of the ACM, 19: 113–126. Reprinted in Haugeland [1997].
15, 41

Newell, A. and Simon, H.A. (1956). The logic theory machine: A complex information
processing system. Technical Report P-868, The Rand Corporation. 7

Niles, I. and Pease, A. (2001). Towards a standard upper ontology. In C. Welty and
B. Smith (Eds.), Proceedings of the 2nd International Conference on Formal Ontology in
Information Systems (FOIS-2001). Ogunquit, Maine. 592

Nilsson, N. (2007). The physical symbol system hypothesis: Status and prospects. In
e.a. M. Lungarella (Ed.), 50 Years of AI, Festschrift, volume 4850 of LNAI, pp. 9–17.
Springer. 41

Nilsson, N.J. (1971). Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,
New York. 106

Nilsson, N.J. (2009). The Quest for Artificial Intelligence: A History of Ideas and Achieve-
ments. Cambridge University Press, Cambridge, England. 40

Nisan, N. (2007). Introduction to mechanisn design (for computer scientists). In N.N.
et al. (Ed.), Algorithmic Game Theory, chapter 9, pp. 209–242. Cambridge University
Press, Cambridge, England. 449

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V.V. (Eds.) (2007). Algorithmic
Game Theory. Cambridge University Press. 449

Noy, N.F. and Hafner, C.D. (1997). The state of the art in ontology design: A survey
and comparative review. AI Magazine, 18(3): 53–74. 592

648 Bibliography

Ordeshook, P.C. (1986). Game theory and political theory: An introduction. Cambridge
University Press, New York. 449

Panton, K., Matuszek, C., Lenat, D., Schneider, D., Witbrock, M., Siegel, N., and Shep-
ard, B. (2006). Common sense reasoning – from Cyc to intelligent assistant. In Y. Cai
and J. Abascal (Eds.), Ambient Intelligence in Everyday Life, LNAI 3864, pp. 1–31.
Springer. 592

Pearl, J. (1984). Heuristics. Addison-Wesley, Reading, MA. 106, 449

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, San Mateo, CA. 274

Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge University Press.
208, 275

Peden, M.e.a. (Ed.) (2004). World Report on Road Traffic Injury Prevention. World Health
Organization, Geneva. 632

Peng, Y. and Reggia, J.A. (1990). Abductive Inference Models for Diagnostic Problem-
Solving. Symbolic Computation – AI Series. Springer-Verlag, New York. 207

Pereira, F.C.N. and Shieber, S.M. (2002). Prolog and Natural-Language Analysis. Micro-
tome Publishing. 542

Pollack, M.E. (2005). Intelligent technology for an aging population: The use of ai to
assist elders with cognitive impairment. AI Magazine, 26(2): 9–24. 632

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence, 64(1): 81–129. 620

Poole, D. (1997). The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94: 7–56. Special issue on economic principles of
multi-agent systems. 620

Poole, D., Goebel, R., and Aleliunas, R. (1987). Theorist: A logical reasoning system for
defaults and diagnosis. In N. Cercone and G. McCalla (Eds.), The Knowledge Frontier:
Essays in the Representation of Knowledge, pp. 331–352. Springer-Verlag, New York,
NY. 207

Poole, D., Mackworth, A., and Goebel, R. (1998). Computational Intelligence: A Logical
Approach. Oxford University Press, New York. xiv

Posner, M.I. (Ed.) (1989). Foundations of Cognitive Science. MIT Press, Cambridge, MA.
41

Price, C.J., Travé-Massuyàs, L., Milne, R., Ironi, L., Forbus, K., Bredeweg, B., Lee, M.H.,
Struss, P., Snooke, N., Lucas, P., Cavazza, M., and Coghill, G.M. (2006). Quali-
tative futures. The Knowledge Engineering Review, 21(04): 317–334. 66

Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley and Sons, New York. 413

Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1: 81–106. Reprinted
in Shavlik and Dietterich [1990]. 341

Quinlan, J.R. (1993). C4.5 Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA. 341

Quinlan, J.R. and Cameron-Jones, R.M. (1995). Induction of logic programs: FOIL and
related systems. New Generation Computing, 13(3,4): 287–312. 620

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2): 257–286. 275

Bibliography 649

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz (Ed.), Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy,
pp. 359–380. Academic Press, San Diego, CA. 618

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press. 618

Riesbeck, C. and Schank, R. (1989). Inside Case-Based Reasoning. Lawrence Erlbaum,
Hillsdale, NJ. 341

Robinson, J.A. (1965). A machine-oriented logic based on the resolution principle. Jour-
nal ACM, 12(1): 23–41. 207

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6): 386–408. 7, 306

Rosenschein, S.J. and Kaelbling, L.P. (1995). A situated view of representation and con-
trol. Artificial Intelligence, 73: 149–173. 66

Rubinstein, R.Y. (1981). Simulation and the Monte Carlo Method. John Wiley and Sons.
275

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning internal represen-
tations by error propagation. In D.E. Rumelhart and J.L. McClelland (Eds.), Parallel
Distributed Processing, chapter 8, pp. 318–362. MIT Press, Cambridge, MA. Reprinted
in Shavlik and Dietterich [1990]. 341

Russell, B. (1917). Mysticism and Logic and Other Essays. G. Allen and Unwin, London.
597

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Series in
Artificial Intelligence. Prentice-Hall, Englewood Cliffs, NJ, third edition. 41

Russell, S. (1997). Rationality and intelligence. Artificial Intelligence, 94: 57–77. 41
Sacerdoti, E.D. (1975). The nonlinear nature of plans. In Proc. 4th International Joint Conf.

on Artificial Intelligence, pp. 206–214. Tbilisi, Georgia, USSR. 367
Samuel, A.L. (1959). Some studies in machine learning using the game of checkers.

IBM Journal on Research and Development, 3(3): 210–229. 7, 424
Sandholm, T. (2007). Expressive commerce and its application to sourcing: How we

conducted $35 billion of generalized combinatorial auctions. AI Magazine, 28(3): 45–
58. 41

Savage, L.J. (1972). The Foundation of Statistics. Dover, New York, 2nd edition. 413
Schank, R.C. (1990). What is AI, anyway? In D. Partridge and Y. Wilks (Eds.), The Foun-

dations of Artificial Intelligence, pp. 3–13. Cambridge University Press, Cambridge,
England. 41

Schapire, R.E. (2002). The boosting approach to machine learning: An overview. In
MSRI Workshop on Nonlinear Estimation and Classification. Springer Verlag. 341

Schubert, L.K. (1990). Monotonic solutions to the frame problem in the situation calcu-
lus: An efficient method for worlds with fully specified actions. In H.E. Kyburg, R.P.
Loui, and G.N. Carlson (Eds.), Knowledge Representation and Defeasible Reasoning, pp.
23–67. Kluwer Academic Press, Boston, MA. 618

Shachter, R. and Peot, M.A. (1992). Decision making using probabilistic inference
methods. In Proc. Eighth Conf. on Uncertainty in Artificial Intelligence (UAI-92), pp.
276–283. Stanford, CA. 413

Shafer, G. and Pearl, J. (Eds.) (1990). Readings in Uncertain Reasoning. Morgan Kauf-
mann, San Mateo, CA. 639

650 Bibliography

Shanahan, M. (1989). Prediction is deduction, but explanation is abduction. In Proc.
11th International Joint Conf. on Artificial Intelligence (IJCAI-89), pp. 1055–1060. Detroit,
MI. 207

Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Investigation of the Com-
mon Sense Law of Inertia. MIT Press, Cambridge, MA. 620

Shapiro, S.C. (Ed.) (1992). Encyclopedia of Artificial Intelligence. Wiley, New York, second
edition. 41

Sharkey, N. (2008). The ethical frontiers of robotics. Science, 322(5909): 1800–1801. 630,
632

Shavlik, J.W. and Dietterich, T.G. (Eds.) (1990). Readings in Machine Learning. Morgan
Kaufmann, San Mateo, CA. 341, 640, 642, 643, 648, 649, 651

Shelley, M.W. (1818). Frankenstein; or, The Modern Prometheus. Lackington, Hughes,
Harding, Mavor and Jones, London. 632

Shoham, Y. and Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game Theo-
retic, and Logical Foundations. Cambridge University Press. 423, 449

Simon, H.A. (1995). Artificial intelligence: an empirical science. Artificial Intelligence,
77(1): 95–127. 41

Simon, H. (1996). The Sciences of the Artificial. MIT Press, Cambridge, MA, third edition.
41, 43, 66

Singer, P.W. (2009a). Robots at war: The new battlefield. The Wilson Quarterly. http://
www.wilsoncenter.org/index.cfm?fuseaction=wq.essay&essay id=496613. 632

Singer, P.W. (2009b). Wired for War: The Robotics Revolution and Conflict in the 21st Cen-
tury. Penguin, New York. 632

Smith, B. (2003). Ontology. In L. Floridi (Ed.), Blackwell Guide to the Philosophy of Com-
puting and Information, pp. 155—166. Oxford: Blackwell. 591

Smith, B.C. (1991). The owl and the electric encyclopedia. Artificial Intelligence, 47: 251–
288. 41

Smith, B.C. (1996). On the Origin of Objects. MIT Press, Cambridge, MA. 549
Somerville, M. (2006). The Ethical Imagination: Journeys of the Human Spirit. House of

Anansi Press, Toronto. 632
Spall, J.C. (2003). Introduction to Stochastic Search and Optimization: Estimation, Simula-

tion. Wiley. 152
Spiegelhalter, D.J., Franklin, R.C.G., and Bull, K. (1990). Assessment, criticism and

improvement of imprecise subjective probabilities for a medical expert system. In
M. Henrion, R.D. Shachter, L. Kanal, and J. Lemmer (Eds.), Uncertainty in Artificial
Intelligence 5, pp. 285–294. North-Holland, Amsterdam, The Netherlands. 341

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. MIT
Press, Cambridge MA, 2nd edition. 208, 275

Sterling, L. and Shapiro, E. (1986). The Art of Prolog. MIT Press, Cambridge, MA. 542
Stillings, N.A., Feinstein, M.H., Garfield, J.L., Rissland, E.L., Rosenbaum, D.A., Weisler,

S.E., and Baker-Ward, L. (1987). Cognitive Science: An Introduction. MIT Press, Cam-
bridge, MA. 41

Stone, P. (2007). Learning and multiagent reasoning for autonomous agents. In The 20th
International Joint Conference on Artificial Intelligence (IJCAI-07), pp. 13–30. 632

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8: 345–383. 449

Bibliography 651

Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Canbridge, MA. 486

Tarski, A. (1956). Logic, Semantics, Metamathematics. Clarendon Press, Oxford, England.
Papers from 1923 to 1938 collected and translated by J. H. Woodger. 207

Tate, A. (1977). Generating project networks. In Proc. 5th International Joint Conf. on
Artificial Intelligence, pp. 888–893. Cambridge, MA. 367

Tharp, T. (2003). The Creative Habit: Learn It and Use It for Life. Simon and Schuster. 371
Thrun, S. (2006). Winning the darpa grand challenge. In Innovative Applications of Arti-

ficial Intelligence Conference, (IAAI-06), pp. 16–20. Boston, MA. 629
Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. MIT Press, Cambridge,

MA. 275
Turing, A. (1950). Computing machinery and intelligence. Mind, 59: 433–460.

Reprinted in Haugeland [1997]. 5, 40
Tversky, A. and Kahneman, D. (1974). Judgment under uncertainty: Heuristics and

biases. Science, 185: 1124–1131. 380
Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM, 27: 1134–

1142. Reprinted in Shavlik and Dietterich [1990]. 341
van Beek, P. and Chen, X. (1999). Cplan: A constraint programming approach to plan-

ning. In AAAI-99, pp. 585–590. 367
van Emden, M.H. and Kowalski, R.A. (1976). The semantics of predicate logic as a

programming language. Journal ACM, 23(4): 733–742. 207
Visser, U. and Burkhard, H.D. (2007). Robocup: 10 years of achievements and chal-

lenges. AI Magazine, 28(2): 115–130. 632
Viswanathan, P., Mackworth, A.K., Little, J.J., and Mihailidis, A. (2007). Intelligent

wheelchairs: Collision avoidance and navigation assistance for older adults with
cognitive impairment. In Proc. Workshop on Intelligent Systems for Assisted Cognition.
Rochester, NY. 632

Waldinger, R. (1977). Achieving several goals simultaneously. In E. Elcock and
D. Michie (Eds.), Machine Intelligence 8: Machine Representations of Knowledge, pp. 94–
136. Ellis Horwood, Chichester, England. 367

Walsh, T. (2007). Representing and reasoning with preferences. AI Magazine, 28(4): 59–
69. 413

Warren, D.H.D. and Pereira, F.C.N. (1982). An efficient easily adaptable system for
interpreting natural language queries. Computational Linguistics, 8(3-4): 110–122. 8

Webber, B.L. and Nilsson, N.J. (Eds.) (1981). Readings in Artificial Intelligence. Morgan
Kaufmann, San Mateo, CA. 41, 642

Weiss, G. (Ed.) (1999). Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA. 449

Weiss, S. and Kulikowski, C. (1991). Computer Systems that Learn: Classification and Pre-
diction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Mor-
gan Kaufmann, San Mateo, CA. 341

Weld, D. (1999). Recent advances in AI planning. AI Magazine, 20(2). 367
Weld, D.S. (1992). Qualitative physics: Albatross or eagle? Computational Intelligence,

8(2): 175–186. Introduction to special issue on the future of qualitative physics. 66
Weld, D.S. (1994). An introduction to least commitment planning. AI Magazine, 15(4):

27–61. 367

652 Bibliography

Weld, D. and de Kleer, J. (Eds.) (1990). Readings in Qualitative Reasoning about Physical
Systems. Morgan Kaufmann, San Mateo, CA. 66

Whitley, D. (2001). An overview of evolutionary algorithms. Journal of Information and
Software Technology, 43: 817–831. 152

Wilkins, D.E. (1988). Practical Planning: Extending the Classical AI Planning Paradigm.
Morgan Kaufmann, San Mateo, CA. 367

Winograd, T. (1990). Thinking machines: Can there be? Are we? In D. Partridge and
Y. Wilks (Eds.), The Foundations of Artificial Intelligence: A Sourcebook, pp. 167–189.
Cambridge University Press, Cambridge, England. 41

Winograd, T. (1972). Understanding Natural Language. Academic Press, New York. 8
Woods, W.A. (2007). Meaning and links. AI Magazine, 28(4): 71–92. 591
Wooldridge, M. (2002). An Introduction to Multiagent Systems. John Wiley and Sons,

Chichester, England. 449
Yang, Q. (1997). Intelligent Planning: A Decomposition and Abstraction-Based Approach.

Springer–Verlag, New York. 367
Yang, S., and Mackworth, A.K. (2007). Hierarchical shortest pathfinding applied to

route-planning for wheelchair users. In Proc. Canadian Conf. on Artificial Intelligence,
AI-2007. Montreal, PQ. 632

Zhang, N.L. and Poole, D. (1994). A simple approach to Bayesian network computa-
tions. In Proc. of the Tenth Canadian Conference on Artificial Intelligence, pp. 171–178.
274

Zhang, N.L. (2004). Hierarchical latent class models for cluster analysis. Journal of Ma-
chine Learning Research, 5(6): 697–723. 341

Zhang, Y. and Mackworth, A.K. (1995). Constraint nets: A semantic model for hybrid
dynamic systems. Theoretical Computer Science, 138: 211–239. 66

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Magazine,
17(3): 73–83. 41

Index

= (equals), 532
A∗ search, 89
∧ (and), 163
⇐ (base-level if), 581
← (if), 163, 496
|= (entails), 160, 499
|= (true in), 222
�= (not equal to), 535
φ (denotation of terms), 496, 514
π (denotation of predicate symbols), 496
π (meaning of atoms), 159
�−→ (rewritten as), 521
� (derive), 167
∨ (or), 585
% (comment), 496
& (base-level and), 581

abduction, 199, 200
abductive diagnosis, 201
abilities, 11
absolute error, 290
absorbing state, 399
abstractions, 15
achievement goal, 25, 355
action, 45, 350
action constraints, 361
action features, 360
action function, 74
action profile, 425, 435
activation function, 306
active learning, 285
active sensor, 64
acts, 4
actuator, 44, 45
acyclic, 184, 195
acyclic directed graph, 75
add list, 354

additive independence, 378
additive utility, 378
admissibility, 91
aerodynamics, 10
agent, 4, 10, 43, 45

embedded, 59
purposive, 44

agent system, 45
agent system model, 59
AI, 3
algebra, 222
algebraic variable, 113
Allais Paradox, 380
alpha-beta (α-β) pruning, 431
alternative, 615
analysis, 4
Analytical Engine, 7
ancestor, 184
annealing schedule, 138
answer, 166, 171, 187, 504
answer clause, 171
answer extraction, 504, 509
anytime algorithm, 26
application of substitution, 506
approximately correct, 332
approximately optimal, 14
approximately optimal solution, 14
arc, 75
arc consistent, 121
argument, 197, 494
Aristotelian definition, 567
array, 634
Arrow’s impossibility theorem, 446
artificial intelligence, 3
ask, 161, 166
ask-the-user, 175, 576
askable, 175

653

654 Index

assertional knowledge base, 568
assignment space, 118
assumable, 187, 200
assumption-based truth maintenance system,

207
asymptotic complexity, 83
asynchronous value iteration, 406
ATMS, 207
atom, 158, 163
atomic clause, 163, 496
atomic proposition, 158, 163
atomic symbol, 494
attribute, 552
auction, 448
autonomous delivery robot, 30
average reward, 402
axiom, 160, 161, 501
axiom schema, 533
axiomatizing, 161, 501
axioms

of probability, 224
of rationality, 373

back-propagation learning, 317
background knowledge, 17, 607
background variables, 206
backtracking, 80, 120
backward induction, 430
bagging, 319
base language, 580
base level, 580
base-level algorithms, 319
Basic Formal Ontology, 573
Bayes’ rule, 229
Bayesian classifier, 309
Bayesian learning, 334
Bayesian network, see belief network
Bayesian probability, 220
beam search, 141
belief, 49
belief monitoring, 271
belief network, 235, 236, 458

causality, 241
inference problem, 252

belief state, 48, 61
belief state transition function, 49
best response, 436
best-first search, 88
beta distribution, 337
BFO, 573
bias, 286, 321, 331
bias-free, 331
bidirectional search, 101
binary constraint, 116
binary feature, 112
biology, 6
bit, 231
blame attribution problem, 465
body, 44

agent, 45
rule, 163, 496

Boltzmann distribution, 142, 473
Boolean property, 553
Boolean variable, 113, 126, 158

boosting, 320
bottom-up proof procedure, 167
boundary of a process, 576
boundary of an object, 575
bounded rationality, 26
branch-and-bound, 98
branching factor, 77
breadth-first search, 84

candidate elimination algorithm, 329
canonical representation, 534
cardinal, 14
cardinal preference, 25
case analysis, 125
case-based reasoning, 324
causal, 48
causal link, 364
causal mechanism, 206
causal model, 204, 206
causal network, 241
causal rule, 353, 601
causal transduction, 48
causality, 204, 241
central limit theorem, 223
chain rule, 227
chance node, 384
characteristic function, 559
children, 142
choice space, 615
choose, 170
Church-Turing thesis, 7
clarity principle, 114, 241
Clark normal form, 538
Clark’s completion, 194, 538
class, 298, 309, 451, 559, 568
classification, 284, 298
classification tree, 298
clause, 126

definite, 163, 494, 496
Horn, 185

closed list, 94
closed-world assumption, 193
cluster, 451
clustering, 451
cognitive science, 10
command, 45
command function, 49
command trace, 46
commonsense reasoning, 13
competitive, 424
complements, 381
complete, 131, 167

bottom-up derivation, 169
complete knowledge assumption, 193
completeness

of preferences, 373
complex preference, 25
complexity, 83
compositional measure of belief, 226
compound proposition, 158
computational, 4
computational learning theory, 332
computational limits dimension, 26
computational linguistics, 520

Index 655

concept, 572
conceptualization, 494, 563
conditional effect, 355
conditional

expected value, 231
conditional probability, 225
conditional probability distribution, 227, 297
conditionally independent, 233
Condorcet paradox, 445
conflict, 132, 187
conjunction, 158
consequence set, 167
consistency-based diagnosis, 187, 189
consistent, 328, 358, 608
constant, 494
constrained optimization problem, 144
constraint, 115
constraint network, 121
constraint optimization problem, 145
constraint satisfaction problem, 117
context-free grammar, 521
context-specific independence, 250
contingent attribute, 562
continuant, 573
continuous variable, 113
controller, 45, 48, 426
cooperate, 444
cooperative, 424
cooperative system, 196
coordinate, 444
coordination, 437
cost, 76
credit-assignment problem, 285
cross validation, 324, 325
crossover, 142
CSP, see constraint satisfaction problem
culture, 6
cumulative probability distribution, 257
cumulative reward, 401
cyc, 564
cycle, 75
cycle check, 93
cyclic, 184

DAG, 75
Datalog, 494
datatype property, 568
DBN, see dynamic belief network
DCG, see definite clause grammar
dead reckoning, 58
debugging, 179

incorrect answers, 180
infinite loops, 184
missing answers, 182

decision
sequential, 386
single, 384

decision function, 391
decision network, 384, 387, 428
decision node, 384
decision tree, 298, 382, 426

learning, 298, 321
decision tree learning, 232
decision variable, 382

decision-theoretic planning, 409
deduction, 167, 200
Deep Space One, 212
default, 176, 196
definite clause, 163, 494, 496
definite clause grammar (DCG), 522
definite clause resolution, 169
delay, 536, 590
delete list, 354
delivery robot, 30
DENDRAL, 9
denote, 496
dense, 46
dependent continuant, 573, 575
depth-bounded meta-interpreter, 587
depth-first search, 80
derivation, 167, 171, 510
derived, 167, 204, 354, 600

knowledge, 558
description logic, 568
design, 4, 202
design space, 19
design time reasoning, 17
desire, 49
deterministic, 24
diagnosis, 201

abductive, 201
consistency-based, 187
decision theoretic, 383
probabilistic, 245

diagnostic assistant, 30, 33
dictator, 447
difference list, 522
differentia, 567
dimension

computational limits, 26
effect uncertainty, 24
learning, 26
modularity, 19
number of agents, 25
planning horizon, 22
preference, 24
representation scheme, 20
sensing uncertainty, 23

directed acyclic graph, 75
directed graph, 75
Dirichlet distribution, 337
discount factor, 402
discounted reward, 402
discrete, 46
discrete variable, 113
disjunction, 158, 185, 585
disjunctive normal form, 189
disposition, 575
distribution

normal, 223
do, 598
domain, 112, 113, 496, 552, 633
domain consistent, 121
domain expert, 63
domain ontology, 571
domain splitting, 125
dominant strategy, 446

656 Index

dominates, 439
don’t-care non-determinism, 170
don’t-know non-determinism, 170
dot product, 271
DPLL, 127
dynamic, 599
dynamic belief network, 272
dynamic decision network, 409
dynamic programming, 103

economically efficient, 446
effect, 350, 354
effect constraints, 361
effect uncertainty dimension, 24
effectively computable, 7
effector, 44
efficient, 446
eligibility trace, 479
elimination ordering, 252
EM, 452, 455, 460
embedded agent, 59
embodied, 44
empirical frequency, 295
endogenous variables, 206
engineering goal, 4
ensemble learning, 319
entails, 160
entity, 573
entropy, 232, 292
environment, 10
epistemological, 221
epistemology, 9
equal, 532
error, 288

absolute, 290
sum squares, 290
worst case, 291

error of hypothesis, 332
Euclidean distance, 95, 325
evaluation, 145
evaluation function, 132, 433
event calculus, 604
evidence, 225
evidential model, 205
evolutionary algorithm, 466
exclusive-or, 308
existence uncertainty, 619
existentially quantified variable, 500
exogenous variables, 206
expanding, 78
expectation maximization (EM), 452
expected monetary value, 376
expected utility, 386, 392
expected value, 230

of utility of a policy, 392
experience, 468
expert opinion, 297
expert system, 9, 10, 61
explained away, 201, 243, 245
explanation, 201
exploit, 472
explore, 472
expression, 496
extensional, 559

extensionally, 116
extensive form, 426
external knowledge source, 65
extrapolation, 286

f (p), 89
factor, 249, 634
factored finite state machine, 50
factored representation, 50
factorization, 236
fail, 170
failing naturally, 96
failing unnaturally, 96
failure, 197
fair, 170, 518
fairness, 19
false, 159, 498
false-negative error, 14, 182, 292
false-positive error, 14, 180, 292, 293
fault, 187
feature engineering, 484
feature-based representation of actions, 353
features, 21, 112
feed-forward neural network, 316
fiat part of an object, 575
fiat part of process, 576
filler, 556
filtering, 58, 267, 271
finite failure, 199
finite horizon, 23
finite state controller, 50
finite state machine, 50
first-order predicate calculus, 517
fixed point, 169
flat, 20
floundering goal, 541
fluent, 599
flying machines, 9
for all, 500
forward chaining, 167
forward planner, 356
frame, 556
frame problem, 618
frame rule, 353, 601
framing effect, 380
frequentist, 220
fringe, 77
frontier, 77
fully observable, 23
fully observable dynamic decision network,

411
fully observable Markov decision process,

401
function, 575, 633

symbol, 514
fuzzy terms, 52

gambling, 220
game tree, 426
Gaussian distribution, 223
general boundary, 329
M ized additive independence, 381
generalize, 285
generalized answer clause, 509

Index 657

generalized arc consistency algorithm,
122

generate and test, 118, 146
genetic algorithms, 142
genus, 567
Gibbs distribution, 142, 473
Gini index, 302, 345
global minimum, 149
goal, 11, 25, 49, 171, 356

node, 75
goal constraints, 361
gradient descent, 149, 304
grammar, 521

context-free, 521
definite clause, 522

graph, 75
greedy, 23, 609
greedy ascent, 132
greedy descent, 132
ground, 496
ground instance, 506, 507
ground representation, 580

h(n), 87
hard clustering, 452
hard constraint, 111, 115
head, 163, 496
help system, 246, 312
Herbrand interpretation, 508
heuristic

function, 87
knowledge, 72
search, 87

heuristic depth-first search, 88
hidden Markov model (HMM), 267
hidden variable, 244, 460
hierarchical, 20
hierarchical Bayesian model, 338
hierarchical control, 50
hill climbing, 132
history, 10, 48, 468
HMM, see hidden Markov model
Hoeffding’s inequality, 259
horizon, 361
Horn clause, 185
how, 17
how question, 177
human-computer interaction (HCI), 578
hyperparameters, 339
hypothesis, 288
hypothesis space, 288, 328

identity uncertainty, 619
imperfect information game, 428
implication, 158
incoming arc, 75
inconsistent, 186
incorrect answer, 180
incremental gradient descent, 305
indefinite horizon, 23, 399
independent, 233
independent and identically distributed (i.i.d.),

335
independent choice logic (ICL), 615

independent continuant, 573, 575
indicator variable, 141, 290
indifferent, 373
individual, 22, 141, 492, 496, 568
individual-property-value, 552
induction, 200, 284
inductive logic programming, 606
inference, 167
infinite horizon, 23, 399
influence diagram, 387
information content, 232
information gain, 232, 302
information set, 428
information theory, 231, 323
init, 598
initial-state constraints, 361
input features, 288
insects, 18
instance, 504, 506

ground, 507
instance space, 328
insurance, 377
integrity constraint, 185
intelligent action, 4
intelligent tutoring system, 35
intended interpretation, 161, 501
intensional, 559
intensionally, 116
intention, 49
interpolation, 286
interpretation, 159, 496
intersection, 636
intervention, 204, 206, 241
involve, 115
island, 102
island-driven search, 101
iterative best improvement, 132
iterative deepening, 95

A∗ , 98

Java, 495, 558
join, 636
joint probability distribution, 236, 252

k-fold cross validation, 324
k-means algorithm, 452
kd-tree, 326
kernel functions, 314
knowledge, 12, 60
knowledge base, 12, 17, 60, 160, 163, 494,

496
knowledge engineers, 63
knowledge is given, 26
knowledge is learned, 26
knowledge level, 16, 176
knowledge-based system, 60
knowledge-level debugging, 180

landmarks, 52
language, 521

natural, 520
language bias, 331
latent tree model, 314
latent variable, 244, 309, 460

658 Index

learning, 61, 283–347, 441–445, 451–488, 606–611
Bayesian, 334
bias, 331
case-based, 324
decision trees, 232, 298
decision tree, 321
multiagent, 441
neural network, 315
PAC, 332, 340
relational, 606
supervised, 284
to coordinate, 441
unsupervised, 285, 451
version space, 329

learning bias, 321
learning dimension, 26
learning rate, 304
leave-one-out cross-validation, 325
leaves, 75
level of abstraction, 15
life-long learning, 6
likelihood, 229
likelihood of the data, 292
linear function, 304
linear regression, 304, 484
linearly separable, 308
Linnaean taxonomy, 567
lists, 516
literal, 126, 194
liveness, 18
local minimum, 149
local optimum, 132
local search, 130, 131, 609
localization, 268
logic, 495
logic program, 514
logic programming, 207
logical consequence, 160, 499
logical variable, 494
logically follows, 160
logistic function, 307
long-term memory, 61
loop check, 93
lottery, 373
lowest-cost-first search, 86

M features, 360
M system, 51
machine learning, see learning
maintenance goal, 25, 355
MAP model, 321
mapping, 633
margin, 314
Markov assumption, 266
Markov blanket, 235
Markov chain, 266
Markov decision process, 399, 463
matrix multiplication, 271
maximum a posteriori probability, 321
maximum entropy, 233, 234
maximum likelihood model, 292, 321
maximum-likelihood estimate, 295
MDL principle, 323
MDP, see Markov decision process

measure, 221
mechanism, 424, 446
mechanism design, 446
meta-interpreter, 579, 580, 582

ask the user, 589
build proof tree, 587
built-in predicates, 586
delayed goals, 590
depth-bounded, 587
disjunction, 586
vanilla, 583

meta-level, 580
metalanguage, 580
MGU, 507
min-factor elimination ordering, 130
minimal

conflict, 187
model, 169

minimal diagnosis, 189
minimal explanation, 201
minimal model, 509
minimax, 430
minimum deficiency elimination ordering, 130
minimum description length (MDL), 323
minimum fixed point, 169
missing at random, 461
model, 15, 57, 116, 160
modular, 20
modularity, 19
modularity dimension, 20
modus ponens, 167
money pump, 374
monitoring, 267, 271
monotone restriction, 95
monotonic, 196
more general hypothesis, 329
more specific hypothesis, 329
most general unifier, 507, 511
multiagent decision network, 428
multiple agent, 25
multiple-path pruning, 93, 94
mutex constraint, 361
MYCIN, 9
myopic, 23
myopically optimal, 301

N3, 555
naive Bayesian classifier, 246, 310, 455
Nash equilibrium, 436
natural kind, 309, 313, 559
natural language processing, 520
nature, 44, 424
nearest neighbors, 325
negation, 158, 185
negation as failure, 194, 199, 537
negative examples, 607
neighbor, 75, 131
neural network, 315
no, 166
no-forgetting agent, 388
no-forgetting decision network, 388
node, 75
noisy, 267
noisy or, 250

Index 659

non-deterministic, 170
non-deterministic procedure, 170
non-ground representation, 580
non-monotonic, 196
non-parametric distribution, 223
non-planning, 23
non-serial dynamic programming, 151
non-terminal symbol, 521
nonlinear planning, 364
normal distribution, 223
normal-form game, 425
Notation 3, 555
NP, 170
NP-complete, 170
NP-hard, 170
number of agents dimension, 25
number uncertainty, 619

object, 552, 575
object aggregate, 575
object language, 580
object property, 568
object-oriented languages, 495
object-oriented programming (OOP) languages, 558
objective function, 144
observation, 11, 17, 174, 225
occurrent, 573, 575
occurs check, 518
Ockham’s razor, 287
off policy, 470
off-policy learner, 475
offline, 61
offline computation, 17
offline learning, 285
omniscient agent, 114
on-policy learner, 475
one-point crossover, 142
online, 60, 64
online computation, 17
online learning, 285
ontological, 221
ontology, 61, 161, 175, 549, 563
OOP, see object-oriented programming
open-world assumption, 193
optimal, 74
optimal algorithm, 105
optimal policy, 386, 392, 403
optimal solution, 13, 76
optimality criterion, 144
optimization problem, 144
oracle, 170
orders of magnitude reasoning, 52
ordinal, 13
ordinal preference, 25
organizations, 6
outcome, 373, 382, 425
outgoing arc, 75
overfitting, 303
OWL, 564, 568

PAC learning, 332, 340
pair, 633
parametric distribution, 223
parametrized random variable, 613

paramodulation, 534
parents, 235
partial, 267
partial evaluation, 590
partial-order planning, 363
partially observable, 23
partially observable game, 428
partially observable Markov decision process,

401, 411
particle, 264
particle filtering, 264, 265
passive sensor, 64
past experience, 11
path, 75

consistency, 125
payoff matrix, 426
percept, 45
percept stream, 46
percept trace, 46
perception, 58
perceptron, 306
perfect information, 430
perfect information game, 426
perfect rationality, 26
philosophy, 9
physical symbol system, 15
physical symbol system hypothesis, 15, 319
pixels, 45
plan, 356
planner, 356
planning, 356–370, 604

as a CSP, 360
forward, 356
partial-order, 363
regression, 357

planning horizon, 22
planning horizon dimension, 23
plate model, 338, 613
point estimate, 288
policy, 103, 386, 390
policy iteration, 407
policy search, 466
POMDP, see partially observable Markov

decision process
population, 141, 264
positive examples, 607
possible, 358
possible world, 113, 115, 382, 391, 615
posterior probability, 225
pragmatics, 521
precision, 293
precision-recall curve, 293
precondition, 350, 353, 354, 601
precondition constraints, 361
predicate symbol, 494
preference, 144
preference bias, 331
preference dimension, 25
preference elicitation, 379
primitive, 204, 354, 566, 600

knowledge, 558
prior count, 296
prior knowledge, 10

660 Index

prior probability, 225
prisoner’s dilemma, 437
probabilistic independence, 233
probabilistic inference, 248
probabilistic relational model (PRM), 612
probability, 219–275, 295

axioms, 224
conditional, 225
posterior, 225
prior, 225
semantics, 222

probability density function, 223
probability distribution, 222
probability mass, 262
probability measure, 221
probable solution, 14
probably approximately correct, 259, 332
probably approximately correct learning, 332
process, 23, 576
process aggregate, 576
processual context, 576
processual entity, 576
projection, 636
Prolog, 9, 494, 496
proof, 167

bottom-up, 167
top-down, 169

proof procedure, 167
proof tree, 179
prop, 552
property, 552, 568
property inheritance, 561
proposal distribution, 260, 261
proposition, 21, 158
propositional calculus, 158
propositional definite clause resolution, 169
propositional definite clauses, 163
propositional satisfiability, 126
prospect theory, 380
proved, 167
pseudocount, 296
psychology, 9
punishment, 399
pure strategy, 435
pure symbol, 127
purposive agent, 44

Q∗ , 404
Q-learning, 469
Q-value, 404, 469
Qπ , 403
qualitative derivatives, 52
qualitative reasoning, 52
quality, 575
quantitative reasoning, 52
query, 166, 494, 496
querying the user, 175

random initialization, 131
random restart, 131
random sampling, 132
random variable, 221
random walk, 132
random worlds, 233, 234

range, 552, 633
rational, 376
rational agent, 373
RDF, 555, 559, 564
RDF Schema, 559
RDF-S, 564
rdf:type, 559
rdfs:subClassOf, 559
reachable, 599
realizable entity, 575
reasoning, 17
recall, 293
recognition, 201
record linkage, 619
recursively enumerable, 517
reflection, 579
regression, 284, 304
regression planning, 357, 358
regression tree, 314
reify, 552
reinforcement learning, 285, 463
rejection sampling, 259
relation, 22, 492, 633, 635
relational algebra, 635
relational database, 635
relational descriptions, 22
relational probability model, 612
relational uncertainty, 619
representation, 12
representation scheme, 12
representation scheme dimension, 20, 22
resampling, 264
resolution, 169, 171

SLD, 169, 510
resolvent, 171
resource, 555, 564
Resource Description Framework, 555, 564
restriction bias, 331
return, 469
revelation principle, 447
reward, 399
rewrite rule, 521, 534
risk averse, 377
robot, 10, 30, 44
ROC curve, 293
role, 63, 575
root, 75
rule, 163, 494, 496
rule of inference, 167
run, 427
run-time distribution, 138

safety goal, 18, 355
sample average, 258
sample complexity, 333
SARSA(λ), 479
satisfiable, 201
satisficing, 14
satisficing solution, 14
satisfies, 116

policy, 391
satisfy, 115
scenario, 201
scheme, 115, 635

Index 661

scientific goal, 4
scope, 115, 145, 634, 635
search, 71–110

A∗ , 89
best-first, 88
bidirectional, 101
breadth-first, 84
cycle-checking, 93
depth first, 80
dynamic programming, 103
gradient descent, 149
heuristic, 87
island driven, 101
iterative deepening, 95
local search, 130
lowest-cost-first, 86

search and score, 462
search bias, 331
second-order logic, 517
second-price auction, 448
select, 170
selection, 635
selector function, 615
semantic interoperability, 65, 550
semantic network, 554
semantic web, 555, 564
semantics, 159, 520

propositional calculus, 159
variables, 496

sensing uncertainty dimension, 23
sensor, 44, 45, 64
sensor fusion, 270
separable control problem, 58
sequential decision problem, 386
sequential prisoner’s dilemma, 438
set, 633
set difference, 636
short-term memory, 61
sigmoid, 307
simulated agent, 59
simulated annealing, 136
single agent, 25
single decision, 384
single-stage decision network, 384
site, 575
situation, 598
situation calculus, 598
SLD derivation, 171, 510
SLD resolution, 169, 510
slot, 556
Smalltalk, 558
smoothing, 267, 271
SNLP, 370
social preference function, 446
society, 6
soft clustering, 452
soft constraint, 111, 145
soft-max, 473
software agent, 10
software engineer, 63
software engineering, 13
solution, 73, 75
sound, 167

spatial region, 573, 575
spatio-temporal region, 576
specialization operator, 609
specific boundary, 329
squashed linear function, 306
stable, 453
stack, 80
stage, 23
start node, 75
start states, 74
starvation, 170, 518
state, 20, 72
state constraints, 361
state space, 72
state-space graph, 351, 356
state-space problem, 74
static, 599
stationary, 266, 399
stationary policy, 403
step function, 306
step size, 150, 151
stimuli, 45
stochastic, 24
stochastic beam search, 142
stochastic local search, 134
stochastic simulation, 256
stochastic strategy, 435
stopping state, 399
strategic form of a game, 425
strategically, 424
strategy, 426, 427, 435
strategy profile, 427, 435
strictly dominated, 147
strictly dominates, 440
strictly preferred, 373
STRIPS assumption, 354
STRIPS representation, 354
structure learning, 461
subClassOf, 559
subgame-perfect equilibrium, 439
subgoal, 171
subject, 552
subjective probability, 220
substitutes, 381
substitution, 506
sum-of-squares error, 290, 453
supervised learning, 284, 288
support set, 435, 439
support vector machine (SVM), 314
SVM, see support vector machine
symbol, 15, 114
symbol level, 17
symbol system, 15
syntax, 520

Datalog, 494
propositional definite clauses, 163

synthesis, 4
systematicity, 370

tabu list, 135
target features, 288
TD error, 467
tell, 161
temperature, 473

662 Index

temporal difference error, 467
temporal region, 575
term, 494, 514
terminal symbol, 521
terminological knowledge base, 568
test examples, 288
theorem, 167
there exists, 500
thing, 573
thinking, 4
threat, 438
time, 46, 598
tit-for-tat, 438
top-down proof procedure, 169
total assignment, 115
total reward, 402
trading agent, 30, 37
training examples, 284, 288, 328
transduction, 48
transitivity of preferences, 374
tree, 75
tree augmented naive Bayesian (TAN) network,

314
treewidth, 130, 256
triple, 552, 555, 606, 633
triple representation, 552
true, 159, 498, 633
true-positive rate, 293
truth maintenance system, 207
truth value, 159
truthful, 446
try, 131
tuple, 115, 633, 635
Turing test, 5
Turtle, 555
tutoring system, 30
two-step belief network, 272
type, 559
type, 553, 559

UML, 558
unary constraint, 116
unconditionally independent, 235
unification, 511
unifier, 507
Uniform Resource Identifier, 555, 564, 568
uninformed search strategies, 80
union, 636
unique names assumption, 535
unit resolution, 127
units, 315
universally quantified, 498
universally quantified variable, 498
unsatisfiable, 186
unstable, 319
unsupervised learning, 285, 451

URI, see Uniform Resource Identifier
useful, 358
user, 64, 114, 175
utility, 14, 376
utility node, 385

Vπ , 403
V∗ , 404
validation set, 324
value, 401
value of control, 398
value of information, 397
vanilla meta-interpreter, 582, 583
variable, 113

algebraic, 113
Boolean, 113
continuous, 113
decision, 382
discrete, 113
existentially quantified, 500
logical, 494
random, 221
universally quantified, 498

variable assignment, 498
variable elimination, 386

belief networks, 248
CSPs, 127
decision networks, 392
optimizing soft constraints,

147
variational inference, 248
VCG mechanism, 447
VE, see variable elimination
verb, 552
version space, 329
virtual body, 50

walk, 131
weakest precondition, 358
weakly dominated, 147
weakly preferred, 373
Web Ontology Language, 564
what, 17
why question, 177
whynot question, 177
win or learn fast (WoLF), 445
word, 494
world, 10
worst-case error, 291
wrapper, 65

XML, 564

yes, 166

zero-sum game, 424, 430

	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Acknowledgments

	Part I Agents in the World: What Are Agents and How Can They Be Built?
	Chapter 1 Artificial Intelligence and Agents
	1.1 What Is Artificial Intelligence?
	1.1.1 Artificial and Natural Intelligence

	1.2 A Brief History of AI
	1.2.1 Relationship to Other Disciplines

	1.3 Agents Situated in Environments
	1.4 Knowledge Representation
	1.4.1 Defining a Solution
	1.4.2 Representations
	1.4.3 Reasoning and Acting

	1.5 Dimensions of Complexity
	1.5.1 Modularity
	1.5.2 Representation Scheme
	1.5.3 Planning Horizon
	1.5.4 Uncertainty
	Sensing Uncertainty
	Effect Uncertainty

	1.5.5 Preference
	1.5.6 Number of Agents
	1.5.7 Learning
	1.5.8 Computational Limits
	1.5.9 Interaction of the Dimensions

	1.6 Prototypical Applications
	1.6.1 An Autonomous Delivery Robot
	1.6.2 A Diagnostic Assistant
	1.6.3 An Intelligent Tutoring System
	1.6.4 A Trading Agent

	1.7 Overview of the Book
	1.8 Review
	1.9 References and Further Reading
	1.10 Exercises

	Chapter 2 Agent Architectures and Hierarchical Control
	2.1 Agents
	2.2 Agent Systems
	2.2.1 The Agent Function

	2.3 Hierarchical Control
	2.3.1 Agents Modeling the World

	2.4 Embedded and Simulated Agents
	2.5 Acting with Reasoning
	2.5.1 Design Time and Offline Computation
	2.5.2 Online Computation

	2.6 Review
	2.7 References and Further Reading
	2.8 Exercises

	Part II Representing and Reasoning
	Chapter 3 States and Searching
	3.1 Problem Solving as Search
	3.2 State Spaces
	3.3 Graph Searching
	3.3.1 Formalizing Graph Searching

	3.4 A Generic Searching Algorithm
	3.5 Uninformed Search Strategies
	3.5.1 Depth-First Search
	3.5.2 Breadth-First Search
	3.5.3 Lowest-Cost-First Search

	3.6 Heuristic Search
	3.6.1 A Search
	3.6.2 Summary of Search Strategies

	3.7 More Sophisticated Search
	3.7.1 Cycle Checking
	3.7.2 Multiple-Path Pruning
	3.7.3 Iterative Deepening
	3.7.4 Branch and Bound
	3.7.5 Direction of Search
	Bidirectional Search
	Island-Driven Search
	Searching in a Hierarchy of Abstractions

	3.7.6 Dynamic Programming

	3.8 Review
	3.9 References and Further Reading
	3.10 Exercises

	Chapter 4 Features and Constraints
	4.1 Features and States
	4.2 Possible Worlds, Variables, and Constraints
	4.2.1 Constraints
	4.2.2 Constraint Satisfaction Problems

	4.3 Generate-and-Test Algorithms
	4.4 Solving CSPs Using Search
	4.5 Consistency Algorithms
	4.6 Domain Splitting
	4.6.1 Exploiting Propositional Structure

	4.7 Variable Elimination
	4.8 Local Search
	4.8.1 Iterative Best Improvement
	4.8.2 Randomized Algorithms
	Most Improving Step
	Two-Stage Choice
	Any Conﬂict
	Simulated Annealing

	4.8.3 Evaluating Randomized Algorithms
	4.8.4 Exploiting Propositional Structure in Local Search

	4.9 Population-Based Methods
	4.10 Optimization
	4.10.1 Systematic Methods for Optimization
	4.10.2 Local Search for Optimization
	Continuous Domains

	4.11 Review
	4.12 References and Further Reading
	4.13 Exercises

	Chapter 5 Propositions and Inference
	5.1 Propositions
	5.1.1 Syntax of Propositional Calculus
	5.1.2 Semantics of the Propositional Calculus
	Humans’ View of Semantics
	The Computer’s View of Semantics

	5.2 Propositional Deﬁnite Clauses
	5.2.1 Questions and Answers
	5.2.2 Proofs
	Bottom-Up Proof Procedure
	Top-Down Proof Procedure

	5.3 Knowledge Representation Issues
	5.3.1 Background Knowledge and Observations
	5.3.2 Querying the User
	5.3.3 Knowledge-Level Explanation
	How Did the System Prove a Goal?
	Why Did the System Ask a Question?

	5.3.4 Knowledge-Level Debugging
	Incorrect Answers
	Missing Answers
	Infinite Loops

	5.4 Proving by Contradictions
	5.4.1 Horn Clauses
	5.4.2 Assumables and Conﬂicts
	5.4.3 Consistency-Based Diagnosis
	5.4.4 Reasoning with Assumptions and Horn Clauses
	Bottom-Up Implementation
	Top-Down Implementation

	5.5 Complete Knowledge Assumption
	5.5.1 Non-monotonic Reasoning
	5.5.2 Proof Procedures for Complete Knowledge
	Bottom-Up Procedure
	Top-Down Negation-as-Failure Procedure

	5.6 Abduction
	5.7 Causal Models
	5.8 Review
	5.9 References and Further Reading
	5.10 Exercises

	Chapter 6 Reasoning Under Uncertainty
	6.1 Probability
	6.1.1 Semantics of Probability
	6.1.2 Axioms for Probability
	6.1.3 Conditional Probability
	Semantics of Conditional Probability
	Bayes’ Rule

	6.1.4 Expected Values
	6.1.5 Information Theory

	6.2 Independence
	6.3 Belief Networks
	6.3.1 Constructing Belief Networks

	6.4 Probabilistic Inference
	6.4.1 Variable Elimination for Belief Networks
	6.4.2 Approximate Inference Through Stochastic Simulation
	Sampling from a Single Variable
	Forward Sampling in Belief Networks
	From Samples to Probabilities
	Rejection Sampling
	Importance Sampling
	Particle Filtering

	6.5 Probability and Time
	6.5.1 Markov Chains
	6.5.2 Hidden Markov Models
	Localization

	6.5.3 Algorithms for Monitoring and Smoothing
	6.5.4 Dynamic Belief Networks
	6.5.5 Time Granularity

	6.6 Review
	6.7 References and Further Reading
	6.8 Exercises

	Part III Learning and Planning
	Chapter 7 Learning: Overview and Supervised Learning
	7.1 Learning Issues
	7.2 Supervised Learning
	7.2.1 Evaluating Predictions
	7.2.2 Point Estimates with No Input Features
	7.2.3 Learning Probabilities
	Probabilities from Experts

	7.3 Basic Models for Supervised Learning
	7.3.1 Learning Decision Trees
	Searching for a Good Decision Tree

	7.3.2 Linear Regression and Classiﬁcation
	Squashed Linear Functions

	7.3.3 Bayesian Classiﬁers

	7.4 Composite Models
	7.4.1 Neural Networks
	7.4.2 Ensemble Learning

	7.5 Avoiding Overfitting
	7.5.1 Maximum A Posteriori Probability and Minimum Description Length
	MAP Learning of Decision Trees
	Description Length

	7.5.2 Cross Validation

	7.6 Case-Based Reasoning
	7.7 Learning as Refining the Hypothesis Space
	7.7.1 Version-Space Learning
	Candidate Elimination Algorithm
	The Bias Involved in Version-Space Learning

	7.7.2 Probably Approximately Correct Learning

	7.8 Bayesian Learning
	7.9 Review
	7.10 References and Further Reading
	7.11 Exercises

	Chapter 8 Planning with Certainty
	8.1 Representing States, Actions, and Goals
	8.1.1 Explicit State-Space Representation
	8.1.2 Feature-Based Representation of Actions
	8.1.3 The STRIPS Representation
	8.1.4 Initial States and Goals

	8.2 Forward Planning
	8.3 Regression Planning
	8.4 Planning as a CSP
	8.5 Partial-Order Planning
	8.6 Review
	8.7 References and Further Reading
	8.8 Exercises

	Chapter 9 Planning Under Uncertainty
	9.1 Preferences and Utility
	9.1.1 Factored Utility

	9.2 One-Off Decisions
	9.2.1 Single-Stage Decision Networks

	9.3 Sequential Decisions
	9.3.1 Decision Networks
	9.3.2 Policies
	Expected Utility of a Policy

	9.3.3 Variable Elimination for Decision Networks

	9.4 The Value of Information and Control
	9.5 Decision Processes
	9.5.1 Value of a Policy
	9.5.2 Value of an Optimal Policy
	9.5.3 Value Iteration
	9.5.4 Policy Iteration
	9.5.5 Dynamic Decision Networks
	9.5.6 Partially Observable Decision Processes

	9.6 Review
	9.7 References and Further Reading
	9.8 Exercises

	Chapter 10 Multiagent Systems
	10.1 Multiagent Framework
	10.2 Representations of Games
	10.2.1 Normal Form of a Game
	10.2.2 Extensive Form of a Game
	10.2.3 Multiagent Decision Networks

	10.3 Computing Strategies with Perfect Information
	10.4 Partially Observable Multiagent Reasoning
	10.4.1 Computing Nash Equilibria
	Eliminating Dominated Strategies
	Computing Randomized Strategies

	10.4.2 Learning to Coordinate

	10.5 Group Decision Making
	10.6 Mechanism Design
	10.7 Review
	10.8 References and Further Reading
	10.9 Exercises

	Chapter 11 Beyond Supervised Learning
	11.1 Clustering
	11.1.1 Expectation Maximization
	11.1.2 k-Means
	11.1.3 EM for Soft Clustering

	11.2 Learning Belief Networks
	11.2.1 Learning the Probabilities
	11.2.2 Unobserved Variables
	11.2.3 Missing Data
	11.2.4 Structure Learning
	11.2.5 General Case of Belief Network Learning

	11.3 Reinforcement Learning
	11.3.1 Evolutionary Algorithms
	11.3.2 Temporal Differences
	11.3.3 Q-learning
	11.3.4 Exploration and Exploitation
	11.3.5 Evaluating Reinforcement Learning Algorithms
	11.3.6 On-Policy Learning
	11.3.7 Assigning Credit and Blame to Paths
	11.3.8 Model-Based Methods
	11.3.9 Reinforcement Learning with Features
	SARSA with Linear Function Approximation

	11.4 Review
	11.5 References and Further Reading
	11.6 Exercises

	Part IV Reasoning About Individuals and Relations
	Chapter 12 Individuals and Relations
	12.1 Exploiting Structure Beyond Features
	12.2 Symbols and Semantics
	12.3 Datalog: A Relational Rule Language
	12.3.1 Semantics of Ground Datalog
	12.3.2 Interpreting Variables
	Humans’ View of Semantics

	12.3.3 Queries with Variables

	12.4 Proofs and Substitutions
	12.4.1 Bottom-up Procedure with Variables
	12.4.2 Definite Resolution with Variables
	Unification

	12.5 Function Symbols
	12.5.1 Proof Procedures with Function Symbols

	12.6 Applications in Natural Language Processing
	12.6.1 Using Deﬁnite Clauses for Context-Free Grammars
	12.6.2 Augmenting the Grammar
	12.6.3 Building Structures for Non-terminals
	12.6.4 Canned Text Output
	12.6.5 Enforcing Constraints
	12.6.6 Building a Natural Language Interface to a Database
	12.6.7 Limitations

	12.7 Equality
	12.7.1 Allowing Equality Assertions
	Axiomatizing Equality
	Special-Purpose Equality Reasoning

	12.7.2 Unique Names Assumption
	Top-Down Procedure for the Unique Names Assumption

	12.8 Complete Knowledge Assumption
	12.8.1 Complete Knowledge Assumption Proof Procedures

	12.9 Review
	12.10 References and Further Reading
	12.11 Exercises

	Chapter 13 Ontologies and Knowledge-Based Systems
	13.1 Knowledge Sharing
	13.2 Flexible Representations
	13.2.1 Choosing Individuals and Relations
	13.2.2 Graphical Representations
	Terse Language for Triples

	13.2.3 Primitive Versus Derived Relations

	13.3 Ontologies and Knowledge Sharing
	13.3.1 Description Logic
	13.3.2 Top-Level Ontologies

	13.4 Querying Users and Other Knowledge Sources
	13.4.1 Functional Relations
	13.4.2 More General Questions

	13.5 Implementing Knowledge-Based Systems
	13.5.1 Base Languages and Metalanguages
	13.5.2 A Vanilla Meta-interpreter
	13.5.3 Expanding the Base Language
	13.5.4 Depth-Bounded Search
	13.5.5 Meta-interpreter to Build Proof Trees
	13.5.6 Ask the User Meta-interpreter
	13.5.7 Delaying Goals

	13.6 Review
	13.7 References and Further Reading
	13.8 Exercises

	Chapter 14 Relational Planning, Learning, and Probabilistic Reasoning
	14.1 Planning with Individuals and Relations
	14.1.1 Situation Calculus
	14.1.2 Event Calculus

	14.2 Learning with Individuals and Relations
	14.3 Probabilistic Relational Models
	14.4 Review
	14.5 References and Further Reading
	14.6 Exercises

	Part V The Big Picture
	Chapter 15 Retrospect and Prospect
	15.1 Dimensions of Complexity Revisited
	15.2 Social and Ethical Consequences
	15.3 References and Further Reading

	Appendix A Mathematical Preliminaries and Notation
	A.1 Discrete Mathematics
	A.2 Functions, Factors, and Arrays
	A.3 Relations and the Relational Algebra

	Bibliography
	Index

